Fundamentals of Mathematics

By:
Denny Burzynski
Wade Ellis
Fundamentals of Mathematics

By:
Denny Burzynski
Wade Ellis

Online:
< http://cnx.org/content/col10615/1.4/ >

CONNEXIONS
Rice University, Houston, Texas
Table of Contents

Preface

- Preface .. 1

Acknowledgements

- Acknowledgements ... 7

1 Addition and Subtraction of Whole Numbers

1.1 Objectives ... 9
1.2 Whole Numbers .. 10
1.3 Reading and Writing Whole Numbers .. 15
1.4 Rounding Whole Numbers .. 21
1.5 Addition of Whole Numbers .. 29
1.6 Subtraction of Whole Numbers .. 44
1.7 Properties of Addition .. 62
1.8 Summary of Key Concepts .. 67
1.9 Exercise Supplement .. 69
1.10 Proficiency Exam ... 74

2 Multiplication and Division of Whole Numbers

2.1 Objectives ... 91
2.2 Multiplication of Whole Numbers ... 92
2.3 Concepts of Division of Whole Numbers .. 105
2.4 Division of Whole Numbers ... 113
2.5 Some Interesting Facts about Division ... 126
2.6 Properties of Multiplication .. 130
2.7 Summary of Key Concepts .. 135
2.8 Exercise Supplement ... 136
2.9 Proficiency Exam ... 139

3 Exponents, Roots, and Factorization of Whole Numbers

3.1 Objectives ... 151
3.2 Exponents and Roots ... 152
3.3 Grouping Symbols and the Order of Operations ... 160
3.4 Prime Factorization of Natural Numbers .. 170
3.5 The Greatest Common Factor .. 178
3.6 The Least Common Multiple .. 182
3.7 Summary of Key Concepts .. 188
3.8 Exercise Supplement ... 191
3.9 Proficiency Exam ... 196

4 Introduction to Fractions and Multiplication and Division of Fractions

4.1 Objectives ... 211
4.2 Fractions of Whole Numbers .. 212
4.3 Proper Fractions, Improper Fractions, and Mixed Numbers 221
4.4 Equivalent Fractions, Reducing Fractions to Lowest Terms, and Raising Fractions to Higher Terms .. 231
4.5 Multiplication of Fractions ... 242
4.6 Division of Fractions ... 253
4.7 Applications Involving Fractions .. 259
4.8 Summary of Key Concepts .. 265
4.9 Exercise Supplement ... 268
4.10 Proficiency Exam ... 274
Solutions ... 276

5 Addition and Subtraction of Fractions, Comparing Fractions, and Complex Fractions

5.1 Objectives .. 293
5.2 Addition and Subtraction of Fractions with Like Denominators 294
5.3 Addition and Subtraction of Fractions with Unlike Denominators 298
5.4 Addition and Subtraction of Mixed Numbers ... 304
5.5 Comparing Fractions .. 308
5.6 Complex Fractions .. 312
5.7 Combinations of Operations with Fractions .. 316
5.8 Summary of Key Concepts ... 320
5.9 Exercise Supplement 321
5.10 Proficiency Exam ... 325
Solutions ... 327

6 Decimals

6.1 Objectives .. 337
6.2 Reading and Writing Decimals ... 338
6.3 Converting a Decimal to a Fraction ... 344
6.4 Rounding Decimals ... 348
6.5 Addition and Subtraction of Decimals ... 352
6.6 Multiplication of Decimals ... 358
6.7 Division of Decimals ... 369
6.8 Nonterminating Decimals ... 381
6.9 Converting a Fraction to a Decimal ... 386
6.10 Combinations of Operations with Decimals and Fractions 392
6.11 Summary of Key Concepts ... 395
6.12 Exercise Supplement ... 396
6.13 Proficiency Exam ... 400
Solutions ... 402

7 Ratios and Rates

7.1 Objectives .. 417
7.2 Ratios and Rates ... 417
7.3 Proportions .. 423
7.4 Applications of Proportions ... 429
7.5 Percent ... 435
7.6 Fractions of One Percent ... 442
7.7 Applications of Percents ... 446
7.8 Summary of Key Concepts ... 456
7.9 Exercise Supplement ... 458
7.10 Proficiency Exam ... 462
Solutions ... 464

8 Techniques of Estimation

8.1 Objectives .. 475
8.2 Estimation by Rounding ... 475
8.3 Estimation by Clustering ... 482
8.4 Mental Arithmetic-Using the Distributive Property 485
8.5 Estimation by Rounding Fractions ... 491
8.6 Summary of Key Concepts ... 493
8.7 Exercise Supplement ... 494
8.8 Proficiency Exam ... 500
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Measurement and Geometry</td>
<td></td>
</tr>
<tr>
<td>9.1 Objectives</td>
<td>511</td>
</tr>
<tr>
<td>9.2 Measurement and the United States System</td>
<td>512</td>
</tr>
<tr>
<td>9.3 The Metric System of Measurement</td>
<td>517</td>
</tr>
<tr>
<td>9.4 Simplification of Denominate Numbers</td>
<td>522</td>
</tr>
<tr>
<td>9.5 Perimeter and Circumference of Geometric Figures</td>
<td>530</td>
</tr>
<tr>
<td>9.6 Area and Volume of Geometric Figures and Objects</td>
<td>540</td>
</tr>
<tr>
<td>9.7 Summary of Key Concepts</td>
<td>555</td>
</tr>
<tr>
<td>9.8 Exercise Supplement</td>
<td>557</td>
</tr>
<tr>
<td>9.9 Proficiency Exam</td>
<td>562</td>
</tr>
<tr>
<td>Solutions</td>
<td>567</td>
</tr>
<tr>
<td>10 Signed Numbers</td>
<td></td>
</tr>
<tr>
<td>10.1 Objectives</td>
<td>575</td>
</tr>
<tr>
<td>10.2 Variables, Constants, and Real Numbers</td>
<td>576</td>
</tr>
<tr>
<td>10.3 Signed Numbers</td>
<td>582</td>
</tr>
<tr>
<td>10.4 Absolute Value</td>
<td>586</td>
</tr>
<tr>
<td>10.5 Addition of Signed Numbers</td>
<td>590</td>
</tr>
<tr>
<td>10.6 Subtraction of Signed Numbers</td>
<td>597</td>
</tr>
<tr>
<td>10.7 Multiplication and Division of Signed Numbers</td>
<td>602</td>
</tr>
<tr>
<td>10.8 Summary of Key Concepts</td>
<td>611</td>
</tr>
<tr>
<td>10.9 Exercise Supplement</td>
<td>612</td>
</tr>
<tr>
<td>10.10 Proficiency Exam</td>
<td>616</td>
</tr>
<tr>
<td>Solutions</td>
<td>618</td>
</tr>
<tr>
<td>11 Algebraic Expressions and Equations</td>
<td></td>
</tr>
<tr>
<td>11.1 Objectives</td>
<td>629</td>
</tr>
<tr>
<td>11.2 Algebraic Expressions</td>
<td>630</td>
</tr>
<tr>
<td>11.3 Combining Like Terms Using Addition and Subtraction</td>
<td>636</td>
</tr>
<tr>
<td>11.4 Solving Equations of the Form x+a=b and x-a=b</td>
<td>639</td>
</tr>
<tr>
<td>11.5 Solving Equations of the Form ax=b and x/a=b</td>
<td>647</td>
</tr>
<tr>
<td>11.6 Applications I: Translating Words to Mathematical Symbols</td>
<td>655</td>
</tr>
<tr>
<td>11.7 Applications II: Solving Problems</td>
<td>660</td>
</tr>
<tr>
<td>11.8 Summary of Key Concepts</td>
<td>669</td>
</tr>
<tr>
<td>11.9 Exercise Supplement</td>
<td>671</td>
</tr>
<tr>
<td>11.10 Proficiency Exam</td>
<td>678</td>
</tr>
<tr>
<td>Solutions</td>
<td>680</td>
</tr>
<tr>
<td>Index</td>
<td>692</td>
</tr>
<tr>
<td>Attributions</td>
<td>697</td>
</tr>
</tbody>
</table>

vi
Preface

To the next generation of explorers: Kristi, BreAnne, Lindsey, Randi, Piper, Meghan, Wyatt, Lara, Mason, and Sheanna.

Fundamentals of Mathematics is a work text that covers the traditional topics studied in a modern prealgebra course, as well as the topics of estimation, elementary analytic geometry, and introductory algebra. It is intended for students who

1. have had a previous course in prealgebra,
2. wish to meet the prerequisite of a higher level course such as elementary algebra, and
3. need to review fundamental mathematical concepts and techniques.

This text will help the student develop the insight and intuition necessary to master arithmetic techniques and manipulative skills. It was written with the following main objectives:

1. to provide the student with an understandable and usable source of information,
2. to provide the student with the maximum opportunity to see that arithmetic concepts and techniques are logically based,
3. to instill in the student the understanding and intuitive skills necessary to know how and when to use particular arithmetic concepts in subsequent material, courses, and nonclassroom situations, and
4. to give the student the ability to correctly interpret arithmetically obtained results.

We have tried to meet these objectives by presenting material dynamically, much the way an instructor might present the material visually in a classroom. (See the development of the concept of addition and subtraction of fractions in Section 5.3, for example.) Intuition and understanding are some of the keys to creative thinking; we believe that the material presented in this text will help the student realize that mathematics is a creative subject.

This text can be used in standard lecture or self-paced classes. To help meet our objectives and to make the study of prealgebra a pleasant and rewarding experience, Fundamentals of Mathematics is organized as follows.

Pedagogical Features

The work text format gives the student space to practice mathematical skills with ready reference to sample problems. The chapters are divided into sections, and each section is a complete treatment of a particular topic, which includes the following features:

- Section Overview
- Sample Sets
- Practice Sets

\[1\]This content is available online at \(<\text{http://cnx.org/content/m18884/1.4/}>\).
• Section Exercises
• Exercises for Review
• Answers to Practice Sets

The chapters begin with Objectives and end with a Summary of Key Concepts, an Exercise Supplement, and a Proficiency Exam.

Objectives
Each chapter begins with a set of objectives identifying the material to be covered. Each section begins with an overview that repeats the objectives for that particular section. Sections are divided into subsections that correspond to the section objectives, which makes for easier reading.

Sample Sets
Fundamentals of Mathematics contains examples that are set off in boxes for easy reference. The examples are referred to as Sample Sets for two reasons:

1. They serve as a representation to be imitated, which we believe will foster understanding of mathematical concepts and provide experience with mathematical techniques.
2. Sample Sets also serve as a preliminary representation of problem-solving techniques that may be used to solve more general and more complicated problems.

The examples have been carefully chosen to illustrate and develop concepts and techniques in the most instructive, easily remembered way. Concepts and techniques preceding the examples are introduced at a level below that normally used in similar texts and are thoroughly explained, assuming little previous knowledge.

Practice Sets
A parallel Practice Set follows each Sample Set, which reinforces the concepts just learned. There is adequate space for the student to work each problem directly on the page.

Answers to Practice Sets
The Answers to Practice Sets are given at the end of each section and can be easily located by referring to the page number, which appears after the last Practice Set in each section.

Section Exercises
The exercises at the end of each section are graded in terms of difficulty, although they are not grouped into categories. There is an ample number of problems, and after working through the exercises, the student will be capable of solving a variety of challenging problems.

The problems are paired so that the odd-numbered problems are equivalent in kind and difficulty to the even-numbered problems. Answers to the odd-numbered problems are provided at the back of the book.

Exercises for Review
This section consists of five problems that form a cumulative review of the material covered in the preceding sections of the text and is not limited to material in that chapter. The exercises are keyed by section for easy reference. Since these exercises are intended for review only, no work space is provided.

Summary of Key Concepts
A summary of the important ideas and formulas used throughout the chapter is included at the end of each chapter. More than just a list of terms, the summary is a valuable tool that reinforces concepts in preparation for the Proficiency Exam at the end of the chapter, as well as future exams. The summary keys each item to the section of the text where it is discussed.
Exercise Supplement
In addition to numerous section exercises, each chapter includes approximately 100 supplemental problems, which are referenced by section. Answers to the odd-numbered problems are included in the back of the book.

Proficiency Exam
Each chapter ends with a Proficiency Exam that can serve as a chapter review or evaluation. The Proficiency Exam is keyed to sections, which enables the student to refer back to the text for assistance. Answers to all the problems are included in the Answer Section at the end of the book.

Content
The writing style used in Fundamentals of Mathematics is informal and friendly, offering a straightforward approach to prealgebra mathematics. We have made a deliberate effort not to write another text that minimizes the use of words because we believe that students can best study arithmetic concepts and understand arithmetic techniques by using words and symbols rather than symbols alone. It has been our experience that students at the prealgebra level are not nearly experienced enough with mathematics to understand symbolic explanations alone; they need literal explanations to guide them through the symbols.

We have taken great care to present concepts and techniques so they are understandable and easily remembered. After concepts have been developed, students are warned about common pitfalls. We have tried to make the text an information source accessible to prealgebra students.

Addition and Subtraction of Whole Numbers
This chapter includes the study of whole numbers, including a discussion of the Hindu-Arabic numeration and the base ten number systems. Rounding whole numbers is also presented, as are the commutative and associative properties of addition.

Multiplication and Division of Whole Numbers
The operations of multiplication and division of whole numbers are explained in this chapter. Multiplication is described as repeated addition. Viewing multiplication in this way may provide students with a visualization of the meaning of algebraic terms such as $8x$ when they start learning algebra. The chapter also includes the commutative and associative properties of multiplication.

Exponents, Roots, and Factorizations of Whole Numbers
The concept and meaning of the word root is introduced in this chapter. A method of reading root notation and a method of determining some common roots, both mentally and by calculator, is then presented. We also present grouping symbols and the order of operations, prime factorization of whole numbers, and the greatest common factor and least common multiple of a collection of whole numbers.

Introduction to Fractions and Multiplication and Division of Fractions
We recognize that fractions constitute one of the foundations of problem solving. We have, therefore, given a detailed treatment of the operations of multiplication and division of fractions and the logic behind these operations. We believe that the logical treatment and many practice exercises will help students retain the information presented in this chapter and enable them to use it as a foundation for the study of rational expressions in an algebra course.
Addition and Subtraction of Fractions, Comparing Fractions, and Complex Fractions

A detailed treatment of the operations of addition and subtraction of fractions and the logic behind these operations is given in this chapter. Again, we believe that the logical treatment and many practice exercises will help students retain the information, thus enabling them to use it in the study of rational expressions in an algebra course. We have tried to make explanations dynamic. A method for comparing fractions is introduced, which gives the student another way of understanding the relationship between the words denominator and denomination. This method serves to show the student that it is sometimes possible to compare two different types of quantities. We also study a method of simplifying complex fractions and of combining operations with fractions.

Decimals

The student is introduced to decimals in terms of the base ten number system, fractions, and digits occurring to the right of the units position. A method of converting a fraction to a decimal is discussed. The logic behind the standard methods of operating on decimals is presented and many examples of how to apply the methods are given. The word of as related to the operation of multiplication is discussed. Nonterminating divisions are examined, as are combinations of operations with decimals and fractions.

Ratios and Rates

We begin by defining and distinguishing the terms ratio and rate. The meaning of proportion and some applications of proportion problems are described. Proportion problems are solved using the "Five-Step Method." We hope that by using this method the student will discover the value of introducing a variable as a first step in problem solving and the power of organization. The chapter concludes with discussions of percent, fractions of one percent, and some applications of percent.

Techniques of Estimation

One of the most powerful problem-solving tools is a knowledge of estimation techniques. We feel that estimation is so important that we devote an entire chapter to its study. We examine three estimation techniques: estimation by rounding, estimation by clustering, and estimation by rounding fractions. We also include a section on the distributive property, an important algebraic property.

Measurement and Geometry

This chapter presents some of the techniques of measurement in both the United States system and the metric system. Conversion from one unit to another (in a system) is examined in terms of unit fractions. A discussion of the simplification of denominate numbers is also included. This discussion helps the student understand more clearly the association between pure numbers and dimensions. The chapter concludes with a study of perimeter and circumference of geometric figures and area and volume of geometric figures and objects.

Signed Numbers

A look at algebraic concepts and techniques is begun in this chapter. Basic to the study of algebra is a working knowledge of signed numbers. Definitions of variables, constants, and real numbers are introduced. We then distinguish between positive and negative numbers, learn how to read signed numbers, and examine the origin and use of the double-negative property of real numbers. The concept of absolute value is presented both geometrically (using the number line) and algebraically. The algebraic definition is followed by an interpretation of its meaning and several detailed examples of its use. Addition, subtraction, multiplication, and division of signed numbers are presented first using the number line, then with absolute value.
Algebraic Expressions and Equations

The student is introduced to some elementary algebraic concepts and techniques in this final chapter. Algebraic expressions and the process of combining like terms are discussed in Section 11.2 and Section 11.3. The method of combining like terms in an algebraic expression is explained by using the interpretation of multiplication as a description of repeated addition (as in Section 2.1).
Many extraordinarily talented people are responsible for helping to create this text. We wish to acknowledge the efforts and skill of the following mathematicians. Their contributions have been invaluable.

Barbara Conway, Berkshire Community College
Bill Hajdukiewicz, Miami-Dade Community College
Virginia Hamilton, Shawnee State University
David Hares, El Centro College
Norman Lee, Ball State University
Ginger Y. Manchester, Hinds Junior College
John R. Martin, Tarrant County Junior College
Shelba Mormon, Northlake College
Lou Ann Pate, Pima Community College
Gus Pekara, Oklahoma City Community College
David Price, Tarrant County Junior College
David Schultz, Virginia Western Community College
Sue S. Watkins, Lorain County Community College
Elizabeth M. Wayt, Tennessee State University
Prentice E. Whitlock, Jersey City State College
Thomas E. Williamson, Montclair State College

Special thanks to the following individuals for their careful accuracy reviews of manuscript, galleys, and page proofs: Steve Blasberg, West Valley College; Wade Ellis, Sr., University of Michigan; John R. Martin, Tarrant County Junior College; and Jane Ellis. We would also like to thank Amy Miller and Guy Sanders, Branham High School.

Our sincere thanks to Debbie Wiedemann for her encouragement, suggestions concerning psychobiological examples, proofreading much of the manuscript, and typing many of the section exercises; Sandi Wiedemann for collating the annotated reviews, counting the examples and exercises, and untiring use of "white-out"; and Jane Ellis for solving and typing all of the exercise solutions.

We thank the following people for their excellent work on the various ancillary items that accompany Fundamentals of Mathematics: Steve Blasberg, West Valley College; Wade Ellis, Sr., University of Michigan; and Jane Ellis (Instructor's Manual); John R. Martin, Tarrant County Junior College (Student Solutions Manual and Study Guide); Virginia Hamilton, Shawnee State University (Computerized Test Bank); Patricia Morgan, San Diego State University (Prepared Tests); and George W. Bergeman, Northern Virginia Community College (Maxis Interactive Software).

We also thank the talented people at Saunders College Publishing whose efforts made this text run smoothly and less painfully than we had imagined. Our particular thanks to Bob Stern, Mathematics Editor, Ellen Newman, Developmental Editor, and Janet Nuciforo, Project Editor. Their guidance, suggestions, open

\[\text{This content is available online at} \ <\text{http://cnx.org/content/m34775/1.2/}>.\]
minds to our suggestions and concerns, and encouragement have been extraordinarily helpful. Although there were times we thought we might be permanently damaged from rereading and rewriting, their efforts have improved this text immensely. It is a pleasure to work with such high-quality professionals.

Denny Burzynski
Wade Ellis, Jr.
San Jose, California
December 1988

I would like to thank Doug Campbell, Ed Lodi, and Guy Sanders for listening to my frustrations and encouraging me on. Thanks also go to my cousin, David Raffety, who long ago in Sequoia National Forest told me what a differential equation is.

Particular thanks go to each of my colleagues at West Valley College. Our everyday conversations regarding mathematics instruction have been of the utmost importance to the development of this text and to my teaching career.

D.B.
Chapter 1

Addition and Subtraction of Whole Numbers

1.1 Objectives\(^1\)

After completing this chapter, you should

Whole Numbers (Section 1.2)
- know the difference between numbers and numerals
- know why our number system is called the Hindu-Arabic numeration system
- understand the base ten positional number system
- be able to identify and graph whole numbers

Reading and Writing Whole Numbers (Section 1.3)
- be able to read and write a whole number

Rounding Whole Numbers (Section 1.4)
- understand that rounding is a method of approximation
- be able to round a whole number to a specified position

Addition of Whole Numbers (Section 1.5)
- understand the addition process
- be able to add whole numbers
- be able to use the calculator to add one whole number to another

Subtraction of Whole Numbers (Section 1.6)
- understand the subtraction process
- be able to subtract whole numbers
- be able to use a calculator to subtract one whole number from another whole number

Properties of Addition (Section 1.7)
- understand the commutative and associative properties of addition
- understand why 0 is the additive identity

\(^1\)This content is available online at <http://cnx.org/content/m18885/1.4/>.
1.2 Whole Numbers

1.2.1 Section Overview
- Numbers and Numerals
- The Hindu-Arabic Numeration System
- The Base Ten Positional Number System
- Whole Numbers
- Graphing Whole Numbers

1.2.2 Numbers and Numerals

We begin our study of introductory mathematics by examining its most basic building block, the number.

Number

A number is a concept. It exists only in the mind.

The earliest concept of a number was a thought that allowed people to mentally picture the size of some collection of objects. To write down the number being conceptualized, a numeral is used.

Numeral

A numeral is a symbol that represents a number.

In common usage today we do not distinguish between a number and a numeral. In our study of introductory mathematics, we will follow this common usage.

1.2.2.1 Sample Set A

The following are numerals. In each case, the first represents the number four, the second represents the number one hundred twenty-three, and the third, the number one thousand five. These numbers are represented in different ways.

- Hindu-Arabic numerals
 4, 123, 1005
- Roman numerals
 IV, CXXIII, MV
- Egyptian numerals

1.2.2.2 Practice Set A

Exercise 1.1
Do the phrases "four," "one hundred twenty-three," and "one thousand five" qualify as numerals? Yes or no?

2This content is available online at <http://cnx.org/content/xm34795/1.5/>.
1.2.3 The Hindu-Arabic Numeration System

Hindu-Arabic Numeration System
Our society uses the **Hindu-Arabic numeration system**. This system of numeration began shortly before the third century when the Hindus invented the numerals

0 1 2 3 4 5 6 7 8 9

Leonardo Fibonacci
About a thousand years later, in the thirteenth century, a mathematician named Leonardo Fibonacci of Pisa introduced the system into Europe. It was then popularized by the Arabs. Thus, the name, Hindu-Arabic numeration system.

1.2.4 The Base Ten Positional Number System

Digits
The Hindu-Arabic numerals 0 1 2 3 4 5 6 7 8 9 are called **digits**. We can form any number in the number system by selecting one or more digits and placing them in certain positions. Each position has a particular value. The Hindu mathematician who devised the system about A.D. 500 stated that "from place to place each is ten times the preceding."

Base Ten Positional Systems
It is for this reason that our number system is called a **positional** number system with base **ten**.

Commas
When numbers are composed of more than three digits, **commas** are sometimes used to separate the digits into groups of three.

Periods
These groups of three are called **periods** and they greatly simplify reading numbers.

In the Hindu-Arabic numeration system, a period has a value assigned to each or its three positions, and the values are the same for each period. The position values are

Thus, each period contains a position for the values of one, ten, and hundred. Notice that, in looking from right to left, the value of each position is ten times the preceding. Each period has a particular name.

As we continue from right to left, there are more periods. The five periods listed above are the most common, and in our study of introductory mathematics, they are sufficient.

The following diagram illustrates our positional number system to trillions. (There are, to be sure, other periods.)
1.2.4.1 Sample Set B

Example 1.1
Find the value of 6 in the number 7,261.

Since 6 is in the tens position of the units period, its value is 6 tens.

6 tens = 60

Example 1.2
Find the value of 9 in the number 86,932,106,005.

Since 9 is in the hundreds position of the millions period, its value is 9 hundred millions.

9 hundred millions = 9 hundred million

Example 1.3
Find the value of 2 in the number 102,001.

Since 2 is in the ones position of the thousands period, its value is 2 one thousands.

2 one thousands = 2 thousand

1.2.4.2 Practice Set B

Exercise 1.2
Find the value of 5 in the number 65,000.
(Solution on p. 76.)

Exercise 1.3
Find the value of 4 in the number 439,997,007,010.
(Solution on p. 76.)

Exercise 1.4
Find the value of 0 in the number 108.
(Solution on p. 76.)

1.2.5 Whole Numbers

Whole Numbers
Numbers that are formed using only the digits
0 1 2 3 4 5 6 7 8 9
are called whole numbers. They are
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ...

The three dots at the end mean "and so on in this same pattern."
1.2.6 Graphing Whole Numbers

Number Line
Whole numbers may be visualized by constructing a number line. To construct a number line, we simply draw a straight line and choose any point on the line and label it 0.

Origin
This point is called the origin. We then choose some convenient length, and moving to the right, mark off consecutive intervals (parts) along the line starting at 0. We label each new interval endpoint with the next whole number.

Graphing
We can visually display a whole number by drawing a closed circle at the point labeled with that whole number. Another phrase for visually displaying a whole number is graphing the whole number. The word graph means to "visually display."

1.2.6.1 Sample Set C

Example 1.4
Graph the following whole numbers: 3, 5, 9.

Example 1.5
Specify the whole numbers that are graphed on the following number line. The break in the number line indicates that we are aware of the whole numbers between 0 and 106, and 107 and 872, but we are not listing them due to space limitations.

The numbers that have been graphed are
0, 106, 873, 874

1.2.6.2 Practice Set C

Exercise 1.5
Graph the following whole numbers: 46, 47, 48, 325, 327.
(Solution on p. 76.)

Exercise 1.6
Specify the whole numbers that are graphed on the following number line.
(Solution on p. 76.)

A line is composed of an endless number of points. Notice that we have labeled only some of them. As we proceed, we will discover new types of numbers and determine their location on the number line.
1.2.7 Exercises

Exercise 1.7
What is a number?
(Solution on p. 76.)

Exercise 1.8
What is a numeral?
(Solution on p. 76.)

Exercise 1.9
Does the word "eleven" qualify as a numeral?
(Solution on p. 76.)

Exercise 1.10
How many different digits are there?

Exercise 1.11
Our number system, the Hindu-Arabic number system, is a number system with base .
(Solution on p. 76.)

Exercise 1.12
Numbers composed of more than three digits are sometimes separated into groups of three by commas. These groups of three are called .
(Solution on p. 76.)

Exercise 1.13
In our number system, each period has three values assigned to it. These values are the same for each period. From right to left, what are they?
(Solution on p. 76.)

Exercise 1.14
Each period has its own particular name. From right to left, what are the names of the first four?

Exercise 1.15
In the number 841, how many tens are there?
(Solution on p. 76.)

Exercise 1.16
In the number 3,392, how many ones are there?

Exercise 1.17
In the number 10,046, how many thousands are there?
(Solution on p. 76.)

Exercise 1.18
In the number 779,844,205, how many ten millions are there?
(Solution on p. 76.)

Exercise 1.19
In the number 65,021, how many hundred thousands are there?

For following problems, give the value of the indicated digit in the given number.

Exercise 1.20
5 in 599
(Solution on p. 76.)

Exercise 1.21
1 in 310,406
(Solution on p. 76.)

Exercise 1.22
9 in 29,827
(Solution on p. 76.)

Exercise 1.23
6 in 52,561,001,100
(Solution on p. 76.)

Exercise 1.24
Write a two-digit number that has an eight in the tens position.
(Solution on p. 76.)

Exercise 1.25
Write a four-digit number that has a one in the thousands position and a zero in the ones position.
(Solution on p. 76.)

Exercise 1.26
How many two-digit whole numbers are there?
Exercise 1.27
How many three-digit whole numbers are there?
(Solution on p. 76.)

Exercise 1.28
How many four-digit whole numbers are there?
(Solution on p. 76.)

Exercise 1.29
Is there a smallest whole number? If so, what is it?
(Solution on p. 76.)

Exercise 1.30
Is there a largest whole number? If so, what is it?
(Solution on p. 76.)

Exercise 1.31
Another term for "visually displaying" is _____________.
(Solution on p. 76.)

Exercise 1.32
The whole numbers can be visually displayed on a _____________.

Exercise 1.33
Graph (visually display) the following whole numbers on the number line below: 0, 1, 31, 34.
(Solution on p. 76.)

Exercise 1.34
Construct a number line in the space provided below and graph (visually display) the following whole numbers: 84, 85, 901, 1006, 1007.
(Solution on p. 76.)

Exercise 1.35
Specify, if any, the whole numbers that are graphed on the following number line.
(Solution on p. 76.)

Exercise 1.36
Specify, if any, the whole numbers that are graphed on the following number line.

1.3 Reading and Writing Whole Numbers

1.3.1 Section Overview

- Reading Whole Numbers
- Writing Whole Numbers

Because our number system is a positional number system, reading and writing whole numbers is quite simple.

3This content is available online at <http://cnx.org/content/m34778/1.5/>.
1.3.2 Reading Whole Numbers

To convert a number that is formed by digits into a verbal phrase, use the following method:

1. Beginning at the right and working right to left, separate the number into distinct periods by inserting commas every three digits.
2. Beginning at the left, read each period individually, saying the period name.

1.3.2.1 Sample Set A

Write the following numbers as words.

Example 1.6
Read 42,958.

1. Beginning at the right, we can separate this number into distinct periods by inserting a comma between the 2 and 9.
2. Beginning at the left, we read each period individually:

\[\begin{array}{c}
 4 & 2 \\
 \hline
 9 & 5 & 8
\end{array} \rightarrow \text{Forty-two thousand, nine hundred fifty-eight} \]

Example 1.7
Read 307,991,343.

1. Beginning at the right, we can separate this number into distinct periods by placing commas between the 1 and 3 and the 7 and 9.
2. Beginning at the left, we read each period individually:

\[\begin{array}{c}
 3 & 0 & 7 \\
 \hline
 9 & 9 & 1
\end{array} \rightarrow \text{Three hundred seven million, nine hundred ninety-one thousand,} \]

\[\begin{array}{c}
 3 & 4 & 3 \\
 \hline
 5 & 8
\end{array} \rightarrow \text{three hundred forty-three} \]

Three hundred seven million, nine hundred ninety-one thousand, three hundred forty-three.

Example 1.8
Read 36,000,000,001.

1. Beginning at the right, we can separate this number into distinct periods by placing commas.
2. Beginning at the left, we read each period individually:

\[\begin{array}{c}
 3 & 6 & 0 \\
 \hline
 0 & 0 & 0 \\
 \hline
 0 & 0 & 1
\end{array} \rightarrow \text{Thirty-six million,} \]

\[\begin{array}{c}
 0 & 0 \\
 \hline
 0 & 0
\end{array} \rightarrow \text{zero,} \]

\[\begin{array}{c}
 0 & 1
\end{array} \rightarrow \text{one} \]

Thirty-six million, zero, one.
2. Beginning at the left, we read each period individually.

\[
\begin{align*}
&\overset{\text{Trillions period}}{\underline{3 \, 6}}, \quad \text{Thirty-six trillion,} \\
&\overset{\text{Billions period}}{\underline{0 \, 0 \, 0}}, \quad \text{zero billion,} \\
&\overset{\text{Millions period}}{\underline{0 \, 0 \, 0}}, \quad \text{zero million,} \\
&\overset{\text{Thousands period}}{\underline{0 \, 0 \, 0}}, \quad \text{zero thousand,} \\
&\overset{\text{Units period}}{\underline{0 \, 0 \, 1}} \quad \text{one}
\end{align*}
\]

Thirty-six trillion, one.

1.3.2.2 Practice Set A

Write each number in words.

Exercise 1.37

12,542

(Solution on p. 76.)

Exercise 1.38

101,074,003

(Solution on p. 76.)

Exercise 1.39

1,000,008

(Solution on p. 76.)

1.3.3 Writing Whole Numbers

To express a number in digits that is expressed in words, use the following method:

1. Notice first that a number expressed as a verbal phrase will have its periods set off by commas.
2. Starting at the beginning of the phrase, write each period of numbers individually.
3. Using commas to separate periods, combine the periods to form one number.

1.3.3.1 Sample Set B

Write each number using digits.

Example 1.9

Seven thousand, ninety-two.

Using the comma as a period separator, we have
Example 1.10
Fifty billion, one million, two hundred thousand, fourteen.

Using the commas as period separators, we have

\[
\begin{align*}
\text{Fifty billion} & \rightarrow 50,000,000,000,000, \\
\text{one million} & \rightarrow 1,000,000, \\
\text{two hundred thousand} & \rightarrow 200,000, \\
\text{fourteen} & \rightarrow 14
\end{align*}
\]

Example 1.11
Ten million, five hundred twelve.

The comma sets off the periods. We notice that there is no thousands period. We'll have to insert this ourselves.

\[
\begin{align*}
\text{Ten million} & \rightarrow 10,000,000, \\
\text{zero thousand} & \rightarrow 0,000, \\
\text{five hundred twelve} & \rightarrow 512
\end{align*}
\]

1.3.3.2 Practice Set B
Express each number using digits.

Exercise 1.40 \hspace{1cm} (Solution on p. 77.)
One hundred three thousand, twenty-five.

Exercise 1.41 \hspace{1cm} (Solution on p. 77.)
Six million, forty thousand, seven.

Exercise 1.42 \hspace{1cm} (Solution on p. 77.)
Twenty trillion, three billion, eighty million, one hundred nine thousand, four hundred two.

Exercise 1.43 \hspace{1cm} (Solution on p. 77.)
Eighty billion, thirty-five.

1.3.4 Exercises
For the following problems, write all numbers in words.

Exercise 1.44 \hspace{1cm} (Solution on p. 77.)
912

Exercise 1.45
84
Exercise 1.46
1491
(Solution on p. 77.)

Exercise 1.47
8601

Exercise 1.48
35,223
(Solution on p. 77.)

Exercise 1.49
71,006

Exercise 1.50
437,105
(Solution on p. 77.)

Exercise 1.51
201,040
(Solution on p. 77.)

Exercise 1.52
8,001,001

Exercise 1.53
16,000,053

Exercise 1.54
770,311,101
(Solution on p. 77.)

Exercise 1.55
83,000,000,007
(Solution on p. 77.)

Exercise 1.56
106,100,001,010
(Solution on p. 77.)

Exercise 1.57
3,333,444,777
(Solution on p. 77.)

Exercise 1.58
800,000,800,000
(Solution on p. 77.)

Exercise 1.59
A particular community college has 12,471 students enrolled.

Exercise 1.60
(Solution on p. 77.)
A person who watches 4 hours of television a day spends 1460 hours a year watching T.V.

Exercise 1.61
Astronomers believe that the age of the earth is about 4,500,000,000 years.

Exercise 1.62
(Solution on p. 77.)
Astronomers believe that the age of the universe is about 20,000,000,000 years.

Exercise 1.63
There are 9690 ways to choose four objects from a collection of 20.

Exercise 1.64
(Solution on p. 77.)
If a 412 page book has about 52 sentences per page, it will contain about 21,424 sentences.

Exercise 1.65
In 1980, in the United States, there was $1,761,000,000,000 invested in life insurance.

Exercise 1.66
(Solution on p. 77.)
In 1979, there were 85,000 telephones in Alaska and 2,905,000 telephones in Indiana.

Exercise 1.67
In 1975, in the United States, it is estimated that 52,294,000 people drove to work alone.

Exercise 1.68
(Solution on p. 77.)
In 1980, there were 217 prisoners under death sentence that were divorced.
Exercise 1.69
In 1979, the amount of money spent in the United States for regular-session college education was $50,721,000,000,000.

Exercise 1.70 (Solution on p. 77.)
In 1981, there were 1,956,000 students majoring in business in U.S. colleges.

Exercise 1.71
In 1980, the average fee for initial and follow up visits to a medical doctors office was about $34.

Exercise 1.72 (Solution on p. 77.)
In 1980, there were approximately 13,100 smugglers of aliens apprehended by the Immigration border patrol.

Exercise 1.73
In 1980, the state of West Virginia pumped 2,000,000 barrels of crude oil, whereas Texas pumped 975,000,000 barrels.

Exercise 1.74 (Solution on p. 77.)
The 1981 population of Uganda was 12,630,000 people.

Exercise 1.75
In 1981, the average monthly salary offered to a person with a Master’s degree in mathematics was $1,685.

For the following problems, write each number using digits.

Exercise 1.76 (Solution on p. 77.)
Six hundred eighty-one

Exercise 1.77
Four hundred ninety

Exercise 1.78 (Solution on p. 77.)
Seven thousand, two hundred one

Exercise 1.79
Nineteen thousand, sixty-five

Exercise 1.80 (Solution on p. 77.)
Five hundred twelve thousand, three

Exercise 1.81
Two million, one hundred thirty-three thousand, eight hundred fifty-nine

Exercise 1.82 (Solution on p. 77.)
Thirty-five million, seven thousand, one hundred one

Exercise 1.83
One hundred million, one thousand

Exercise 1.84 (Solution on p. 77.)
Sixteen billion, fifty-nine thousand, four

Exercise 1.85
Nine hundred twenty billion, four hundred seventeen million, twenty-one thousand

Exercise 1.86 (Solution on p. 78.)
Twenty-three billion

Exercise 1.87
Fifteen trillion, four billion, nineteen thousand, three hundred five

Exercise 1.88 (Solution on p. 78.)
One hundred trillion, one
1.4 Rounding Whole Numbers

1.4.1 Section Overview

- Rounding as an Approximation
- The Method of Rounding Numbers

1.4.2 Rounding as an Approximation

A primary use of whole numbers is to keep count of how many objects there are in a collection. Sometimes we’re only interested in the approximate number of objects in the collection rather than the precise number. For example, there are approximately 20 symbols in the collection below.

```
Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol
Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol
Symbol Symbol Symbol Symbol Symbol Symbol
Symbol Symbol Symbol Symbol Symbol
```

The precise number of symbols in the above collection is 18.

Rounding

We often approximate the number of objects in a collection by mentally seeing the collection as occurring in groups of tens, hundreds, thousands, etc. This process of approximation is called rounding. Rounding is very useful in estimation. We will study estimation in Chapter 8.

When we think of a collection as occurring in groups of tens, we say we’re rounding to the nearest ten. When we think of a collection as occurring in groups of hundreds, we say we’re rounding to the nearest hundred. This idea of rounding continues through thousands, ten thousands, hundred thousands, millions, etc.

The process of rounding whole numbers is illustrated in the following examples.

Example 1.12

Round 67 to the nearest ten.

\[\text{Round 67 to the nearest ten.} \]

\[\text{This content is available online at } <\text{http://cnx.org/content/m34780/1.3/}> . \]
On the number line, 67 is more than halfway from 60 to 70. The digit immediately to the right of the tens digit, the round-off digit, is the indicator for this.

\[\text{Thus, 67, rounded to the nearest ten, is 70.} \]

Example 1.13
Round 4,329 to the nearest hundred.

On the number line, 4,329 is less than halfway from 4,300 to 4,400. The digit to the immediate right of the hundreds digit, the round-off digit, is the indicator.

\[\text{Thus, 4,329, rounded to the nearest hundred is 4,300.} \]

Example 1.14
Round 16,500 to the nearest thousand.

On the number line, 16,500 is exactly halfway from 16,000 to 17,000.

\[\text{By convention, when the number to be rounded is } \text{exactly halfway } \text{between two numbers, it is rounded to the } \text{higher number.} \]

\[\text{Thus, 16,500, rounded to the nearest thousand, is 17,000.} \]

Example 1.15
A person whose salary is $41,450 per year might tell a friend that she makes $41,000 per year. She has rounded 41,450 to the nearest thousand. The number 41,450 is closer to 41,000 than it is to 42,000.

1.4.3 The Method of Rounding Whole Numbers

From the observations made in the preceding examples, we can use the following method to **round a whole number** to a particular position.

1. Mark the position of the round-off digit.
2. Note the digit to the immediate right of the round-off digit.
a. If it is less than 5, replace it and all the digits to its right with zeros. Leave the round-off digit unchanged.
b. If it is 5 or larger, replace it and all the digits to its right with zeros. Increase the round-off digit by 1.

1.4.3.1 Sample Set A

Use the method of rounding whole numbers to solve the following problems.

Example 1.16
Round 3,426 to the nearest ten.

1. We are rounding to the tens position. Mark the digit in the tens position

\[3,426 \]

<table>
<thead>
<tr>
<th>tens position</th>
</tr>
</thead>
</table>

2. Observe the digit immediately to the right of the tens position. It is 6. Since 6 is greater than 5, we *round up* by replacing 6 with 0 and adding 1 to the digit in the tens position (the round-off position): \(2 + 1 = 3 \).

\[3,426 \]

Thus, 3,426 rounded to the nearest ten is 3,430.

Example 1.17
Round 9,614,018,007 to the nearest ten million.

1. We are rounding to the nearest ten million.

\[9,614,018,007 \]

<table>
<thead>
<tr>
<th>ten millions position</th>
</tr>
</thead>
</table>

2. Observe the digit immediately to the right of the ten millions position. It is 4. Since 4 is less than 5, we *round down* by replacing 4 and all the digits to its right with zeros.

\[9,610,000,000 \]

Thus, 9,614,018,007 rounded to the nearest ten million is 9,610,000,000.

Example 1.18
Round 148,422 to the nearest million.

1. Since we are rounding to the nearest million, we’ll have to *imagine* a digit in the millions position. We’ll write 148,422 as 0,148,422.

\[0,148,422 \]

<table>
<thead>
<tr>
<th>millions position</th>
</tr>
</thead>
</table>

2. The digit immediately to the right is 1. Since 1 is less than 5, we’ll *round down* by replacing it and all the digits to its right with zeros.

\[0,000,000 \]

This number is 0.
Thus, 148,422 rounded to the nearest million is 0.

Example 1.19
Round 397,000 to the nearest ten thousand.

1. We are rounding to the nearest ten thousand.

\[
\begin{align*}
397,000 \\
\text{ten thousand position}
\end{align*}
\]

2. The digit immediately to the right of the ten thousand position is 7. Since 7 is greater than 5, we round up by replacing 7 and all the digits to its right with zeros and adding 1 to the digit in the ten thousands position. But \(9 + 1 = 10\) and we must carry the 1 to the next (the hundred thousands) position.

\[400,000\]

Thus, 397,000 rounded to the nearest ten thousand is 400,000.

1.4.3.2 Practice Set A
Use the method of rounding whole numbers to solve each problem.

Exercise 1.94
Round 3387 to the nearest hundred.
(Solution on p. 78.)

Exercise 1.95
Round 26,515 to the nearest thousand.
(Solution on p. 78.)

Exercise 1.96
Round 30,852,900 to the nearest million.
(Solution on p. 78.)

Exercise 1.97
Round 39 to the nearest hundred.
(Solution on p. 78.)

Exercise 1.98
Round 59,600 to the nearest thousand.
(Solution on p. 78.)

1.4.4 Exercises
For the following problems, complete the table by rounding each number to the indicated positions.

Exercise 1.99
1,642
(Solution on p. 78.)

<table>
<thead>
<tr>
<th>hundred</th>
<th>thousand</th>
<th>ten thousand</th>
<th>million</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,600</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1.1

Exercise 1.100
5,221
<table>
<thead>
<tr>
<th>Table 1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise 1.101 (Solution on p. 78.)</td>
</tr>
<tr>
<td>91,803</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 1.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise 1.102</td>
</tr>
<tr>
<td>106,007</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 1.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise 1.103 (Solution on p. 78.)</td>
</tr>
<tr>
<td>208</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise 1.104</td>
</tr>
<tr>
<td>199</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 1.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise 1.105 (Solution on p. 78.)</td>
</tr>
<tr>
<td>863</td>
</tr>
</tbody>
</table>
CHAPTER 1. ADDITION AND SUBTRACTION OF WHOLE NUMBERS

Exercise 1.106

794

<table>
<thead>
<tr>
<th>hundred</th>
<th>thousand</th>
<th>ten thousand</th>
<th>million</th>
</tr>
</thead>
</table>

Table 1.8

(Solution on p. 79.)

Exercise 1.107

925

<table>
<thead>
<tr>
<th>hundred</th>
<th>thousand</th>
<th>ten thousand</th>
<th>million</th>
</tr>
</thead>
</table>

Table 1.9

Exercise 1.108

909

<table>
<thead>
<tr>
<th>hundred</th>
<th>thousand</th>
<th>ten thousand</th>
<th>million</th>
</tr>
</thead>
</table>

Table 1.10

(Solution on p. 79.)

Exercise 1.109

981

<table>
<thead>
<tr>
<th>hundred</th>
<th>thousand</th>
<th>ten thousand</th>
<th>million</th>
</tr>
</thead>
</table>

Table 1.11

(Solution on p. 79.)

Exercise 1.110

965

<table>
<thead>
<tr>
<th>hundred</th>
<th>thousand</th>
<th>ten thousand</th>
<th>million</th>
</tr>
</thead>
</table>

Table 1.12

(Solution on p. 79.)

Exercise 1.111

551,061,285

<table>
<thead>
<tr>
<th>hundred</th>
<th>thousand</th>
<th>ten thousand</th>
<th>million</th>
</tr>
</thead>
</table>

Table 1.13

(Solution on p. 79.)
Table 1.13

Exercise 1.112
23,047,991,521

<table>
<thead>
<tr>
<th>hundred</th>
<th>thousand</th>
<th>ten thousand</th>
<th>million</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1.14

Exercise 1.113
106,999,413,206

(Solution on p. 79.)

<table>
<thead>
<tr>
<th>Hundred</th>
<th>thousand</th>
<th>ten thousand</th>
<th>million</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1.15

Exercise 1.114
5,000,000

<table>
<thead>
<tr>
<th>hundred</th>
<th>thousand</th>
<th>ten thousand</th>
<th>million</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1.16

Exercise 1.115
8,006,001

(Solution on p. 79.)

<table>
<thead>
<tr>
<th>hundred</th>
<th>thousand</th>
<th>ten thousand</th>
<th>million</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1.17

Exercise 1.116
94,312

<table>
<thead>
<tr>
<th>hundred</th>
<th>thousand</th>
<th>ten thousand</th>
<th>million</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1.18

Exercise 1.117
33,486

(Solution on p. 79.)

<table>
<thead>
<tr>
<th>hundred</th>
<th>thousand</th>
<th>ten thousand</th>
<th>million</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 1. ADDITION AND SUBTRACTION OF WHOLE NUMBERS

Exercise 1.118
560,669

Exercise 1.119
388,551 (Solution on p. 80.)

Exercise 1.120
4,752

Exercise 1.121
8,209 (Solution on p. 80.)

Exercise 1.122
In 1950, there were 5,796 cases of diphtheria reported in the United States. Round to the nearest hundred.

Exercise 1.123
In 1979, 19,309,000 people in the United States received federal food stamps. Round to the nearest ten thousand.

Exercise 1.124
In 1980, there were 1,105,000 people between 30 and 34 years old enrolled in school. Round to the nearest million.
Exercise 1.125 \(\text{(Solution on p. 80.)}\)
In 1980, there were 29,100,000 reports of aggravated assaults in the United States. Round to the nearest million.

For the following problems, round the numbers to the position you think is most reasonable for the situation.

Exercise 1.126
In 1980, for a city of one million or more, the average annual salary of police and firefighters was $16,096.

Exercise 1.127 \(\text{(Solution on p. 80.)}\)
The average percentage of possible sunshine in San Francisco, California, in June is 73%.

Exercise 1.128
In 1980, in the state of Connecticut, $3,777,000,000 in defense contract payroll was awarded.

Exercise 1.129 \(\text{(Solution on p. 80.)}\)
In 1980, the federal government paid $5,463,000,000 to Viet Nam veterans and dependants.

Exercise 1.130
In 1980, there were 3,377,000 salespeople employed in the United States.

Exercise 1.131 \(\text{(Solution on p. 80.)}\)
In 1948, in New Hampshire, 231,000 popular votes were cast for the president.

Exercise 1.132
In 1970, the world production of cigarettes was 2,688,000,000,000.

Exercise 1.133 \(\text{(Solution on p. 80.)}\)
In 1979, the total number of motor vehicle registrations in Florida was 5,395,000.

Exercise 1.134
In 1980, there were 1,302,000 registered nurses the United States.

1.4.4.1 Exercises for Review

Exercise 1.135 \(\text{(Solution on p. 80.)}\)
(Section 1.2) There is a term that describes the visual displaying of a number. What is the term?

Exercise 1.136 \(\text{(Section 1.2)}\)
(Section 1.2) What is the value of 5 in 26,518,206?

Exercise 1.137 \(\text{(Solution on p. 80.)}\)
(Section 1.3) Write 42,109 as you would read it.

Exercise 1.138 \(\text{(Solution on p. 80.)}\)
(Section 1.3) Write "six hundred twelve" using digits.

Exercise 1.139 \(\text{(Solution on p. 80.)}\)
(Section 1.3) Write "four billion eight" using digits.

1.5 Addition of Whole Numbers\(^5\)

1.5.1 Section Overview
- Addition
- Addition Visualized on the Number Line
- The Addition Process

\(^5\)This content is available online at <http://cnx.org/content/m34786/1.4/>.
• Addition Involving Carrying
• Calculators

1.5.2 Addition
Suppose we have two collections of objects that we combine together to form a third collection. For example,

is combined with to yield

We are combining a collection of four objects with a collection of three objects to obtain a collection of seven objects.

Addition
The process of combining two or more objects (real or intuitive) to form a third, the total, is called **addition**.

In addition, the numbers being added are called **addends** or **terms**, and the total is called the **sum**. The **plus symbol** (+) is used to indicate addition, and the **equal symbol** (=) is used to represent the word "equal." For example, $4 + 3 = 7$ means "four added to three equals seven."

1.5.3 Addition Visualized on the Number Line
Addition is easily visualized on the number line. Let's visualize the addition of 4 and 3 using the number line.

To find $4 + 3$,

1. Start at 0.
2. Move to the right 4 units. We are now located at 4.
3. From 4, move to the right 3 units. We are now located at 7.

Thus, $4 + 3 = 7$.

1.5.4 The Addition Process
We'll study the process of addition by considering the sum of 25 and 43.

$$25 + 43 = \frac{2 \text{ tens } + 5 \text{ ones}}{6 \text{ tens } + 8 \text{ ones}}$$

We write this as 68.

We can suggest the following procedure for adding whole numbers using this example.

Example 1.20: The Process of Adding Whole Numbers
To add whole numbers,

The process:
1. Write the numbers vertically, placing corresponding positions in the same column.

```
25
+43
```

2. Add the digits in each column. Start at the right (in the ones position) and move to the left, placing the sum at the bottom.

```
25
+43
```

```
68
```

Caution: Confusion and incorrect sums can occur when the numbers are *not aligned* in columns properly. Avoid writing such additions as

```
25
+43
```

```
25
+43
```

1.5.4.1 Sample Set A

Example 1.21

Add 276 and 103.

```
276  6 + 3 = 9 .
+103  7 + 0 = 7 .
```

```
379  2 + 1 = 3 .
```

Example 1.22

Add 1459 and 130

```
1459  9 + 0 = 9 .
+130  5 + 3 = 8 .
```

```
1589  4 + 1 = 5 .
```

```
1 + 0 = 1 .
```

In each of these examples, each individual sum does not exceed 9. We will examine individual sums that exceed 9 in the next section.

1.5.4.2 Practice Set A

Perform each addition. Show the expanded form in problems 1 and 2.

Exercise 1.140

Add 63 and 25.
(Solution on p. 80.)

Exercise 1.141

Add 4,026 and 1,501.
(Solution on p. 80.)

Exercise 1.142

Add 231,045 and 36,121.
(Solution on p. 80.)
1.5.5 Addition Involving Carrying

It often happens in addition that the sum of the digits in a column will exceed 9. This happens when we add 18 and 34. We show this in expanded form as follows.

\[
\begin{align*}
\text{18} & = 1 \text{ ten} + 8 \text{ ones} \\
+ \text{34} & = 3 \text{ tens} + 4 \text{ ones} \\
\frac{4 \text{ tens + 12 ones}}{= 5 \text{ tens + 2 ones}} \\
& = 52
\end{align*}
\]

Notice that when we add the 8 ones to the 4 ones we get 12 ones. We then convert the 12 ones to 1 ten and 2 ones. In vertical addition, we show this conversion by \textit{carrying} the ten to the tens column. We write a 1 at the top of the tens column to indicate the carry. This same example is shown in a shorter form as follows:

\[
\begin{align*}
\text{18} & \quad 3 + 4 \\
+ \text{34} & = 52 \\
\quad 8 + 4 = 12 & \text{ Write 2, carry 1 ten to the top of the next column to the left.}
\end{align*}
\]

1.5.5.1 Sample Set B

Perform the following additions. Use the process of carrying when needed.

\textbf{Example 1.23}

Add 1875 and 358.

\[
\begin{align*}
111 & \\
\text{1875} & \\
+ \text{358} & = 2233 \\
\quad 5 + 8 & = 13 \quad \text{Write 3, carry 1 ten.} \\
\quad 1 + 7 + 5 & = 13 \quad \text{Write 3, carry 1 hundred.} \\
\qquad 1 + 8 + 3 & = 12 \quad \text{Write 2, carry 1 thousand.} \\
\quad 1 + 1 & = 2
\end{align*}
\]

The sum is 2233.

\textbf{Example 1.24}

Add 89,208 and 4,946.

\[
\begin{align*}
11 & \\
\text{89,208} & \\
+ \text{4,946} & = 94,154 \\
\text{8 + 4 = 12} & \text{ Write 2, carry 1 thousand.}
\end{align*}
\]
8 + 6 = 14 Write 4, carry 1 ten.
1 + 0 + 4 = 5 Write the 5 (nothing to carry).
2 + 9 = 11 Write 1, carry one thousand.
1 + 9 + 4 = 14 Write 4, carry one ten thousand.
1 + 8 = 9

The sum is 94,154.

Example 1.25
Add 38 and 95.

\[
\begin{array}{c}
 11 \\
 38 \\
 + 95 \\
 \hline
 133
\end{array}
\]

8 + 5 = 13 Write 3, carry 1 ten.
1 + 3 + 9 = 13 Write 3, carry 1 hundred.
1 + 0 = 1

As you proceed with the addition, it is a good idea to keep in mind what is actually happening.

\[
\begin{array}{c}
 38 \\
 + 95 \\
 \hline
 133
\end{array}
\]

\[
\begin{array}{c}
 \text{3 tens} + 8 \text{ ones} \\
 + 9 \text{ tens} + 5 \text{ ones} \\
 \hline
 12 \text{ tens} + 13 \text{ ones} \\
 = 12 \text{ tens} + 1 \text{ ten} + 3 \text{ ones} \\
 = 13 \text{ tens} + 3 \text{ ones} \\
 = 1 \text{ hundred} + 3 \text{ tens} + 3 \text{ ones} \\
 = 133
\end{array}
\]

The sum is 133.

Example 1.26
Find the sum 2648, 1359, and 861.

\[
\begin{array}{c}
 111 \\
 2648 \\
 1359 \\
 + 861 \\
 \hline
 4868
\end{array}
\]

8 + 9 + 1 = 18 Write 8, carry 1 ten.
1 + 4 + 5 + 6 = 16 Write 6, carry 1 hundred.
1 + 6 + 3 + 8 = 18 Write 8, carry 1 thousand.
1 + 2 + 1 = 4

The sum is 4,868.

Numbers other than 1 can be carried as illustrated in Example 1.27.

Example 1.27
Find the sum of the following numbers.
CHAPTER 1. ADDITION AND SUBTRACTION OF WHOLE NUMBERS

\[
\begin{array}{cccc}
0 & 6 & + & 1 & + & 7 \\
1 & 8 & 7 & 0 & 1 & 6 \\
& & & 9 & 9 & 0 & 5 \\
& & & & & 3 & 8 & 9 & 5 & 1 \\
\hline
& & & & & & 5 & 6 & 8 & 1 & 7 \\
& & & & & & 9 & 8 & 3 & 6 & 8 & 9 \\
\end{array}
\]

\[
\begin{aligned}
6 + 5 + 1 + 7 &= 19 & \text{Write 9, carry the 1.} \\
1 + 1 + 0 + 5 + 1 &= 8 & \text{Write 8.} \\
0 + 9 + 9 + 8 &= 26 & \text{Write 6, carry the 2.} \\
2 + 8 + 9 + 8 + 6 &= 33 & \text{Write 3, carry the 3.} \\
3 + 7 + 3 + 5 &= 18 & \text{Write 8, carry the 1.} \\
1 + 8 &= 9 & \text{Write 9.} \\
\end{aligned}
\]

The sum is 983,689.

Example 1.28
The number of students enrolled at Riemann College in the years 1984, 1985, 1986, and 1987 was 10,406, 9,289, 10,108, and 11,412, respectively. What was the total number of students enrolled at Riemann College in the years 1985, 1986, and 1987?

We can determine the total number of students enrolled by adding 9,289, 10,108, and 11,412, the number of students enrolled in the years 1985, 1986, and 1987.

\[
\begin{array}{cccc}
1 & 1 & 1 \\
9,289 & \\
10,108 & \\
11,412 & + \\
\hline
30,809 & \\
\end{array}
\]

The total number of students enrolled at Riemann College in the years 1985, 1986, and 1987 was 30,809.

1.5.5.2 Practice Set B
Perform each addition. For the next three problems, show the expanded form.

Exercise 1.143
(Solution on p. 80.)
Add 58 and 29.

Exercise 1.144
(Solution on p. 81.)
Add 476 and 85.

Exercise 1.145
(Solution on p. 81.)
Add 27 and 88.

Exercise 1.146
(Solution on p. 81.)
Add 67,898 and 85,627.

For the next three problems, find the sums.

Exercise 1.147
(Solution on p. 81.)
57
26
84
1.5.6 Calculators

Calculators provide a very simple and quick way to find sums of whole numbers. For the two problems in Sample Set C, assume the use of a calculator that does not require the use of an ENTER key (such as many Hewlett-Packard calculators).

1.5.6.1 Sample Set C

Use a calculator to find each sum.

Example 1.29

<table>
<thead>
<tr>
<th>34 + 21</th>
<th>Display Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>34</td>
</tr>
<tr>
<td>Press</td>
<td>+</td>
</tr>
<tr>
<td>Type</td>
<td>21</td>
</tr>
<tr>
<td>Press</td>
<td>=</td>
</tr>
</tbody>
</table>

The sum is 55.

Example 1.30
CHAPTER 1. ADDITION AND SUBTRACTION OF WHOLE NUMBERS

<table>
<thead>
<tr>
<th>106 + 85 + 322 + 406</th>
<th>Display Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 106</td>
<td>106</td>
</tr>
<tr>
<td>Press +</td>
<td>106</td>
</tr>
<tr>
<td>Type 85</td>
<td>85</td>
</tr>
<tr>
<td>Press =</td>
<td>191</td>
</tr>
<tr>
<td>Type 322</td>
<td>322</td>
</tr>
<tr>
<td>Press +</td>
<td>513</td>
</tr>
<tr>
<td>Type 406</td>
<td>406</td>
</tr>
<tr>
<td>Press =</td>
<td>919</td>
</tr>
</tbody>
</table>

Table 1.25

The sum is 919.

1.5.6.2 Practice Set C

Use a calculator to find the following sums.

Exercise 1.150 (Solution on p. 81.)
62 + 81 + 12

Exercise 1.151 (Solution on p. 81.)
9,261 + 8,543 + 884 + 1,062

Exercise 1.152 (Solution on p. 81.)
10,221 + 9,016 + 11,445

1.5.7 Exercises

For the following problems, perform the additions. If you can, check each sum with a calculator.

Exercise 1.153 (Solution on p. 81.)
14 + 5

Exercise 1.154
12 + 7

Exercise 1.155 (Solution on p. 81.)
46 + 2

Exercise 1.156
83 + 16

Exercise 1.157 (Solution on p. 81.)
77 + 21

Exercise 1.158
321
+ 42
Exercise 1.159

\[916 \]
\[+ 62 \]
\[978 \]

(Solution on p. 82.)

Exercise 1.160

\[104 \]
\[+ 561 \]
\[665 \]

(Solution on p. 82.)

Exercise 1.161

\[265 \]
\[+ 103 \]
\[368 \]

(Solution on p. 82.)

Exercise 1.162

\[552 + 237 \]
\[799 \]

(Solution on p. 82.)

Exercise 1.163

\[8,521 + 4,256 \]
\[12,777 \]

(Solution on p. 82.)

Exercise 1.164

\[16,408 \]
\[+ 3,101 \]
\[19,509 \]

(Solution on p. 82.)

Exercise 1.165

\[16,515 \]
\[+ 42,223 \]
\[58,738 \]

(Solution on p. 82.)

Exercise 1.166

\[616,702 + 101,161 \]
\[717,863 \]

(Solution on p. 82.)

Exercise 1.167

\[43,156,219 + 2,013,520 \]
\[45,168,739 \]

(Solution on p. 82.)

Exercise 1.168

\[17 + 6 \]
\[23 \]

(Solution on p. 82.)

Exercise 1.169

\[25 + 8 \]
\[33 \]

(Solution on p. 82.)

Exercise 1.170

\[84 \]
\[+ 7 \]
\[91 \]

(Solution on p. 82.)

Exercise 1.171

\[75 \]
\[+ 6 \]
\[81 \]

(Solution on p. 82.)

Exercise 1.172

\[36 + 48 \]
\[84 \]

(Solution on p. 82.)

Exercise 1.173

\[74 + 17 \]
\[91 \]

(Solution on p. 82.)

Exercise 1.174

\[486 + 58 \]
\[544 \]

(Solution on p. 82.)

Exercise 1.175

\[743 + 66 \]
\[809 \]

(Solution on p. 82.)

Exercise 1.176

\[381 + 88 \]
\[469 \]
CHAPTER 1. ADDITION AND SUBTRACTION OF WHOLE NUMBERS

Exercise 1.177
\[687 + 175 \]
(Solution on p. 82.)

Exercise 1.178
\[931 + 853 \]
(Solution on p. 82.)

Exercise 1.179
\[1,428 + 893 \]
(Solution on p. 82.)

Exercise 1.180
\[12,898 + 11,925 \]
(Solution on p. 82.)

Exercise 1.181
\[631,464 + 509,740 \]
(Solution on p. 82.)

Exercise 1.182
\[805,996 + 98,516 \]
(Solution on p. 82.)

Exercise 1.183
\[38,428,106 + 522,936,005 \]
(Solution on p. 82.)

Exercise 1.184
\[5,288,423,100 + 16,934,785,995 \]
(Solution on p. 82.)

Exercise 1.185
\[98,876,678,521,402 + 843,425,685,658 \]
(Solution on p. 82.)

Exercise 1.186
\[41 + 61 + 85 + 62 \]
(Solution on p. 82.)

Exercise 1.187
\[21 + 85 + 104 + 9 + 15 \]
(Solution on p. 82.)

Exercise 1.188
\[116 + 27 + 110 + 110 + 8 \]
(Solution on p. 82.)

Exercise 1.189
\[75,206 + 4,152 + 16,007 \]
(Solution on p. 82.)
Exercise 1.190
8,226
143
92,015
8
487,553
5,218

Exercise 1.191
50,006
1,005
100,300
20,008
1,000,009
800,800

Exercise 1.192
616
42,018
1,687
225
8,623,418
12,506,508
19
2,121
195,643

For the following problems, perform the additions and round to the nearest hundred.

Exercise 1.193
1,468
2,183

Exercise 1.194
928,725
15,685

Exercise 1.195
82,006
3,019,528

Exercise 1.196
18,621
5,059

(Solution on p. 82.)
CHAPTER 1. ADDITION AND SUBTRACTION OF WHOLE NUMBERS

Exercise 1.197
92
48
(Solution on p. 82.)

Exercise 1.198
16
37
(Solution on p. 82.)

Exercise 1.199
21
16
(Solution on p. 82.)

Exercise 1.200
11,172
22,749
12,248
(Solution on p. 82.)

Exercise 1.201
240
280
210
310
(Solution on p. 82.)

Exercise 1.202
9,573
101,279
122,581
For the next five problems, replace the letter \(m \) with the whole number that will make the addition true.

Exercise 1.203
62
+ \(m \)
67
(Solution on p. 82.)

Exercise 1.204
106
+ \(m \)
113
(Solution on p. 82.)

Exercise 1.205
432
+ \(m \)
451
(Solution on p. 82.)

Exercise 1.206
803
+ \(m \)
830
Exercise 1.207

(Solution on p. 82.)

\[\begin{align*}
1,893 \\
+ m \\
1,981
\end{align*} \]

Exercise 1.208

The number of nursing and related care facilities in the United States in 1971 was 22,004. In 1978, the number was 18,722. What was the total number of facilities for both 1971 and 1978?

Exercise 1.209

(Solution on p. 83.)

The number of persons on food stamps in 1975, 1979, and 1980 was 19,179,000, 19,309,000, and 22,023,000, respectively. What was the total number of people on food stamps for the years 1975, 1979, and 1980?

Exercise 1.210

The enrollment in public and nonpublic schools in the years 1965, 1970, 1975, and 1984 was 54,394,000, 59,899,000, 61,063,000, and 55,122,000, respectively. What was the total enrollment for those years?

Exercise 1.211

(Solution on p. 83.)

The area of New England is 3,618,770 square miles. The area of the Mountain states is 863,563 square miles. The area of the South Atlantic is 278,926 square miles. The area of the Pacific states is 921,392 square miles. What is the total area of these regions?

Exercise 1.212

In 1960, the IRS received 1,188,000 corporate income tax returns. In 1965, 1,490,000 returns were received. In 1970, 1,747,000 returns were received. In 1972 — 1977, 1,890,000; 1,981,000; 2,043,000; 2,100,000; 2,159,000; and 2,329,000 returns were received, respectively. What was the total number of corporate tax returns received by the IRS during the years 1960, 1965, 1970, 1972 — 1977?

Exercise 1.213

(Solution on p. 83.)

Find the total number of scientists employed in 1974.

Exercise 1.214

Find the total number of sales for space vehicle systems for the years 1965-1980.
Exercise 1.215
Find the total baseball attendance for the years 1960-1980.

Exercise 1.216
Find the number of prosecutions of federal officials for 1970-1980.

For the following problems, try to add the numbers mentally.
Exercise 1.217

5
5
3
7

Exercise 1.218

8
2
6
4

Exercise 1.219

9
1
8
5
2

Exercise 1.220

5
2
5
8
3
7

Exercise 1.221

6
4
3
1
6
7
9
4

Exercise 1.222

20
30

Exercise 1.223

15
35

(Solution on p. 83.)
Exercise 1.224
16
14

Exercise 1.225 (Solution on p. 83.)
23
27

Exercise 1.226
82
18

Exercise 1.227 (Solution on p. 83.)
36
14

1.5.7.1 Exercises for Review

Exercise 1.228
(Section 1.2) Each period of numbers has its own name. From right to left, what is the name of the fourth period?

Exercise 1.229 (Solution on p. 83.)
(Section 1.2) In the number 610,467, how many thousands are there?

Exercise 1.230
(Section 1.3) Write 8,840 as you would read it.

Exercise 1.231 (Solution on p. 83.)
(Section 1.4) Round 6,842 to the nearest hundred.

Exercise 1.232
(Section 1.4) Round 431,046 to the nearest million.

1.6 Subtraction of Whole Numbers

1.6.1 Section Overview
- Subtraction
- Subtraction as the Opposite of Addition
- The Subtraction Process
- Subtraction Involving Borrowing
- Borrowing From Zero
- Calculators

This content is available online at <http://cnx.org/content/m34784/1.5/>.
1.6.2 Subtraction

Subtraction
Subtraction is the process of determining the remainder when part of the total is removed.

Suppose the sum of two whole numbers is 11, and from 11 we remove 4. Using the number line to help our visualization, we see that if we are located at 11 and move 4 units to the left, and thus remove 4 units, we will be located at 7. Thus, 7 units remain when we remove 4 units from 11 units.

The Minus Symbol
The minus symbol (-) is used to indicate subtraction. For example, 11 − 4 indicates that 4 is to be subtracted from 11.

Minuend
The number immediately in front of or the minus symbol is called the minuend, and it represents the original number of units.

Subtrahend
The number immediately following or below the minus symbol is called the subtrahend, and it represents the number of units to be removed.

Difference
The result of the subtraction is called the difference of the two numbers. For example, in 11 − 4 = 7, 11 is the minuend, 4 is the subtrahend, and 7 is the difference.

1.6.3 Subtraction as the Opposite of Addition
Subtraction can be thought of as the opposite of addition. We show this in the problems in Sample Set A.

1.6.3.1 Sample Set A

Example 1.31
8 − 5 = 3 since 3 + 5 = 8.

Example 1.32
9 − 3 = 6 since 6 + 3 = 9.

1.6.3.2 Practice Set A
Complete the following statements.

Exercise 1.233
7 − 5 = _______ since _______ +5 = 7. (Solution on p. 83.)

Exercise 1.234
9 − 1 = _______ since _______ +1 = 9. (Solution on p. 83.)

Exercise 1.235
17 − 8 = _______ since _______ +8 = 17. (Solution on p. 83.)
1.6.4 The Subtraction Process

We'll study the process of the subtraction of two whole numbers by considering the difference between 48 and 35.

\[
\begin{array}{c}
48 \\
-35 \\
\hline
13
\end{array}
\]

which we write as 13.

Example 1.33: The Process of Subtracting Whole Numbers

To subtract two whole numbers,

The process

1. Write the numbers vertically, placing corresponding positions in the same column.

2. Subtract the digits in each column. Start at the right, in the ones position, and move to the left, placing the difference at the bottom.

\[
\begin{array}{c}
48 \\
-35 \\
\hline
13
\end{array}
\]

1.6.4.1 Sample Set B

Perform the following subtractions.

Example 1.34

\[
\begin{array}{c}
275 \\
-142 \\
\hline
133
\end{array}
\]

5 - 2 = 3.
7 - 4 = 3.
2 - 1 = 1.

Example 1.35

\[
\begin{array}{c}
46,042 \\
-1,031 \\
\hline
45,011
\end{array}
\]

2 - 1 = 1.
4 - 3 = 1.
0 - 0 = 0.
6 - 1 = 5.
4 - 0 = 4.
Example 1.36
Find the difference between 977 and 235.

Write the numbers vertically, placing the larger number on top. Line up the columns properly.

\[
\begin{array}{c}
977 \\
\hline
-235 \\
\hline
742
\end{array}
\]

The difference between 977 and 235 is 742.

Example 1.37
In Keys County in 1987, there were 809 cable television installations. In Flags County in 1987, there were 1,159 cable television installations. How many more cable television installations were there in Flags County than in Keys County in 1987?

We need to determine the difference between 1,159 and 809.

\[
\begin{array}{c}
1,159 \\
\hline
-809 \\
\hline
350
\end{array}
\]

There were 350 more cable television installations in Flags County than in Keys County in 1987.

1.6.4.2 Practice Set B
Performs the following subtractions.

Exercise 1.236 \hspace{1cm} (Solution on p. 83.)
\[
\begin{array}{c}
534 \\
\hline
-203 \\
\hline
\end{array}
\]

Exercise 1.237 \hspace{1cm} (Solution on p. 83.)
\[
\begin{array}{c}
857 \\
\hline
-43 \\
\hline
\end{array}
\]

Exercise 1.238 \hspace{1cm} (Solution on p. 83.)
\[
\begin{array}{c}
95,628 \\
\hline
-34,510 \\
\hline
\end{array}
\]

Exercise 1.239 \hspace{1cm} (Solution on p. 83.)
\[
\begin{array}{c}
11,005 \\
\hline
-1,005 \\
\hline
\end{array}
\]

Exercise 1.240 \hspace{1cm} (Solution on p. 83.)
Find the difference between 88,526 and 26,412.

In each of these problems, each bottom digit is less than the corresponding top digit. This may not always be the case. We will examine the case where the bottom digit is greater than the corresponding top digit in the next section.
1.6.5 Subtraction Involving Borrowing

Minuend and Subtrahend
It often happens in the subtraction of two whole numbers that a digit in the minuend (top number) will be less than the digit in the same position in the subtrahend (bottom number). This happens when we subtract 27 from 84.

\[
\begin{array}{c}
84 \\
-27 \\
\end{array}
\]

We do not have a name for 4 - 7. We need to rename 84 in order to continue. We'll do so as follows:

\[
\begin{array}{c}
84 = 8 \text{ tens} + 4 \text{ ones} \\
-27 = 2 \text{ tens} + 7 \text{ ones} \\
\end{array}
\]

\[
\begin{array}{c}
7 \text{ tens} + 1 \text{ ten} + 4 \text{ ones} \\
2 \text{ tens} + 7 \text{ ones} \\
\end{array}
\]

\[
\begin{array}{c}
7 \text{ tens} + 10 \text{ ones} + 4 \text{ ones} \\
2 \text{ tens} + 7 \text{ ones} \\
\end{array}
\]

Our new name for 84 is 7 tens + 14 ones.

\[
\begin{array}{c}
7 \text{ tens} + 14 \text{ ones} \\
2 \text{ tens} + 7 \text{ ones} \\
5 \text{ tens} + 7 \text{ ones} \\
\end{array}
\]

= 57

Notice that we converted 8 tens to 7 tens + 1 ten, and then we converted the 1 ten to 10 ones. We then had 14 ones and were able to perform the subtraction.

Borrowing
The process of borrowing (converting) is illustrated in the problems of Sample Set C.

1.6.5.1 Sample Set C

Example 1.38

1. Borrow 1 ten from the 8 tens. This leaves 7 tens.
2. Convert the 1 ten to 10 ones.
3. Add 10 ones to 4 ones to get 14 ones.

\[
\begin{array}{c}
517 \\
\$72 \\
-91 \\
\hline
581 \\
\end{array}
\]

Example 1.39

1. Borrow 1 hundred from the 6 hundreds. This leaves 5 hundreds.
2. Convert the 1 hundred to 10 tens.
3. Add 10 tens to 7 tens to get 17 tens.

1.6.5.2 Practice Set C
Performs the following subtractions. Show the expanded form for the first three problems.

Exercise 1.241
53
−35

Exercise 1.242
76
−28

Exercise 1.243
872
−565

Exercise 1.244
441
−356

Exercise 1.245
885
−66

Exercise 1.246
5,663
−2,559

Borrowing More Than Once
Sometimes it is necessary to **borrow more than once**. This is shown in the problems in Section 1.6.5.3 (Sample Set D).

1.6.5.3 Sample Set D
Perform the Subtractions. Borrowing more than once if necessary

\[
\begin{array}{c}
513 \\
\downarrow 11 \\
\downarrow 31 \\
- 358 \\
\hline
283 \\
\end{array}
\]

Example 1.40
1. Borrow 1 ten from the 4 tens. This leaves 3 tens.
2. Convert the 1 ten to 10 ones.
3. Add 10 ones to 1 one to get 11 ones. We can now perform 11 − 8.
4. Borrow 1 hundred from the 6 hundreds. This leaves 5 hundreds.
5. Convert the 1 hundred to 10 tens.
6. Add 10 tens to 3 tens to get 13 tens.
8. $5 - 3 = 2$.

```
  12
4214
+ 54
---
449
```

Example 1.41

1. Borrow 1 ten from the 3 tens. This leaves 2 tens.
2. Convert the 1 ten to 10 ones.
3. Add 10 ones to 4 ones to get 14 ones. We can now perform $14 - 5$.
4. Borrow 1 hundred from the 5 hundreds. This leaves 4 hundreds.
5. Convert the 1 hundred to 10 tens.
6. Add 10 tens to 2 tens to get 12 tens. We can now perform $12 - 8 = 4$.
7. Finally, $4 - 0 = 4$.

Example 1.42

```
71529
- 6952
---
44577
```

After borrowing, we have

```
  10
  14
  612
 71529
---
- 6952
---
  64577
```

1.6.5.4 Practice Set D

Perform the following subtractions.

- **Exercise 1.247**

 $\begin{align*}
 526 \\
 -358
 \end{align*}$

 (Solution on p. 84.)

- **Exercise 1.248**

 $\begin{align*}
 63,419 \\
 - 7,779
 \end{align*}$

 (Solution on p. 84.)

- **Exercise 1.249**

 $\begin{align*}
 4,312 \\
 - 3,123
 \end{align*}$

 (Solution on p. 84.)
1.6.6 Borrowing from Zero

It often happens in a subtraction problem that we have to borrow from one or more zeros. This occurs in problems such as

1. \[503 - 37 \]

and

2. \[5000 - 37 \]

We'll examine each case.

Example 1.43: Borrowing from a single zero.

Consider the problem \[503 - 37 \]

Since we do not have a name for \(3 - 7\), we must borrow from 0.

\[
\begin{align*}
503 &= 5 \text{ hundreds} + 0 \text{ tens} + 3 \text{ ones} \\
- 37 &= 3 \text{ tens} + 7 \text{ ones}
\end{align*}
\]

Since there are no tens to borrow, we must borrow 1 hundred. One hundred = 10 tens.

\[
\begin{align*}
4 \text{ hundreds} + 10 \text{ tens} + 3 \text{ ones} \\
&= 3 \text{ tens} + 7 \text{ ones}
\end{align*}
\]

We can now borrow 1 ten from 10 tens (leaving 9 tens). One ten = 10 ones and 10 ones + 3 ones = 13 ones.

\[
\begin{align*}
4 \text{ hundreds} + 9 \text{ tens} + 13 \text{ ones} \\
&= 3 \text{ tens} + 7 \text{ ones}
\end{align*}
\]

\[
\begin{align*}
4 \text{ hundreds} + 6 \text{ tens} + 6 \text{ ones} = 466
\end{align*}
\]

Now we can suggest the following method for borrowing from a single zero.

Borrowing from a Single Zero

To borrow from a single zero,

1. Decrease the digit to the immediate left of zero by one.
2. Draw a line through the zero and make it a 10.
3. Proceed to subtract as usual.

1.6.6.1 Sample Set E

Example 1.44

Perform this subtraction.

\[
\begin{align*}
503 \\
- 37
\end{align*}
\]

The number 503 contains a single zero
1. The number to the immediate left of 0 is 5. Decrease 5 by 1.

\[5 - 1 = 4 \]

\[
\begin{array}{c}
410 \\
\hline
393 \\
- 37 \\
\hline
356
\end{array}
\]

2. Draw a line through the zero and make it a 10.

3. Borrow from the 10 and proceed.

\[
\begin{array}{c}
9 \\
\hline
42613 \\
\hline
393 \\
- 37 \\
\hline
466
\end{array}
\]

1 ten + 10 ones

10 ones + 3 ones = 13 ones

1.6.6.2 Practice Set E

Perform each subtraction.

Exercise 1.250 \hspace{1cm} (Solution on p. 84.)

\[
906 \\
\hline
- 18 \\
\hline
888
\]

Exercise 1.251 \hspace{1cm} (Solution on p. 84.)

\[
5102 \\
\hline
- 559 \\
\hline
4543
\]

Exercise 1.252 \hspace{1cm} (Solution on p. 85.)

\[
9055 \\
\hline
- 386 \\
\hline
8669
\]

Example 1.45: Borrowing from a group of zeros

Consider the problem

\[
5000 \\
\hline
- 37 \quad \text{3 tens + 7 ones}
\]

In this case, we have a group of zeros.

\[
5000 = 5 \text{ thousands} + 0 \text{ hundred} + 0 \text{ tens} + 0 \text{ ones}
\]

\[
- 37 = \frac{3 \text{ tens} + 7 \text{ ones}}{}
\]

Since we cannot borrow any tens or hundreds, we must borrow 1 thousand. One thousand = 10 hundreds.

\[
4 \text{ thousands} + 10 \text{ hundreds} + 0 \text{ tens} + 0 \text{ ones}
\]

\[
\left(\begin{array}{c}
\frac{3 \text{ tens} + 7 \text{ ones}}{}
\end{array}\right)
\]

We can now borrow 1 hundred from 10 hundreds. One hundred = 10 tens.
4 thousands + 9 hundreds + 10 tens + 0 ones

\[\underline{\text{3 tens + 7 ones}} \]

We can now borrow 1 ten from 10 tens. One ten = 10 ones.

\[
\begin{align*}
4 \text{ thousands } + & \ 9 \text{ hundreds } + 9 \text{ tens } + 10 \text{ ones} \\
 & \underline{\text{3 tens } + \ 7 \text{ ones}} \\
\text{4 thousands } + & 9 \text{ hundreds } + 6 \text{ tens } + 3 \text{ ones } = \underline{4,963}
\end{align*}
\]

From observations made in this procedure we can suggest the following method for borrowing from a group of zeros.

Borrowing from a Group of zeros

To borrow from a group of zeros,

1. Decrease the digit to the immediate left of the group of zeros by one.
2. Draw a line through each zero in the group and make it a 9, except the rightmost zero, make it 10.
3. Proceed to subtract as usual.

1.6.6.3 Sample Set F

Perform each subtraction.

Example 1.46

\[
\begin{align*}
40,000 \\
- \ & 125
\end{align*}
\]

The number 40,000 contains a group of zeros.

1. The number to the immediate left of the group is 4. Decrease 4 by 1.
 \[4 - 1 = 3 \]
2. Make each 0, except the rightmost one, 9. Make the rightmost 0 a 10.
 \[
 \begin{align*}
 39 & 9910 \\
 \underline{40,000} \\
 - & 125
 \end{align*}
 \]
3. Subtract as usual.
 \[
 \begin{align*}
 39 & 9910 \\
 \underline{40,000} \\
 - & 125
 \end{align*}
 \]

 \[39,875 \]

Example 1.47

\[
\begin{align*}
8,000,006 \\
- \ & 41,107
\end{align*}
\]

The number 8,000,006 contains a group of zeros.

1. The number to the immediate left of the group is 8. Decrease 8 by 1. \(8 - 1 = 7 \)
2. Make each zero, except the rightmost one, 9. Make the rightmost 0 a 10.
3. To perform the subtraction, we'll need to borrow from the ten.

\[
\begin{array}{c}
9 \\
7,999,910 \\
8,000,006 \\
- 41,107 \\
\hline
7,958,899
\end{array}
\]

1 ten = 10 ones
10 ones + 6 ones = 16 ones

1.6.6.4 Practice Set F

Perform each subtraction.

Exercise 1.253

\[
\begin{array}{c}
21,007 \\
- 4,873 \\
\hline
16,134
\end{array}
\]

(Solution on p. 85.)

Exercise 1.254

\[
\begin{array}{c}
10,004 \\
- 5,165 \\
\hline
4,839
\end{array}
\]

(Solution on p. 85.)

Exercise 1.255

\[
\begin{array}{c}
16,000,000 \\
- 201,060 \\
\hline
15,798,940
\end{array}
\]

(Solution on p. 85.)

1.6.7 Calculators

In practice, calculators are used to find the difference between two whole numbers.

1.6.7.1 Sample Set G

Find the difference between 1006 and 284.

\[
\begin{array}{|c|c|c|}
\hline
\text{Display Reads} & \text{Type} & 1006 \\
\hline
\text{Type} & 1006 & 1006 \\
\text{Press} & 284 & 284 \\
\hline
\text{Press} & 722 & 722 \\
\hline
\end{array}
\]

Table 1.26
The difference between 1006 and 284 is 722.

(What happens if you type 284 first and then 1006? We’ll study such numbers in Chapter 10.)

1.6.7.2 Practice Set G

Exercise 1.256
Use a calculator to find the difference between 7338 and 2809.

Exercise 1.257
Use a calculator to find the difference between 31,060,001 and 8,591,774.

1.6.8 Exercises

For the following problems, perform the subtractions. You may check each difference with a calculator.

Exercise 1.258
\[15 - 8 = \]

Exercise 1.259
\[19 - 8 = \]

Exercise 1.260
\[11 - 5 = \]

Exercise 1.261
\[14 - 6 = \]

Exercise 1.262
\[12 - 9 = \]

Exercise 1.263
\[56 - 12 = \]

Exercise 1.264
\[74 - 33 = \]

Exercise 1.265
\[80 - 61 = \]

Exercise 1.266
\[350 - 141 = \]
Exercise 1.267

\[800 \]
\[-650 \]

Exercise 1.268

\[35,002 \]
\[-14,001 \]

Exercise 1.269

\[5,000,566 \]
\[-2,441,326 \]

Exercise 1.270

\[400,605 \]
\[-121,352 \]

Exercise 1.271

\[46,400 \]
\[-2,012 \]

Exercise 1.272

\[77,893 \]
\[-421 \]

Exercise 1.273

\[42 \]
\[-18 \]

Exercise 1.274

\[51 \]
\[-27 \]

Exercise 1.275

\[622 \]
\[-88 \]

Exercise 1.276

\[261 \]
\[-73 \]

Exercise 1.277

\[242 \]
\[-158 \]

Exercise 1.278

\[3,422 \]
\[-1,045 \]

Exercise 1.279

\[5,565 \]
\[-3,985 \]

(Solution on p. 85.)
For the following problems, perform each subtraction.

Exercise 1.280
42,041
\[-15,355 \]
(Solution on p. 85.)

Exercise 1.281
304,056
\[-20,008 \]
(Solution on p. 85.)

Exercise 1.282
64,000,002
\[-856,743 \]
(Solution on p. 85.)

Exercise 1.283
4,109
\[-856 \]
(Solution on p. 85.)

Exercise 1.284
10,113
\[-2,079 \]
(Solution on p. 85.)

Exercise 1.285
605
\[-77 \]
(Solution on p. 85.)

Exercise 1.286
59
\[-26 \]
(Solution on p. 85.)

Exercise 1.287
36,107
\[-8,314 \]
(Solution on p. 85.)

Exercise 1.288
92,526,441,820
\[-59,914,805,253 \]
(Solution on p. 85.)

Exercise 1.289
1,605
\[-881 \]
(Solution on p. 85.)

Exercise 1.290
30,000
\[-26,062 \]
(Solution on p. 85.)

Exercise 1.291
600
\[-216 \]
(Solution on p. 85.)

Exercise 1.292
9,000,003
\[-726,048 \]
(Solution on p. 85.)
CHAPTER 1. ADDITION AND SUBTRACTION OF WHOLE NUMBERS

Exercise 1.293
Subtract 63 from 92.

HINT: The word "from" means "beginning at." Thus, 63 from 92 means beginning at 92, or 92 − 63.

Exercise 1.294
Subtract 35 from 86. (Solution on p. 85.)

Exercise 1.295
Subtract 382 from 541. (Solution on p. 86.)

Exercise 1.296
Subtract 1,841 from 5,246.

Exercise 1.297
Subtract 26,082 from 35,040. (Solution on p. 86.)

Exercise 1.298
Find the difference between 47 and 21. (Solution on p. 86.)

Exercise 1.299
Find the difference between 1,005 and 314.

Exercise 1.300
Find the difference between 72,085 and 16. (Solution on p. 86.)

Exercise 1.301
Find the difference between 7,214 and 2,049. (Solution on p. 86.)

Exercise 1.302
Find the difference between 56,108 and 52,911.

Exercise 1.303
How much bigger is 92 than 47? (Solution on p. 86.)

Exercise 1.304
How much bigger is 114 than 85?

Exercise 1.305
How much bigger is 3,006 than 1,918?

Exercise 1.306
How much bigger is 11,201 than 816. (Solution on p. 86.)

Exercise 1.307
How much bigger is 3,080,020 than 1,814,161?

Exercise 1.308
In Wichita, Kansas, the sun shines about 74% of the time in July and about 59% of the time in November. How much more of the time (in percent) does the sun shine in July than in November? (Solution on p. 86.)

Exercise 1.309
The lowest temperature on record in Concord, New Hampshire in May is 21 °F, and in July it is 35 °F. What is the difference in these lowest temperatures?

Exercise 1.310
In 1980, there were 83,000 people arrested for prostitution and commercialized vice and 11,330,000 people arrested for driving while intoxicated. How many more people were arrested for drunk driving than for prostitution? (Solution on p. 86.)

Exercise 1.311
In 1980, a person with a bachelor's degree in accounting received a monthly salary offer of $1,293, and a person with a marketing degree a monthly salary offer of $1,145. How much more was offered to the person with an accounting degree than the person with a marketing degree?
Exercise 1.312
In 1970, there were about 793 people per square mile living in Puerto Rico, and 357 people per square mile living in Guam. How many more people per square mile were there in Puerto Rico than Guam?

Exercise 1.313
The 1980 population of Singapore was 2,414,000 and the 1980 population of Sri Lanka was 14,850,000. How many more people lived in Sri Lanka than in Singapore in 1980?

Exercise 1.314
In 1977, there were 7,234,000 hospitals in the United States and 64,421,000 in Mainland China. How many more hospitals were there in Mainland China than in the United States in 1977?

Exercise 1.315
In 1978, there were 3,095,000 telephones in use in Poland and 4,292,000 in Switzerland. How many more telephones were in use in Switzerland than in Poland in 1978?

For the following problems, use the corresponding graphs to solve the problems.

Exercise 1.316
How many more life scientists were there in 1974 than mathematicians? (this image)

Exercise 1.317
How many more social, psychological, mathematical, and environmental scientists were there than life, physical, and computer scientists? (this image)

Exercise 1.318
How many more prosecutions were there in 1978 than in 1974? (this image)

Exercise 1.319
How many more prosecutions were there in 1976-1980 than in 1970-1975? (this image)
Exercise 1.320
How many more dry holes were drilled in 1960 than in 1975? (Solution on p. 86.)

Exercise 1.321
How many more dry holes were drilled in 1960, 1965, and 1970 than in 1975, 1978 and 1979? (this image)

For the following problems, replace the \([U+2610]\) with the whole number that will make the subtraction true.

Exercise 1.322
\[14 - □ = 3\] (Solution on p. 86.)
For the following problems, find the solutions.

Exercise 1.327
Subtract 42 from the sum of 16 and 56.

Exercise 1.328
(Solution on p. 86.)
Subtract 105 from the sum of 92 and 89.

Exercise 1.329
Subtract 1,127 from the sum of 2,161 and 387.

Exercise 1.330
(Solution on p. 86.)
Subtract 37 from the difference between 263 and 175.

Exercise 1.331
Subtract 1,109 from the difference between 3,046 and 920.

Exercise 1.332
(Solution on p. 86.)
Add the difference between 63 and 47 to the difference between 55 and 11.

Exercise 1.333
Add the difference between 815 and 298 to the difference between 2,204 and 1,016.

Exercise 1.334
(Solution on p. 86.)
Subtract the difference between 78 and 43 from the sum of 111 and 89.

Exercise 1.335
Subtract the difference between 18 and 7 from the sum of the differences between 42 and 13, and 81 and 16.

Exercise 1.336
(Solution on p. 86.)
Find the difference between the differences of 343 and 96, and 521 and 488.
1.6.8.1 Exercises for Review

Exercise 1.337
(Section 1.2) In the number 21,206, how many hundreds are there?

Exercise 1.338
(Section 1.2) Write a three-digit number that has a zero in the ones position.

Exercise 1.339
(Section 1.2) How many three-digit whole numbers are there?

Exercise 1.340
(Section 1.4) Round 26,524,016 to the nearest million.

Exercise 1.341
(Section 1.5) Find the sum of 846 + 221 + 116.

1.7 Properties of Addition

1.7.1 Section Overview

- The Commutative Property of Addition
- The Associative Property of Addition
- The Additive Identity

We now consider three simple but very important properties of addition.

1.7.2 The Commutative Property of Addition

Commutative Property of Addition
If two whole numbers are added in any order, the sum will not change.

1.7.2.1 Sample Set A

Example 1.48
Add the whole numbers

\[\begin{array}{c}
8 \\
5
\end{array} \]

\[8 + 5 = 13 \\
5 + 8 = 13 \]

The numbers 8 and 5 can be added in any order. Regardless of the order they are added, the sum is 13.

\[^7 \text{This content is available online at <http://cnx.org/content/m34802/1.5/>}. \]
1.7.2.2 Practice Set A

Exercise 1.342
Use the commutative property of addition to find the sum of 12 and 41 in two different ways.

\[
\begin{array}{c}
12 \\
41 \\
\end{array}
\]

Exercise 1.343
Add the whole numbers

\[
\begin{array}{c}
837 \\
1,958 \\
\end{array}
\]

1.7.3 The Associative Property of Addition

Associative Property of Addition
If three whole numbers are to be added, the sum will be the same if the first two are added first, then that sum is added to the third, or, the second two are added first, and that sum is added to the first.

Using Parentheses
It is a common mathematical practice to use parentheses to show which pair of numbers we wish to combine first.

1.7.3.1 Sample Set B

Example 1.49
Add the whole numbers.

\[
\begin{array}{c}
43 \\
16 \\
27 \\
\end{array}
\]

43 and 16 are associated.
\[
\begin{align*}
(43 + 16) + 27 &= 59 + 27 = 86. \\
43 + (16 + 27) &= 43 + 43 = 86. \\
\end{align*}
\]
16 and 27 are associated.

1.7.3.2 Practice Set B

Exercise 1.344
Use the associative property of addition to add the following whole numbers two different ways.

\[
\begin{array}{c}
17 \\
32 \\
25 \\
\end{array}
\]

Exercise 1.345

\[
\begin{array}{c}
1,629 \\
806 \\
429 \\
\end{array}
\]

(Solution on p. 87.)
1.7.4 The Additive Identity

0 Is the Additive Identity
The whole number 0 is called the additive identity, since when it is added to any whole number, the sum is identical to that whole number.

1.7.4.1 Sample Set C

Example 1.50
Add the whole numbers.

\[
\begin{align*}
29 + 0 &= 29 \\
0 + 29 &= 29
\end{align*}
\]

Zero added to 29 does not change the identity of 29.

1.7.4.2 Practice Set C

Add the following whole numbers.

Exercise 1.346 (Solution on p. 87.)

\[
\begin{align*}
8 + 0 &= 8 \\
0 + 5 &= 5
\end{align*}
\]

Suppose we let the letter x represent a choice for some whole number. For the first two problems, find the sums. For the third problem, find the sum provided we now know that x represents the whole number 17.

Exercise 1.348 (Solution on p. 87.)

\[
\begin{align*}
8 + x &= 8 + x \\
x + 0 &= x
\end{align*}
\]

Exercise 1.349 (Solution on p. 87.)

\[
\begin{align*}
x + 0 &= x \\
0 + x &= x
\end{align*}
\]
1.7.5 Exercises

For the following problems, add the numbers in two ways.

Exercise 1.350

(Solution on p. 87.)

Exercise 1.351

(Solution on p. 87.)

Exercise 1.352

(Solution on p. 87.)

Exercise 1.353

(Solution on p. 87.)

Exercise 1.354

(Solution on p. 87.)

Exercise 1.355

(Solution on p. 87.)

Exercise 1.356

(Solution on p. 87.)

Exercise 1.357

(Solution on p. 87.)
For the following problems, show that the pairs of quantities yield the same sum.

Exercise 1.366
(11 + 27) + 9 and 11 + (27 + 9)

Exercise 1.367
(80 + 52) + 6 and 80 + (52 + 6)
Exercise 1.368
(114 + 226) + 108 and 114 + (226 + 108)

Exercise 1.369
(Solution on p. 87.)
(731 + 256) + 171 and 731 + (256 + 171)

Exercise 1.370
The fact that (a first number + a second number) + third number = a first number + (a second number + a third number) is an example of the property of addition.

Exercise 1.371
(Solution on p. 87.)
The fact that 0 + any number = that particular number is an example of the property of addition.

Exercise 1.372
The fact that a first number + a second number = a second number + a first number is an example of the property of addition.

Exercise 1.373
(Solution on p. 87.)
Use the numbers 15 and 8 to illustrate the commutative property of addition.

Exercise 1.374
Use the numbers 6, 5, and 11 to illustrate the associative property of addition.

Exercise 1.375
(Solution on p. 87.)
The number zero is called the additive identity. Why is the term identity so appropriate?

1.7.5.1 Exercises for Review

Exercise 1.376
(Section 1.2) How many hundreds in 46,581?

Exercise 1.377
(Solution on p. 87.)
(Section 1.3) Write 2,218 as you would read it.

Exercise 1.378
(Section 1.4) Round 506,207 to the nearest thousand.

Exercise 1.379
(Solution on p. 87.)
(Section 1.5) Find the sum of 482
+ 68

Exercise 1.380
(Section 1.6) Find the difference: 3,318
− 429

1.8 Summary of Key Concepts*

1.8.1 Summary of Key Concepts

Number / Numeral (Section 1.2)
A number is a concept. It exists only in the mind. A numeral is a symbol that represents a number. It is customary not to distinguish between the two (but we should remain aware of the difference).

*This content is available online at <http://cnx.org/content/m34798/1.3/>.
Hindu-Arabic Numeration System (Section 1.2)
In our society, we use the Hindu-Arabic numeration system. It was invented by the Hindus shortly before the third century and popularized by the Arabs about a thousand years later.

Digits (Section 1.2)
The numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are called digits.

Base Ten Positional System (Section 1.2)
The Hindu-Arabic numeration system is a positional number system with base ten. Each position has value that is ten times the value of the position to its right.

Commas / Periods (Section 1.2)
Commas are used to separate digits into groups of three. Each group of three is called a period. Each period has a name. From right to left, they are ones, thousands, millions, billions, etc.

Whole Numbers (Section 1.2)
A whole number is any number that is formed using only the digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9).

Number Line (Section 1.2)
The number line allows us to visually display the whole numbers.

Graphing (Section 1.2)
Graphing a whole number is a term used for visually displaying the whole number. The graph of 4 appears below.

Reading Whole Numbers (Section 1.3)
To express a whole number as a verbal phrase:

1. Begin at the right and, working right to left, separate the number into distinct periods by inserting commas every three digits.
2. Begin at the left, and read each period individually.

Writing Whole Numbers (Section 1.3)
To rename a number that is expressed in words to a number expressed in digits:

1. Notice that a number expressed as a verbal phrase will have its periods set off by commas.
2. Start at the beginning of the sentence, and write each period of numbers individually.
3. Use commas to separate periods, and combine the periods to form one number.

Rounding (Section 1.4)
Rounding is the process of approximating the number of a group of objects by mentally "seeing" the collection as occurring in groups of tens, hundreds, thousands, etc.
Addition (Section 1.5)
Addition is the process of combining two or more objects (real or intuitive) to form a new, third object, the total, or sum.

Addends / Sum (Section 1.5)
In addition, the numbers being added are called addends and the result, or total, the sum.

Subtraction (Section 1.6)
Subtraction is the process of determining the remainder when part of the total is removed.

Minuend / Subtrahend Difference (Section 1.6)

\[\begin{align*}
18 - 11 &= 7 \\
\text{minuend} &\quad \text{subtrahend} \quad \text{difference}
\end{align*} \]

Commutative Property of Addition (Section 1.7)
If two whole numbers are added in either of two orders, the sum will not change.
\[3 + 5 = 5 + 3 \]

Associative Property of Addition (Section 1.7)
If three whole numbers are to be added, the sum will be the same if the first two are added and that sum is then added to the third, or if the second two are added and the first is added to that sum.
\[(3 + 5) + 2 = 3 + (5 + 2) \]

Parentheses in Addition (Section 1.7)
Parentheses in addition indicate which numbers are to be added first.

Additive Identity (Section 1.7)
The whole number 0 is called the additive identity since, when it is added to any particular whole number, the sum is identical to that whole number.
\[0 + 7 = 7 \]
\[7 + 0 = 7 \]

1.9 Exercise Supplement

1.9.1 Exercise Supplement

For problems 1-35, find the sums and differences.

Exercise 1.381

\[
\begin{align*}
908 \\
+ 29 \\
\hline
+ 29 \\
937
\end{align*}
\]

Exercise 1.382

\[
\begin{align*}
529 \\
+ 161 \\
\hline
690
\end{align*}
\]

Exercise 1.383

\[
\begin{align*}
549 \\
+ 16 \\
\hline
565
\end{align*}
\]

(Solution on p. 87.)

9This content is available online at <http://cnx.org/content/m34800/1.5/>.
| Exercise 1.384 | 726
| | + 892 |
| Exercise 1.385 | 390
| | + 169 |
| Exercise 1.386 | 166
| | + 660 |
| Exercise 1.387 | 391
| | + 951 |
| Exercise 1.388 | 48
| | + 36 |
| Exercise 1.389 | 1,103
| | + 898 |
| Exercise 1.390 | 1,642
| | + 899 |
| Exercise 1.391 | 807
| | + 1,156 |
| Exercise 1.392 | 80,349
| | + 2,679 |
| Exercise 1.393 | 70,070
| | + 9,386 |
| Exercise 1.394 | 90,874
| | + 2,945 |
| Exercise 1.395 | 45,292
| | + 51,661 |
| Exercise 1.396 | 1,617
| | + 54,923 |

(Solution on p. 87.)

(Solution on p. 88.)
Exercise 1.397
702,607
+ 89,217
(Solution on p. 88.)

Exercise 1.398
6,670,006
+ 2,495
(Solution on p. 88.)

Exercise 1.399
267
+ 8,034
(Solution on p. 88.)

Exercise 1.400
7,007
+ 11,938
(Solution on p. 88.)

Exercise 1.401
131,294
+ 9,087
(Solution on p. 88.)

Exercise 1.402
5,292
+ 161
(Solution on p. 88.)

Exercise 1.403
17,260
+ 58,964
(Solution on p. 88.)

Exercise 1.404
7,006
− 5,382
(Solution on p. 88.)

Exercise 1.405
7,973
− 3,018
(Solution on p. 88.)

Exercise 1.406
16,608
− 1,660
(Solution on p. 88.)

Exercise 1.407
209,527
− 23,916
(Solution on p. 88.)

Exercise 1.408
584
− 226
(Solution on p. 88.)

Exercise 1.409
3,313
− 1,075
CHAPTER 1. ADDITION AND SUBTRACTION OF WHOLE NUMBERS

Exercise 1.410
458
\[\begin{array}{c}
-122 \\
\end{array} \]

Exercise 1.411
\[\begin{array}{c}
1,007 \\
+331 \\
\end{array} \]
\[\text{(Solution on p. 88.)} \]

Exercise 1.412
\[\begin{array}{c}
16,082 \\
+2,013 \\
\end{array} \]

Exercise 1.413
\[\begin{array}{c}
926 \\
-48 \\
\end{array} \]
\[\text{(Solution on p. 88.)} \]

Exercise 1.414
\[\begin{array}{c}
736 \\
+5,869 \\
\end{array} \]

Exercise 1.415
\[\begin{array}{c}
676,504 \\
-58,277 \\
\end{array} \]
\[\text{(Solution on p. 88.)} \]

For problems 36-39, add the numbers.

Exercise 1.416
\[\begin{array}{c}
769 \\
795 \\
298 \\
746 \\
\end{array} \]

Exercise 1.417
\[\begin{array}{c}
554 \\
184 \\
883 \\
\end{array} \]
\[\text{(Solution on p. 88.)} \]

Exercise 1.418
\[\begin{array}{c}
30,188 \\
79,731 \\
16,600 \\
66,085 \\
39,169 \\
95,170 \\
\end{array} \]
For problems 40-50, combine the numbers as indicated.

Exercise 1.420
2,957 + 9,006

Exercise 1.421
19,040 + 813

Exercise 1.422
350,212 + 14,533

Exercise 1.423
970 + 702 + 22 + 8

Exercise 1.424
3,704 + 2,344 + 429 + 10,374 + 74

Exercise 1.425
874 + 845 + 295 − 900

Exercise 1.426
904 + 910 − 881

Exercise 1.427
521 + 453 − 334 + 600

Exercise 1.428
892 − 820 − 9

Exercise 1.429
159 + 4,085 − 918 − 608

Exercise 1.430
2,562 + 8,754 − 393 − 385 − 910

For problems 51-63, add and subtract as indicated.

Exercise 1.431
Subtract 671 from 8,027.

Exercise 1.432
Subtract 387 from 6,342

Exercise 1.433
Subtract 2,926 from 6,341.

Exercise 1.434
Subtract 4,355 from the sum of 74 and 7,319.

Exercise 1.435
Subtract 325 from the sum of 7,188 and 4,964.

Exercise 1.436
Subtract 496 from the difference of 60,321 and 99.
CHAPTER 1. ADDITION AND SUBTRACTION OF WHOLE NUMBERS

Exercise 1.437
Subtract 20,663 from the difference of 523,150 and 95,225.

Exercise 1.438
Add the difference of 843 and 139 to the difference of 4,450 and 839.

Exercise 1.439
Add the difference of 997,468 and 292,513 to the difference of 22,140 and 8,617.

Exercise 1.440
Subtract the difference of 8,412 and 576 from the sum of 22,140 and 8,617.

Exercise 1.441
Add the sum of 2,273, 3,304, 847, and 16 to the difference of 4,365 and 864.

Exercise 1.442
Add the sum of 19,161, 201, 166,127, and 44 to the difference of the sums of 161, 2,455, and 85, and 21, 26, 48, and 187.

Exercise 1.443
Is the sum of 626 and 1,242 the same as the sum of 1,242 and 626? Justify your claim.

1.10 Proficiency Exam

1.10.1 Proficiency Exam

Exercise 1.444
(Section 1.2) What is the largest digit?

Exercise 1.445
(Section 1.2) In the Hindu-Arabic number system, each period has three values assigned to it. These values are the same for each period. From right to left, what are they?

Exercise 1.446
(Section 1.2) In the number 42,826, how many hundreds are there?

Exercise 1.447
(Section 1.2) Is there a largest whole number? If so, what is it?

Exercise 1.448
(Section 1.2) Graph the following whole numbers on the number line: 2, 3, 5.

Exercise 1.449
(Section 1.3) Write the number 63,425 as you would read it aloud.

Exercise 1.450
(Section 1.3) Write the number eighteen million, three hundred fifty-nine thousand, seventy-two.

Exercise 1.451
(Section 1.4) Round 427 to the nearest hundred.

Exercise 1.452
(Section 1.4) Round 18,995 to the nearest ten.

10This content is available online at <http://cnx.org/content/m34805/1.4/>.
Exercise 1.453 (Solution on p. 89.)
(Section 1.4) Round to the most reasonable digit: During a semester, a mathematics instructor uses 487 pieces of chalk.

For problems 11-17, find the sums and differences.

Exercise 1.454 (Solution on p. 89.)
(Section 1.5)
\[627 + 48 \]

Exercise 1.455 (Solution on p. 89.)
(Section 1.5) \[3106 + 921 \]

Exercise 1.456 (Solution on p. 89.)
(Section 1.5)
\[152 + 36 \]

Exercise 1.457 (Solution on p. 89.)
(Section 1.5)
\[5,189 + 6,122 \]
\[+ 8,001 \]

Exercise 1.458 (Solution on p. 89.)
(Section 1.5) \[21 + 16 + 42 + 11 \]

Exercise 1.459 (Solution on p. 89.)
(Section 1.6) \[520 - 216 \]

Exercise 1.460 (Solution on p. 89.)
(Section 1.6)
\[80,001 - 9,878 \]

Exercise 1.461 (Solution on p. 89.)
(Section 1.6) Subtract 425 from 816.

Exercise 1.462 (Solution on p. 89.)
(Section 1.6) Subtract 712 from the sum of 507 and 387.

Exercise 1.463 (Solution on p. 89.)
(Section 1.7) Is the sum of 219 and 412 the same as the sum of 412 and 219? If so, what makes it so?
Solutions to Exercises in Chapter 1

Solution to Exercise 1.1 (p. 10)
Yes. Letters are symbols. Taken as a collection (a written word), they represent a number.

Solution to Exercise 1.2 (p. 12)
five thousand

Solution to Exercise 1.3 (p. 12)
four hundred billion

Solution to Exercise 1.4 (p. 12)
zero tens, or zero

Solution to Exercise 1.5 (p. 13)

Solution to Exercise 1.6 (p. 13)
4, 5, 6, 113, 978

Solution to Exercise 1.7 (p. 14)
concept

Solution to Exercise 1.9 (p. 14)
Yes, since it is a symbol that represents a number.

Solution to Exercise 1.11 (p. 14)
position; 10

Solution to Exercise 1.13 (p. 14)
one, tens, hundreds

Solution to Exercise 1.15 (p. 14)
4

Solution to Exercise 1.17 (p. 14)
0

Solution to Exercise 1.19 (p. 14)
0

Solution to Exercise 1.21 (p. 14)
ten thousand

Solution to Exercise 1.23 (p. 14)
6 ten millions = 60 million

Solution to Exercise 1.25 (p. 14)
1,340 (answers may vary)

Solution to Exercise 1.27 (p. 15)
900

Solution to Exercise 1.29 (p. 15)
yes; zero

Solution to Exercise 1.31 (p. 15)
graphing

Solution to Exercise 1.33 (p. 15)

Solution to Exercise 1.35 (p. 15)
61, 99, 100, 102

Solution to Exercise 1.37 (p. 17)
Twelve thousand, five hundred forty-two

Solution to Exercise 1.38 (p. 17)
One hundred one million, seventy-four thousand, three
Solution to Exercise 1.39 (p. 17)
One million, eight

Solution to Exercise 1.40 (p. 18)
103,025

Solution to Exercise 1.41 (p. 18)
6,040,007

Solution to Exercise 1.42 (p. 18)
20,003,080,100,402

Solution to Exercise 1.43 (p. 18)
80,000,000,035

Solution to Exercise 1.44 (p. 18)
nine hundred twelve

Solution to Exercise 1.45 (p. 18)
one thousand, four hundred ninety-one

Solution to Exercise 1.46 (p. 19)
thirty-five thousand, two hundred twenty-three

Solution to Exercise 1.47 (p. 19)
four hundred thirty-seven thousand, one hundred five

Solution to Exercise 1.48 (p. 19)
eight million, one thousand, one

Solution to Exercise 1.49 (p. 19)
seven hundred seventy million, three hundred eleven thousand, one hundred one

Solution to Exercise 1.50 (p. 19)
one hundred six billion, one hundred million, one thousand ten

Solution to Exercise 1.51 (p. 19)
eight hundred billion, eight hundred thousand

Solution to Exercise 1.52 (p. 19)
four; one thousand, four hundred sixty

Solution to Exercise 1.53 (p. 19)
twenty billion

Solution to Exercise 1.54 (p. 19)
four hundred twelve; fifty-two; twenty-one thousand, four hundred twenty-four

Solution to Exercise 1.55 (p. 19)
one thousand, nine hundred seventy-nine; eighty-five thousand; two million, nine hundred five thousand

Solution to Exercise 1.56 (p. 19)
one thousand, nine hundred eighty; thirteen thousand, one hundred

Solution to Exercise 1.57 (p. 19)
eighty million, six hundred thirty thousand

Solution to Exercise 1.58 (p. 19)
681

Solution to Exercise 1.59 (p. 19)
7,201

Solution to Exercise 1.60 (p. 19)
512,003

Solution to Exercise 1.61 (p. 19)
35,007,101
Solution to Exercise 1.84 (p. 20)
16,000,059,004
Solution to Exercise 1.86 (p. 20)
23,000,000,000
Solution to Exercise 1.88 (p. 20)
100,000,000,000,001
Solution to Exercise 1.90 (p. 21)
4
Solution to Exercise 1.92 (p. 21)
yes, zero
Solution to Exercise 1.94 (p. 24)
3400
Solution to Exercise 1.95 (p. 24)
27,000
Solution to Exercise 1.96 (p. 24)
31,000,000
Solution to Exercise 1.97 (p. 24)
0
Solution to Exercise 1.98 (p. 24)
60,000
Solution to Exercise 1.99 (p. 24)

<table>
<thead>
<tr>
<th>hundred</th>
<th>thousand</th>
<th>ten thousand</th>
<th>million</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1,600</td>
<td>200</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1.27

Solution to Exercise 1.101 (p. 25)

<table>
<thead>
<tr>
<th>Hundred</th>
<th>thousand</th>
<th>ten thousand</th>
<th>million</th>
</tr>
</thead>
<tbody>
<tr>
<td>91,800</td>
<td>92,000</td>
<td>90,000</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1.28

Solution to Exercise 1.103 (p. 25)

<table>
<thead>
<tr>
<th>hundred</th>
<th>thousand</th>
<th>ten thousand</th>
<th>million</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1.29

Solution to Exercise 1.105 (p. 25)

<table>
<thead>
<tr>
<th>hundred</th>
<th>thousand</th>
<th>ten thousand</th>
<th>million</th>
</tr>
</thead>
<tbody>
<tr>
<td>900</td>
<td>1,000</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 1.30
Solution to Exercise 1.107 (p. 26)

<table>
<thead>
<tr>
<th>hundred</th>
<th>thousand</th>
<th>ten thousand</th>
<th>million</th>
</tr>
</thead>
<tbody>
<tr>
<td>900</td>
<td>1,000</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1.31
Solution to Exercise 1.109 (p. 26)

<table>
<thead>
<tr>
<th>hundred</th>
<th>thousand</th>
<th>ten thousand</th>
<th>million</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>1,000</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1.32
Solution to Exercise 1.111 (p. 26)

<table>
<thead>
<tr>
<th>hundred</th>
<th>thousand</th>
<th>ten thousand</th>
<th>million</th>
</tr>
</thead>
<tbody>
<tr>
<td>551,061,300</td>
<td>551,061,000</td>
<td>551,060,000</td>
<td>551,000,000</td>
</tr>
</tbody>
</table>

Table 1.33
Solution to Exercise 1.113 (p. 27)

<table>
<thead>
<tr>
<th>hundred</th>
<th>thousand</th>
<th>ten thousand</th>
<th>million</th>
</tr>
</thead>
<tbody>
<tr>
<td>106,999,413,200</td>
<td>106,999,413,000</td>
<td>106,999,410,000</td>
<td>106,999,000,000</td>
</tr>
</tbody>
</table>

Table 1.34
Solution to Exercise 1.115 (p. 27)

<table>
<thead>
<tr>
<th>Hundred</th>
<th>Thousand</th>
<th>ten thousand</th>
<th>Million</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,006,000</td>
<td>8,006,000</td>
<td>8,010,000</td>
<td>8,000,000</td>
</tr>
</tbody>
</table>

Table 1.35
Solution to Exercise 1.117 (p. 27)

<table>
<thead>
<tr>
<th>hundred</th>
<th>thousand</th>
<th>ten thousand</th>
<th>million</th>
</tr>
</thead>
<tbody>
<tr>
<td>33,500</td>
<td>33,000</td>
<td>30,000</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 1.36
Solution to Exercise 1.119 (p. 28)

<table>
<thead>
<tr>
<th>hundred</th>
<th>thousand</th>
<th>ten thousand</th>
<th>million</th>
</tr>
</thead>
<tbody>
<tr>
<td>388,600</td>
<td>389,000</td>
<td>390,000</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1.37
Solution to Exercise 1.121 (p. 28)

<table>
<thead>
<tr>
<th>hundred</th>
<th>thousand</th>
<th>ten thousand</th>
<th>million</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,200</td>
<td>8,000</td>
<td>10,000</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1.38
Solution to Exercise 1.123 (p. 28)
- 19,310,000
Solution to Exercise 1.125 (p. 29)
- 29,000,000
Solution to Exercise 1.127 (p. 29)
- 70% or 75%
Solution to Exercise 1.129 (p. 29)
- $5,500,000,000
Solution to Exercise 1.131 (p. 29)
- 230,000
Solution to Exercise 1.133 (p. 29)
- 5,400,000
Solution to Exercise 1.135 (p. 29)
- graphing
Solution to Exercise 1.137 (p. 29)
- Forty-two thousand, one hundred nine
Solution to Exercise 1.139 (p. 29)
- 4,000,000,008
Solution to Exercise 1.140 (p. 31)
- 88

\[
\begin{array}{c}
6 \text{ tens } + 3 \text{ ones} \\
+ 2 \text{ tens } + 5 \text{ ones} \\
8 \text{ tens } + 8 \text{ ones}
\end{array}
\]

Solution to Exercise 1.141 (p. 31)
- 5,527

\[
\begin{array}{c}
4 \text{ thousands } + 0 \text{ hundreds } + 2 \text{ tens } + 6 \text{ ones} \\
+1 \text{ thousand } + 5 \text{ hundreds } + 0 \text{ tens } + 1 \text{ one} \\
5 \text{ thousands } + 5 \text{ hundreds } + 2 \text{ tens } + 7 \text{ ones}
\end{array}
\]

Solution to Exercise 1.142 (p. 31)
- 267,166
Solution to Exercise 1.143 (p. 34)

$$87$$

$$5 \text{ tens} + 8 \text{ ones}$$
$$+ 2 \text{ tens} + 9 \text{ ones}$$
$$7 \text{ tens} + 17 \text{ ones}$$

$$= 7 \text{ tens} + 1 \text{ ten} + 7 \text{ ones}$$
$$= 8 \text{ tens} + 7 \text{ ones}$$

$$= 87$$

Solution to Exercise 1.144 (p. 34)

$$561$$

$$4 \text{ hundreds} + 7 \text{ tens} + 6 \text{ ones}$$
$$+ 8 \text{ tens} + 5 \text{ ones}$$

$$= 4 \text{ hundreds} + 15 \text{ tens} + 1 \text{ ten} + 1 \text{ one}$$
$$= 4 \text{ hundreds} + 16 \text{ tens} + 1 \text{ one}$$

$$= 4 \text{ hundreds} + 1 \text{ hundred} + 6 \text{ tens} + 1 \text{ one}$$

$$= 5 \text{ hundreds} + 6 \text{ tens} + 1 \text{ one}$$

$$= 561$$

Solution to Exercise 1.145 (p. 34)

$$115$$

$$2 \text{ tens} + 7 \text{ ones}$$
$$+ 8 \text{ tens} + 8 \text{ ones}$$
$$10 \text{ tens} + 15 \text{ ones}$$

$$= 10 \text{ tens} + 1 \text{ ten} + 5 \text{ ones}$$

$$= 11 \text{ tens} + 5 \text{ ones}$$

$$= 1 \text{ hundred} + 1 \text{ ten} + 5 \text{ ones}$$

$$= 115$$

Solution to Exercise 1.146 (p. 34)

$$153,525$$

Solution to Exercise 1.147 (p. 34)

$$167$$

Solution to Exercise 1.148 (p. 35)

$$2,468$$

Solution to Exercise 1.149 (p. 35)

$$434,826$$

Solution to Exercise 1.150 (p. 36)

$$155$$

Solution to Exercise 1.151 (p. 36)

$$19,750$$

Solution to Exercise 1.152 (p. 36)

$$30,682$$

Solution to Exercise 1.153 (p. 36)

$$19$$

Solution to Exercise 1.155 (p. 36)

$$48$$
Solution to Exercise 1.157 (p. 36)
98
Solution to Exercise 1.159 (p. 36)
978
Solution to Exercise 1.161 (p. 37)
368
Solution to Exercise 1.163 (p. 37)
12,777
Solution to Exercise 1.165 (p. 37)
58,738
Solution to Exercise 1.167 (p. 37)
45,169,739
Solution to Exercise 1.169 (p. 37)
33
Solution to Exercise 1.171 (p. 37)
81
Solution to Exercise 1.173 (p. 37)
91
Solution to Exercise 1.175 (p. 37)
809
Solution to Exercise 1.177 (p. 38)
862
Solution to Exercise 1.179 (p. 38)
2,321
Solution to Exercise 1.181 (p. 38)
1,141,204
Solution to Exercise 1.183 (p. 38)
562,364,111
Solution to Exercise 1.185 (p. 38)
942,302,364,207,060
Solution to Exercise 1.187 (p. 38)
234
Solution to Exercise 1.189 (p. 38)
95,365
Solution to Exercise 1.191 (p. 39)
1,972,128
Solution to Exercise 1.193 (p. 39)
3,700
Solution to Exercise 1.195 (p. 39)
3,101,500
Solution to Exercise 1.197 (p. 39)
100
Solution to Exercise 1.199 (p. 40)
0
Solution to Exercise 1.201 (p. 40)
1,000
Solution to Exercise 1.203 (p. 40)
5
Solution to Exercise 1.205 (p. 40)
19
Solution to Exercise 1.207 (p. 40)
88
Solution to Exercise 1.209 (p. 41)
60,511,000
Solution to Exercise 1.211 (p. 41)
5,682,651 square miles
Solution to Exercise 1.213 (p. 41)
1,190,000
Solution to Exercise 1.215 (p. 42)
271,564,000
Solution to Exercise 1.217 (p. 43)
20
Solution to Exercise 1.219 (p. 43)
25
Solution to Exercise 1.221 (p. 43)
40
Solution to Exercise 1.223 (p. 43)
50
Solution to Exercise 1.225 (p. 44)
50
Solution to Exercise 1.227 (p. 44)
50
Solution to Exercise 1.229 (p. 44)
0
Solution to Exercise 1.231 (p. 44)
6,800
Solution to Exercise 1.233 (p. 45)
7 − 5 = 2 since 2 + 5 = 7
Solution to Exercise 1.234 (p. 45)
9 − 1 = 8 since 8 + 1 = 9
Solution to Exercise 1.235 (p. 45)
17 − 8 = 9 since 9 + 8 = 17
Solution to Exercise 1.236 (p. 47)
331
Solution to Exercise 1.237 (p. 47)
814
Solution to Exercise 1.238 (p. 47)
61,118
Solution to Exercise 1.239 (p. 47)
10,000
Solution to Exercise 1.240 (p. 47)
62,114
Solution to Exercise 1.241 (p. 49)
18, 5 tens + 3 ones
- 3 tens + 5 ones
 4 tens + 1 ten + 3 ones
- 3 tens + 5 ones
 4 tens + 13 ones
- 3 tens + 5 ones
 1 ten + 8 ones
= 18

Solution to Exercise 1.242 (p. 49)
48, 7 tens + 6 ones
- 2 tens + 8 ones
 6 tens + 1 ten + 6 ones
- 2 tens + 8 ones
 6 tens + 16 ones
- 2 tens + 8 ones
 4 tens + 8 ones
= 48

Solution to Exercise 1.243 (p. 49)
307, 8 hundreds + 7 tens + 2 ones
- 5 hundreds + 6 tens + 5 ones
 8 hundreds + 6 tens + 1 ten + 2 ones
- 5 hundreds + 6 tens + 5 ones
 8 hundreds + 6 tens + 12 ones
- 5 hundreds + 6 tens + 5 ones
 3 hundreds + 0 tens + 7 ones
= 307

Solution to Exercise 1.244 (p. 49)
85

Solution to Exercise 1.245 (p. 49)
709

Solution to Exercise 1.246 (p. 49)
3,104

Solution to Exercise 1.247 (p. 50)
168

Solution to Exercise 1.248 (p. 50)
55,640

Solution to Exercise 1.249 (p. 50)
1,189

Solution to Exercise 1.250 (p. 52)
888
Solution to Exercise 1.251 (p. 52) 4,543
Solution to Exercise 1.252 (p. 52) 8,669
Solution to Exercise 1.253 (p. 54) 16,134
Solution to Exercise 1.254 (p. 54) 4,839
Solution to Exercise 1.255 (p. 54) 15,789,940
Solution to Exercise 1.256 (p. 55) 4,529
Solution to Exercise 1.257 (p. 55) 22,468,227
Solution to Exercise 1.258 (p. 55) 7
Solution to Exercise 1.260 (p. 55) 6
Solution to Exercise 1.262 (p. 55) 3
Solution to Exercise 1.264 (p. 55) 41
Solution to Exercise 1.266 (p. 55) 209
Solution to Exercise 1.268 (p. 56) 21,001
Solution to Exercise 1.270 (p. 56) 279,253
Solution to Exercise 1.272 (p. 56) 77,472
Solution to Exercise 1.274 (p. 56) 24
Solution to Exercise 1.276 (p. 56) 188
Solution to Exercise 1.278 (p. 56) 2,377
Solution to Exercise 1.280 (p. 56) 26,686
Solution to Exercise 1.282 (p. 57) 63,143,259
Solution to Exercise 1.284 (p. 57) 8,034
Solution to Exercise 1.286 (p. 57) 33
Solution to Exercise 1.288 (p. 57) 32,611,636,567
Solution to Exercise 1.290 (p. 57) 3,938
Solution to Exercise 1.292 (p. 57) 8,273,955
Solution to Exercise 1.294 (p. 58) 51
Solution to Exercise 1.296 (p. 58) 3,405
Solution to Exercise 1.298 (p. 58) 26
Solution to Exercise 1.300 (p. 58) 72,069
Solution to Exercise 1.302 (p. 58) 3,197
Solution to Exercise 1.304 (p. 58) 29
Solution to Exercise 1.306 (p. 58) 10,385
Solution to Exercise 1.308 (p. 58) 15%
Solution to Exercise 1.310 (p. 58) 11,247,000
Solution to Exercise 1.312 (p. 59) 436
Solution to Exercise 1.314 (p. 59) 57,187,000
Solution to Exercise 1.316 (p. 59) 165,000
Solution to Exercise 1.318 (p. 59) 74
Solution to Exercise 1.320 (p. 60) 4,547
Solution to Exercise 1.322 (p. 60) 11
Solution to Exercise 1.324 (p. 61) 10
Solution to Exercise 1.326 (p. 61) 12
Solution to Exercise 1.328 (p. 61) 76
Solution to Exercise 1.330 (p. 61) 51
Solution to Exercise 1.332 (p. 61) 60
Solution to Exercise 1.334 (p. 61) 165
Solution to Exercise 1.336 (p. 61) 214
Solution to Exercise 1.338 (p. 62) 330 (answers may vary)
Solution to Exercise 1.340 (p. 62) 27,000,000
Solution to Exercise 1.342 (p. 63) 12 + 41 = 53 and 41 + 12 = 53
Solution to Exercise 1.343 (p. 63)
$837 + 1,958 = 2,795$ and $1,958 + 837 = 2,795$

Solution to Exercise 1.344 (p. 63)
$(17 + 32) + 25 = 49 + 25 = 74$ and $17 + (32 + 25) = 17 + 57 = 74$

Solution to Exercise 1.345 (p. 63)
$(1,629 + 806) + 429 = 2,435 + 429 = 2,864$

$1,629 + (806 + 429) = 1,629 + 1,235 = 2,864$

Solution to Exercise 1.346 (p. 64)
8

Solution to Exercise 1.347 (p. 64)
5

Solution to Exercise 1.348 (p. 64)
x

Solution to Exercise 1.349 (p. 64)
x

Solution to Exercise 1.350 (p. 65)
17

Solution to Exercise 1.351 (p. 65)
37

Solution to Exercise 1.353 (p. 65)
45

Solution to Exercise 1.355 (p. 65)
568

Solution to Exercise 1.357 (p. 65)
122,323

Solution to Exercise 1.359 (p. 66)
45

Solution to Exercise 1.361 (p. 66)
100

Solution to Exercise 1.363 (p. 66)
556

Solution to Exercise 1.365 (p. 66)
43,461

Solution to Exercise 1.367 (p. 66)
$132 + 6 = 80 + 58 = 138$

Solution to Exercise 1.369 (p. 67)
$987 + 171 = 731 + 427 = 1,158$

Solution to Exercise 1.371 (p. 67)
Identity

Solution to Exercise 1.373 (p. 67)
$15 + 8 = 8 + 15 = 23$

Solution to Exercise 1.375 (p. 67)
...because its partner in addition remains identically the same after that addition

Solution to Exercise 1.377 (p. 67)
Two thousand, two hundred eighteen.

Solution to Exercise 1.379 (p. 67)
550

Solution to Exercise 1.381 (p. 69)
937

Solution to Exercise 1.383 (p. 69)
565
Solution to Exercise 1.385 (p. 70)
559
Solution to Exercise 1.387 (p. 70)
1,342
Solution to Exercise 1.389 (p. 70)
2,001
Solution to Exercise 1.391 (p. 70)
1,963
Solution to Exercise 1.393 (p. 70)
79,456
Solution to Exercise 1.395 (p. 70)
96,953
Solution to Exercise 1.397 (p. 70)
791,824
Solution to Exercise 1.399 (p. 71)
8,301
Solution to Exercise 1.401 (p. 71)
140,381
Solution to Exercise 1.403 (p. 71)
76,224
Solution to Exercise 1.405 (p. 71)
4,955
Solution to Exercise 1.407 (p. 71)
185,611
Solution to Exercise 1.409 (p. 71)
2,238
Solution to Exercise 1.411 (p. 72)
1,338
Solution to Exercise 1.413 (p. 72)
878
Solution to Exercise 1.415 (p. 72)
618,227
Solution to Exercise 1.417 (p. 72)
1,621
Solution to Exercise 1.419 (p. 72)
484,601
Solution to Exercise 1.421 (p. 73)
19,853
Solution to Exercise 1.423 (p. 73)
1,702
Solution to Exercise 1.425 (p. 73)
1,114
Solution to Exercise 1.427 (p. 73)
1,300
Solution to Exercise 1.429 (p. 73)
2,718
Solution to Exercise 1.431 (p. 73)
7,356
Solution to Exercise 1.433 (p. 73)
3,415
Solution to Exercise 1.435 (p. 73)
11,827
Solution to Exercise 1.437 (p. 74)
407,262
Solution to Exercise 1.439 (p. 74)
718,478
Solution to Exercise 1.441 (p. 74)
9,941
Solution to Exercise 1.443 (p. 74)
$626 + 1,242 = 1,242 + 626 = 1,868$
Solution to Exercise 1.444 (p. 74)
9
Solution to Exercise 1.445 (p. 74)
o ones, tens, hundreds
Solution to Exercise 1.446 (p. 74)
8
Solution to Exercise 1.447 (p. 74)
no
Solution to Exercise 1.448 (p. 74)

Solution to Exercise 1.449 (p. 74)
Sixty-three thousand, four hundred twenty-five
Solution to Exercise 1.450 (p. 74)
18,359,072
Solution to Exercise 1.451 (p. 74)
400
Solution to Exercise 1.452 (p. 74)
19,000
Solution to Exercise 1.453 (p. 75)
500
Solution to Exercise 1.454 (p. 75)
675
Solution to Exercise 1.455 (p. 75)
4,027
Solution to Exercise 1.456 (p. 75)
188
Solution to Exercise 1.457 (p. 75)
23,501
Solution to Exercise 1.458 (p. 75)
90
Solution to Exercise 1.459 (p. 75)
304
Solution to Exercise 1.460 (p. 75)
70,123
Solution to Exercise 1.461 (p. 75)
391
Solution to Exercise 1.462 (p. 75)
182
Solution to Exercise 1.463 (p. 75)
Yes, commutative property of addition
Chapter 2

Multiplication and Division of Whole Numbers

2.1 Objectives

After completing this chapter, you should

Multiplication of Whole Numbers (Section 2.2)
- understand the process of multiplication
- be able to multiply whole numbers
- be able to simplify multiplications with numbers ending in zero
- be able to use a calculator to multiply one whole number by another

Concepts of Division of Whole Numbers (Section 2.3)
- understand the process of division
- understand division of a nonzero number into zero
- understand why division by zero is undefined
- be able to use a calculator to divide one whole number by another

Division of Whole Numbers (Section 2.4)
- be able to divide a whole number by a single or multiple digit divisor
- be able to interpret a calculator statement that a division results in a remainder

Some Interesting Facts about Division (Section 2.5)
- be able to recognize a whole number that is divisible by 2, 3, 4, 5, 6, 8, 9, or 10

Properties of Multiplication (Section 2.6)
- understand and appreciate the commutative and associative properties of multiplication
- understand why 1 is the multiplicative identity

1This content is available online at <http://cnx.org/content/m18888/1.4/>.
2.2 Multiplication of Whole Numbers

2.2.1 Section Overview

- Multiplication
- The Multiplication Process With a Single Digit Multiplier
- The Multiplication Process With a Multiple Digit Multiplier
- Multiplication With Numbers Ending in Zero
- Calculators

2.2.2 Multiplication

Multiplication is a description of repeated addition.

In the addition of

\[5 + 5 + 5 \]

the number \(5\) is repeated 3 times. Therefore, we say we have three times five and describe it by writing

\[3 \times 5 \]

Thus,

\[3 \times 5 = 5 + 5 + 5 \]

Multiplicand

In a multiplication, the repeated addend (number being added) is called the **multiplicand**. In \(3 \times 5\), the \(5\) is the multiplicand.

Multiplier

Also, in a multiplication, the number that records the number of times the multiplicand is used is called the **multiplier**. In \(3 \times 5\), the \(3\) is the multiplier.

2.2.2.1 Sample Set A

Express each repeated addition as a multiplication. In each case, specify the multiplier and the multiplicand.

Example 2.1

\[7 + 7 + 7 + 7 + 7 + 7 \]

\(6 \times 7\). Multiplier is 6. Multiplicand is 7.

Example 2.2

\[18 + 18 + 18 \]

\(3 \times 18\). Multiplier is 3. Multiplicand is 18.

\(^2\)This content is available online at <http://cnx.org/content/m34863/1.2/>.
2.2.2.2 Practice Set A

Express each repeated addition as a multiplication. In each case, specify the multiplier and the multiplicand.

Exercise 2.1

12 + 12 + 12 + 12

Multiplier is _______, Multiplicand is _______.
(Solution on p. 141.)

Exercise 2.2

36 + 36 + 36 + 36 + 36 + 36 + 36 + 36 + 36

Multiplier is _______, Multiplicand is _______.
(Solution on p. 141.)

Exercise 2.3

0 + 0 + 0 + 0 + 0

Multiplier is _______, Multiplicand is _______.
(Solution on p. 141.)

Exercise 2.4

1847 + 1847 + ... + 1847

12,000 times

Multiplier is _______, Multiplicand is _______.
(Solution on p. 141.)

Factors

In a multiplication, the numbers being multiplied are also called factors.

Products

The result of a multiplication is called the product. In $3 \times 5 = 15$, the 3 and 5 are not only called the multiplier and multiplicand, but they are also called factors. The product is 15.

Indicators of Multiplication $\times, \cdot, ()$

The multiplication symbol (\times) is not the only symbol used to indicate multiplication. Other symbols include the dot (·) and pairs of parentheses (). The expressions

$3 \times 5, \quad 3 \cdot 5, \quad 3 (5), \quad (3) 5, \quad (3) (5)$

all represent the same product.

2.2.3 The Multiplication Process With a Single Digit Multiplier

Since multiplication is repeated addition, we should not be surprised to notice that carrying can occur.

Carrying occurs when we find the product of 38 and 7:

\[
5 \\
38 \\
\times 7 \\
\hline \\
266
\]

First, we compute $7 \times 8 = 56$. Write the 6 in the ones column. Carry the 5. Then take $7 \times 3 = 21$. Add to 21 the 5 that was carried: $21 + 5 = 26$. The product is 266.
2.2.3.1 Sample Set B

Find the following products.

Example 2.3

\[
\begin{array}{c}
1 \\
64 \\
\times 3 \\
\hline
192
\end{array}
\]

3 × 4 = 12 \quad \text{Write the 2, carry the 1.}

3 × 6 = 18 \quad \text{Add to 18 the 1 that was carried: 18 + 1 = 19.}

The product is 192.

Example 2.4

\[
\begin{array}{c}
13 \\
526 \\
\times 5 \\
\hline
2,630
\end{array}
\]

5 × 6 = 30 \quad \text{Write the 0, carry the 3.}

5 × 2 = 10 \quad \text{Add to 10 the 3 that was carried: 10 + 3 = 13. Write the 3, carry the 1.}

5 × 5 = 25 \quad \text{Add to 25 the 1 that was carried: 25 + 1 = 6.}

The product is 2,630.

Example 2.5

\[
\begin{array}{c}
7 \\
1,804 \\
\times 9 \\
\hline
16,236
\end{array}
\]

9 × 4 = 36 \quad \text{Write the 6, carry the 3.}

9 × 0 = 0 \quad \text{Add to the 0 the 3 that was carried: 0 + 3 = 3. Write the 3.}

9 × 8 = 72 \quad \text{Write the 2, carry the 7.}

9 × 1 = 9 \quad \text{Add to the 9 the 7 that was carried: 9 + 7 = 16.}

Since there are no more multiplications to perform, write both the 1 and 6.

The product is 16,236.

2.2.3.2 Practice Set B

Find the following products.

Exercise 2.5

\[
\begin{array}{c}
37 \\
\times 5
\end{array}
\]

(Solution on p. 141.)
2.2.4 The Multiplication Process With a Multiple Digit Multiplier

In a multiplication in which the multiplier is composed of two or more digits, the multiplication must take place in parts. The process is as follows:

Part 1: First Partial Product Multiply the multiplicand by the ones digit of the multiplier. This product is called the first partial product.

Part 2: Second Partial Product Multiply the multiplicand by the tens digit of the multiplier. This product is called the second partial product. Since the tens digit is used as a factor, the second partial product is written below the first partial product so that its rightmost digit appears in the tens column.

Part 3: If necessary, continue this way finding partial products. Write each one below the previous one so that the rightmost digit appears in the column directly below the digit that was used as a factor.

Part 4: Total Product Add the partial products to obtain the total product.

NOTE: It may be necessary to carry when finding each partial product.

2.2.4.1 Sample Set C

Example 2.6
Multiply 326 by 48.

\[
\begin{array}{c}
24 \\
326 \\
\times 48 \\
\hline
2608 \\
\end{array}
\]

Part 1: \(\text{First partial product.}\)

\[
\begin{array}{c}
12 \\
24 \\
326 \\
\times 48 \\
\hline
1304 \\
\end{array}
\]

Part 2: \(\text{Second partial product.}\)
Part 3: This step is unnecessary since all of the digits in the multiplier have been used.

Part 4: Add the partial products to obtain the total product.

\[
\begin{array}{c}
12 \\
24 \\
326 \\
\times 48 \\
2608 \\
+1304 \\
\hline
15648 \quad \text{Total product.}
\end{array}
\]

The product is 15,648.

Example 2.7
Multiply 5,369 by 842.

\[
\begin{array}{c}
11 \\
5369 \\
\times 842 \\
\hline
10738 \quad \text{First partial product.}
\end{array}
\]

Part 1:

\[
\begin{array}{c}
123 \\
11 \\
5369 \\
\times 842 \\
10738 \\
\hline
21476 \quad \text{Second partial product.}
\end{array}
\]

Part 2:

\[
\begin{array}{c}
257 \\
123 \\
11 \\
5369 \\
\times 842 \\
10738 \\
\hline
21476 \\
\hline
42952 \quad \text{Third partial product.}
\end{array}
\]

Part 3:

The product is 4,520,698.

Example 2.8
Multiply 1,508 by 206.

\[
\begin{array}{c}
3 \quad 4 \\
1508 \\
\times 206 \\
\hline
9048 \quad \text{First partial product (in first column from the right).}
\end{array}
\]

Part 1:

\[
\begin{array}{c}
3 \quad 4 \\
1508 \\
\times 206 \\
\hline
9048 \\
\end{array}
\]

Part 2:
Since 0 times 1508 is 0, the partial product will not change the identity of the total product (which is obtained by addition). Go to the next partial product.

\[
\begin{array}{c}
1 & 1 \\
3 & 4 \\
1508 \\
\times & 206 \\
\hline
9048 \\
3016 & \text{Third partial product (in third column from the right).} \\
\hline
310648 & \text{Total product (Part 4).}
\end{array}
\]

Part 3: The product is 310,648

2.2.4.2 Practice Set C

Exercise 2.10
Multiply 73 by 14.
(Solution on p. 141.)

Exercise 2.11
Multiply 86 by 52.
(Solution on p. 141.)

Exercise 2.12
Multiply 419 by 85.
(Solution on p. 141.)

Exercise 2.13
Multiply 2,376 by 613.
(Solution on p. 141.)

Exercise 2.14
Multiply 8,107 by 304.
(Solution on p. 141.)

Exercise 2.15
Multiply 66,260 by 1,008.
(Solution on p. 141.)

Exercise 2.16
Multiply 209 by 501.
(Solution on p. 141.)

Exercise 2.17
Multiply 24 by 10.
(Solution on p. 141.)

Exercise 2.18
Multiply 3,809 by 1,000.
(Solution on p. 141.)

Exercise 2.19
Multiply 813 by 10,000.
(Solution on p. 141.)

2.2.5 Multiplications With Numbers Ending in Zero

Often, when performing a multiplication, one or both of the factors will end in zeros. Such multiplications can be done quickly by aligning the numbers so that the rightmost nonzero digits are in the same column.
2.2.5.1 Sample Set D

Perform the multiplication \((49,000)(1,200)\).

\[
\begin{array}{c}
49,000 \\
\times 1200
\end{array}
\]

Since 9 and 2 are the rightmost nonzero digits, put them in the same column.

\[
\begin{array}{c}
49,000 \\
\times 1200
\end{array}
\]

Draw (perhaps mentally) a vertical line to separate the zeros from the nonzeros.

\[
\begin{array}{c}
49,000 \\
\times 1200
\end{array}
\]

Multiply the numbers to the left of the vertical line as usual, then attach to the right end of this product the total number of zeros.

\[
\begin{array}{c}
49,000 \\
\times 1200
\end{array}
\]

The product is 58,800,000

2.2.5.2 Practice Set D

Exercise 2.20
Multiply 1,800 by 90.
(Solution on p. 141.)

Exercise 2.21
Multiply 420,000 by 300.
(Solution on p. 141.)

Exercise 2.22
Multiply 20,500,000 by 140,000.
(Solution on p. 141.)

2.2.6 Calculators

Most multiplications are performed using a calculator.

2.2.6.1 Sample Set E

Example 2.9
Multiply 75,891 by 263.

<table>
<thead>
<tr>
<th>Display Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 75891</td>
</tr>
<tr>
<td>Press (\times)</td>
</tr>
<tr>
<td>Type 263</td>
</tr>
<tr>
<td>Press =</td>
</tr>
</tbody>
</table>
Table 2.1

The product is 19,999,333.

Example 2.10
Multiply 4,510,000,000,000 by 1,700.

<table>
<thead>
<tr>
<th>Display Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 451</td>
</tr>
<tr>
<td>Press × 451</td>
</tr>
<tr>
<td>Type 17</td>
</tr>
<tr>
<td>Press = 7667</td>
</tr>
</tbody>
</table>

Table 2.2

The display now reads 7667. We’ll have to add the zeros ourselves. There are a total of 12 zeros. Attaching 12 zeros to 7667, we get 7,667,000,000,000,000.

The product is 7,667,000,000,000,000.

Example 2.11
Multiply 57,847,298 by 38,976.

<table>
<thead>
<tr>
<th>Display Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 57847298</td>
</tr>
<tr>
<td>Press × 57847298</td>
</tr>
<tr>
<td>Type 38976</td>
</tr>
<tr>
<td>Press = 2,254,6563 12</td>
</tr>
</tbody>
</table>

Table 2.3

The display now reads 2,254,6563 12. What kind of number is this? This is an example of a whole number written in **scientific notation**. We’ll study this concept when we get to decimal numbers.

2.2.6.2 Practice Set E

Use a calculator to perform each multiplication.

Exercise 2.23
52 × 27

Exercise 2.24
1,448 × 6,155

Exercise 2.25
8,940,000 × 205,000

(Solution on p. 141.)
2.2.7 Exercises

For the following problems, perform the multiplications. You may check each product with a calculator.

Exercise 2.26
\[
8
\times 3
\]
(Solution on p. 141.)

Exercise 2.27
\[
3
\times 5
\]

Exercise 2.28
\[
8
\times 6
\]
(Solution on p. 142.)

Exercise 2.29
\[
5
\times 7
\]

Exercise 2.30
\[
6 \times 1
\]
(Solution on p. 142.)

Exercise 2.31
\[
4 \times 5
\]

Exercise 2.32
\[
75 \times 3
\]
(Solution on p. 142.)

Exercise 2.33
\[
35 \times 5
\]

Exercise 2.34
\[
45
\times 6
\]
(Solution on p. 142.)

Exercise 2.35
\[
31
\times 7
\]
(Solution on p. 142.)

Exercise 2.36
\[
97
\times 6
\]
(Solution on p. 142.)

Exercise 2.37
\[
75
\times 57
\]

Exercise 2.38
\[
64
\times 15
\]
(Solution on p. 142.)

Exercise 2.39
\[
73
\times 15
\]
Exercise 2.40
81
× 95
Exercise 2.41
31
× 33
Exercise 2.42
57 \times 64
(Solution on p. 142.)
Exercise 2.43
76 \times 42
(Solution on p. 142.)
Exercise 2.44
804 \times 52
(Solution on p. 142.)
Exercise 2.45
684 \times 38
(Solution on p. 142.)
Exercise 2.46
115
\times 22
Exercise 2.47
706
\times 81
(Solution on p. 142.)
Exercise 2.48
328
\times 21
Exercise 2.49
550
\times 94
(Solution on p. 142.)
Exercise 2.50
930 \times 26
(Solution on p. 142.)
Exercise 2.51
318 \times 63
(Solution on p. 142.)
Exercise 2.52
582
\times 127
Exercise 2.53
247
\times 116
(Solution on p. 142.)
Exercise 2.54
305
\times 225
Exercise 2.55
782
× 547

Exercise 2.56
771
× 663
(Solution on p. 142.)

Exercise 2.57
638
× 516

Exercise 2.58
1,905 × 710
(Solution on p. 142.)

Exercise 2.59
5,757 × 5,010
(Solution on p. 142.)

Exercise 2.60
3,106
× 1,752

Exercise 2.61
9,300
× 1,130
(Solution on p. 142.)

Exercise 2.62
7,057
× 5,229

Exercise 2.63
8,051
× 5,580
(Solution on p. 142.)

Exercise 2.64
5,804
× 4,300

Exercise 2.65
357
× 16
(Solution on p. 142.)

Exercise 2.66
724
× 0

Exercise 2.67
2,649
× 41
(Solution on p. 142.)

Exercise 2.68
5,173
× 8
Exercise 2.69

\[1,999 \times 0 \]

Exercise 2.70

\[1,666 \times 0 \] (Solution on p. 142.)

Exercise 2.71

\[51,730 \times 142 \]

Exercise 2.72

\[387 \times 190 \] (Solution on p. 142.)

Exercise 2.73

\[3,400 \times 70 \]

Exercise 2.74

\[460,000 \times 14,000 \] (Solution on p. 142.)

Exercise 2.75

\[558,000,000 \times 81,000 \] (Solution on p. 142.)

Exercise 2.76

\[37,000 \times 120 \]

Exercise 2.77

\[498,000 \times 0 \] (Solution on p. 143.)

Exercise 2.78

\[4,585,000 \times 140 \]

Exercise 2.79

\[30,700,000 \times 180 \] (Solution on p. 143.)

Exercise 2.80

\[8,000 \times 10 \]

Exercise 2.81

Suppose a theater holds 426 people. If the theater charges $4 per ticket and sells every seat, how much money would they take in?
Exercise 2.82 (Solution on p. 143.)
In an English class, a student is expected to read 12 novels during the semester and prepare a report on each one of them. If there are 32 students in the class, how many reports will be prepared?

Exercise 2.83
In a mathematics class, a final exam consists of 65 problems. If this exam is given to 28 people, how many problems must the instructor grade?

Exercise 2.84 (Solution on p. 143.)
A business law instructor gives a 45 problem exam to two of her classes. If each class has 37 people in it, how many problems will the instructor have to grade?

Exercise 2.85
An algebra instructor gives an exam that consists of 43 problems to four of his classes. If the classes have 25, 28, 31, and 35 students in them, how many problems will the instructor have to grade?

Exercise 2.86 (Solution on p. 143.)
In statistics, the term "standard deviation" refers to a number that is calculated from certain data. If the data indicate that one standard deviation is 38 units, how many units is three standard deviations?

Exercise 2.87
Soft drinks come in cases of 24 cans. If a supermarket sells 857 cases during one week, how many individual cans were sold?

Exercise 2.88 (Solution on p. 143.)
There are 60 seconds in 1 minute and 60 minutes in 1 hour. How many seconds are there in 1 hour?

Exercise 2.89
There are 60 seconds in 1 minute, 60 minutes in one hour, 24 hours in one day, and 365 days in one year. How many seconds are there in 1 year?

Exercise 2.90 (Solution on p. 143.)
Light travels 186,000 miles in one second. How many miles does light travel in one year? (Hint: Can you use the result of the previous problem?)

Exercise 2.91
An elementary school cafeteria sells 328 lunches every day. Each lunch costs $1. How much money does the cafeteria bring in in 2 weeks?

Exercise 2.92 (Solution on p. 143.)
A computer company is selling stock for $23 a share. If 87 people each buy 55 shares, how much money would be brought in?

2.2.7.1 Exercises for Review

Exercise 2.93 (Section 1.2) In the number 421,998, how may ten thousands are there?

Exercise 2.94 (Section 1.4) Round 448,062,187 to the nearest hundred thousand.

Exercise 2.95 (Section 1.5) Find the sum. 22,451 + 18,976.

Exercise 2.96 (Solution on p. 143.) (Section 1.6) Subtract 2,289 from 3,001.

Exercise 2.97 (Section 1.7) Specify which property of addition justifies the fact that (a first whole number + a second whole number) = (the second whole number + the first whole number)
2.3 Concepts of Division of Whole Numbers

2.3.1 Section Overview

- Division
- Division into Zero (Zero As a Dividend: $\frac{0}{a}$, $a \neq 0$)
- Division by Zero (Zero As a Divisor: $\frac{a}{0}$, $a \neq 0$)
- Division by and into Zero (Zero As a Dividend and Divisor: $\frac{0}{0}$)
- Calculators

2.3.2 Division

Division is a description of repeated subtraction.

In the process of division, the concern is how many times one number is contained in another number. For example, we might be interested in how many 5’s are contained in 15. The word times is significant because it implies a relationship between division and multiplication.

There are several notations used to indicate division. Suppose Q records the number of times 5 is contained in 15. We can indicate this by writing:

\[
\begin{array}{c}
\overset{Q}{5)15} \\
\underline{15} \\
\hline
0
\end{array}
\quad \quad \quad \quad \quad
\begin{array}{c}
\dfrac{15}{5} = Q \\
15 \text{ divided by } 5
\end{array}
\]

\[
\begin{array}{c}
15 \div 5 = Q \\
15 \text{ divided by } 5
\end{array}
\]

Each of these division notations describes the same number, represented here by the symbol Q. Each notation also converts to the same multiplication form. It is $15 = 5 \times Q$

In division,

- **Dividend**
 the number being divided into is called the **dividend**.

- **Divisor**
 the number dividing into the dividend is the **divisor**.

- **Quotient**
 the result of the division is called the **quotient**.

\[
\begin{equation}
\text{quotient} = \text{dividend} / \text{divisor}
\end{equation}
\]

\[
\begin{equation}
\text{dividend} / \text{divisor} = \text{quotient} \quad \text{dividend} \div \text{divisor} = \text{quotient}
\end{equation}
\]

\[^{3}\text{This content is available online at } \langle \text{http://cnx.org/content/m34864/1.3/} \rangle.\]
2.3.2.1 Sample Set A

Find the following quotients using multiplication facts.

Example 2.12

$18 \div 6$

Since $6 \times 3 = 18$,

$18 \div 6 = 3$

Notice also that

$\begin{array}{r}
18 \\
-6 \\
12 \\
-6 \\
6 \\
-6 \\
0 \\
\end{array}$

Repeated subtraction

Thus, 6 is contained in 18 three times.

Example 2.13

$24 \div 3$

Since $3 \times 8 = 24$,

$24 \div 3 = 8$

Notice also that 3 could be subtracted exactly 8 times from 24. This implies that 3 is contained in 24 eight times.

Example 2.14

$36 \div 6$

Since $6 \times 6 = 36$,

$36 \div 6 = 6$

Thus, there are 6 sixes in 36.

Example 2.15

$72 \div 9$

Since $9 \times 8 = 72$,

$\begin{array}{r}
8 \\
9 \overline{)72} \\
8 \\
9 \overline{)72} \\
\end{array}$

Thus, there are 8 nines in 72.
2.3.2.2 Practice Set A

Use multiplication facts to determine the following quotients.

Exercise 2.98
32 ÷ 8

(Solution on p. 143.)

Exercise 2.99
18 ÷ 9

(Solution on p. 143.)

Exercise 2.100
25 ÷ 5

(Solution on p. 143.)

Exercise 2.101
48 ÷ 8

(Solution on p. 143.)

Exercise 2.102
28 ÷ 7

(Solution on p. 143.)

Exercise 2.103
4)36

(Solution on p. 143.)

2.3.3 Division into Zero (Zero as a Dividend: \(\frac{0}{a} \), \(a \neq 0 \))

Let’s look at what happens when the dividend (the number being divided into) is zero, and the divisor (the number doing the dividing) is any whole number except zero. The question is

What number, if any, is \(\frac{0}{\text{any nonzero whole number}} \)?

Let’s represent this unknown quotient by \(Q \). Then,

\[
\frac{0}{\text{any nonzero whole number}} = Q
\]

Converting this division problem to its corresponding multiplication problem, we get

\[
0 = Q \times (\text{any nonzero whole number})
\]

From our knowledge of multiplication, we can understand that if the product of two whole numbers is zero, then one or both of the whole numbers must be zero. Since any nonzero whole number is certainly not zero, \(Q \) must represent zero. Then,

\[
\frac{0}{\text{any nonzero whole number}} = 0
\]

Zero Divided By Any Nonzero Whole Number Is Zero

Zero divided any nonzero whole number is zero.

2.3.4 Division by Zero (Zero as a Divisor: \(\frac{a}{0} \), \(a \neq 0 \))

Now we ask,

What number, if any, is \(\frac{a}{0} \)?

Letting \(Q \) represent a possible quotient, we get

\[
\frac{a}{0} = Q
\]

Converting to the corresponding multiplication form, we have
(any nonzero whole number) = \(Q \times 0 \)

Since \(Q \times 0 = 0 \), (any nonzero whole number) = 0. But this is absurd. This would mean that \(6 = 0 \), or \(37 = 0 \). A nonzero whole number cannot equal 0! Thus,

any nonzero whole number does not name a number.

Division by Zero is Undefined

Division by zero does not name a number. It is, therefore, undefined.

2.3.5 Division by and Into Zero (Zero as a Dividend and Divisor: \(\frac{0}{0} \))

We are now curious about zero divided by zero (\(\frac{0}{0} \)). If we let \(Q \) represent a potential quotient, we get

\[
\frac{0}{0} = Q
\]

Converting to the multiplication form,

\[
0 = Q \times 0
\]

This results in

\[
0 = 0
\]

This is a statement that is true regardless of the number used in place of \(Q \). For example,

\[
\frac{0}{0} = 5, \text{ since } 0 = 5 \times 0.
\]

\[
\frac{0}{0} = 31, \text{ since } 0 = 31 \times 0.
\]

\[
\frac{0}{0} = 286, \text{ since } 0 = 286 \times 0.
\]

A unique quotient cannot be determined.

Indeterminant

Since the result of the division is inconclusive, we say that \(\frac{0}{0} \) is indeterminant.

\(\frac{0}{0} \) is Indeterminant

The division \(\frac{0}{0} \) is indeterminant.

2.3.5.1 Sample Set B

Perform, if possible, each division.

Example 2.16

\(\frac{10}{0} \). Since division by 0 does not name a whole number, no quotient exists, and we state \(\frac{10}{0} \) is undefined

Example 2.17

\(0 \div 14 \). Since division by 0 does not name a defined number, no quotient exists, and we state \(0 \div 14 \) is undefined

Example 2.18

\(9 \div 0 \). Since division into 0 by any nonzero whole number results in 0, we have \(\frac{0}{9 \div 0} \)
Example 2.19
\(\frac{0}{7}\). Since division into 0 by any nonzero whole number results in 0, we have \(\frac{0}{7} = 0\).

2.3.5.2 Practice Set B

Perform, if possible, the following divisions.

Exercise 2.104 \(\frac{0}{7}\) (Solution on p. 143.)
Exercise 2.105 \(\frac{0}{3}\) (Solution on p. 143.)
Exercise 2.106 \(\frac{0}{7}\) (Solution on p. 143.)
Exercise 2.107 \(\frac{0}{8}\) (Solution on p. 143.)
Exercise 2.108 \(\frac{0}{5}\) (Solution on p. 143.)
Exercise 2.109 \(\frac{0}{7}\) (Solution on p. 143.)

2.3.6 Calculators

Divisions can also be performed using a calculator.

2.3.6.1 Sample Set C

Example 2.20
Divide 24 by 3.

<table>
<thead>
<tr>
<th>Display Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 24</td>
</tr>
<tr>
<td>Press ÷ 24</td>
</tr>
<tr>
<td>Type 3</td>
</tr>
<tr>
<td>Press = 8</td>
</tr>
</tbody>
</table>

Table 2.4

The display now reads 8, and we conclude that \(24 ÷ 3 = 8\).

Example 2.21
Divide 0 by 7.
CHAPTER 2. MULTIPLICATION AND DIVISION OF WHOLE NUMBERS

Table 2.5

<table>
<thead>
<tr>
<th>Display Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Press</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Press</td>
</tr>
</tbody>
</table>

The display now reads 0, and we conclude that $0 ÷ 7 = 0$.

Example 2.22
Divide 7 by 0.

Since division by zero is undefined, the calculator should register some kind of error message.

Table 2.6

<table>
<thead>
<tr>
<th>Display Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Press</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Press</td>
</tr>
</tbody>
</table>

The error message indicates an undefined operation was attempted, in this case, division by zero.

2.3.6.2 Practice Set C

Use a calculator to perform each division.

Exercise 2.110
$35 ÷ 7$
(Solution on p. 143.)

Exercise 2.111
$36 ÷ 8$
(Solution on p. 143.)

Exercise 2.112
$0 ÷ 6$
(Solution on p. 143.)

Exercise 2.113
$3 ÷ 0$
(Solution on p. 144.)

Exercise 2.114
$0 ÷ 0$
(Solution on p. 144.)
2.3.7 Exercises

For the following problems, determine the quotients (if possible). You may use a calculator to check the result.

Exercise 2.115
\[\frac{4}{32} \]
(Solution on p. 144.)

Exercise 2.116
\[\frac{7}{42} \]

Exercise 2.117
\[\frac{6}{18} \]
(Solution on p. 144.)

Exercise 2.118
\[\frac{2}{14} \]

Exercise 2.119
\[\frac{3}{27} \]
(Solution on p. 144.)

Exercise 2.120
\[\frac{1}{6} \]

Exercise 2.121
\[\frac{4}{28} \]
(Solution on p. 144.)

Exercise 2.122
\[\frac{30}{5} \]

Exercise 2.123
\[\frac{16}{4} \]
(Solution on p. 144.)

Exercise 2.124
\[24 \div 8 \]

Exercise 2.125
\[10 \div 2 \]
(Solution on p. 144.)

Exercise 2.126
\[21 \div 7 \]

Exercise 2.127
\[21 \div 3 \]
(Solution on p. 144.)

Exercise 2.128
\[0 \div 6 \]

Exercise 2.129
\[8 \div 0 \]
(Solution on p. 144.)

Exercise 2.130
\[12 \div 4 \]

Exercise 2.131
\[3 \div 9 \]
(Solution on p. 144.)

Exercise 2.132
\[0 \div 0 \]

Exercise 2.133
\[7 \div 0 \]
(Solution on p. 144.)

Exercise 2.134
\[6 \div 48 \]
CHAPTER 2. MULTIPLICATION AND DIVISION OF WHOLE NUMBERS

Exercise 2.135 \(\frac{15}{3} \)
Exercise 2.136 \(\frac{35}{0} \)
Exercise 2.137 \(56 \div 7 \)
Exercise 2.138 \(0 \div 9 \)
Exercise 2.139 \(72 \div 8 \)
Exercise 2.140 Write \(\frac{16}{2} = 8 \) using three different notations.
Exercise 2.141 Write \(\frac{27}{9} = 3 \) using three different notations.
Exercise 2.142 In the statement \(\frac{4}{6} \div 24 \)
6 is called the _______.
24 is called the _______.
4 is called the _______.
Exercise 2.143 In the statement \(56 \div 8 = 7 \)
7 is called the _______.
8 is called the _______.
56 is called the _______.

2.3.7.1 Exercises for Review

Exercise 2.144 (Section 1.2) What is the largest digit?
Exercise 2.145 (Solution on p. 144.)
(Section 1.5) Find the sum. \(8,006 + 4,118 \)
Exercise 2.146 (Solution on p. 144.)
(Section 1.6) Find the difference. \(631 - 589 \)
Exercise 2.147 (Solution on p. 144.)
(Section 1.7) Use the numbers 2, 3, and 7 to illustrate the associative property of addition.
Exercise 2.148 (Section 2.2) Find the product. \(86 \times 12 \)
2.4 Division of Whole Numbers

2.4.1 Section Overview

- Division with a Single Digit Divisor
- Division with a Multiple Digit Divisor
- Division with a Remainder
- Calculators

2.4.2 Division with a Single Digit Divisor

Our experience with multiplication of whole numbers allows us to perform such divisions as $75 \div 5$. We perform the division by performing the corresponding multiplication, $5 \times Q = 75$. Each division we considered in Section 2.3 had a one-digit quotient. Now we will consider divisions in which the quotient may consist of two or more digits. For example, $75 \div 5$.

Let’s examine the division $75 \div 5$. We are asked to determine how many 5’s are contained in 75. We’ll approach the problem in the following way.

1. Make an educated guess based on experience with multiplication.
2. Find how close the estimate is by multiplying the estimate by 5.
3. If the product obtained in step 2 is less than 75, find out how much less by subtracting it from 75.
4. If the product obtained in step 2 is greater than 75, decrease the estimate until the product is less than 75. Decreasing the estimate makes sense because we do not wish to exceed 75.

We can suggest from this discussion that the process of division consists of

The Four Steps in Division

1. an educated guess
2. a multiplication
3. a subtraction
4. bringing down the next digit (if necessary)

The educated guess can be made by determining how many times the divisor is contained in the dividend by using only one or two digits of the dividend.

2.4.2.1 Sample Set A

Example 2.23

Find $75 \div 5$.

$5)75$ Rewrite the problem using a division bracket.

10

$5)75$ Make an educated guess by noting that one 5 is contained in 75 at most 10 times.

Since 7 is the tens digit, we estimate that 5 goes into 75 at most 10 times.

4This content is available online at <http://cnx.org/content/m34865/1.2/>.
10
5)75
−50
25
Now determine how close the estimate is.
10 fives is $10 \times 5 = 50$. Subtract 50 from 75.
Estimate the number of 5’s in 25.
There are exactly 5 fives in 25.

\[
\begin{align*}
\text{5} & \quad 10 \text{ fives } + 5 \text{ fives } = 15 \text{ fives.} \\
\text{10} & \quad \text{There are 15 fives contained in 75.} \\
5)75 & \\
−50 & \\
25 & \\
−25 & \\
0 &
\end{align*}
\]

Check: $75 \div 15 \times 5$

Thus, $75 \div 5 = 15$.

The notation in this division can be shortened by writing.

\[
\begin{align*}
15 & \\
5)75 & \\
−51 & \\
25 & \\
−25 & \\
0 &
\end{align*}
\]

Divide: 5 goes into 7 at most 1 time. Divide: 5 goes into 25 exactly 5 times.
{ Multiply: $1 \times 5 = 5$. Write 5 below 7. } { Multiply: $5 \times 5 = 25$. Write 25 below 25.

Example 2.24

Find $4,944 \div 8$.

\[
\begin{align*}
8)4944 & \\
−4800 & \\
144 &
\end{align*}
\]

Rewrite the problem using a division bracket.
8 goes into 49 at most 6 times, and 9 is in the hundreds column. We’ll guess 600. Then, \(8 \times 600 = 4800\).

\[
\begin{array}{c}
10 \\
600 \\
8\)4944 \\
-4800 \\
144 \\
-80 \\
64 \\
\end{array}
\]

8 goes into 14 at most 1 time, and 4 is in the tens column. We’ll guess 10.

\[
\begin{array}{c}
8 \\
10 \\
600 \\
8\)4944 \\
-4800 \\
144 \\
-80 \\
64 \\
-64 \\
0 \\
\end{array}
\]

8 goes into 64 exactly 8 times.

\[
600 \, \text{eights} + 10 \, \text{eights} + 8 \, \text{eights} = 618 \, \text{eights}.
\]

Thus, \(4,944 \div 8 = 618\).

As in the first problem, the notation in this division can be shortened by eliminating the subtraction signs and the zeros in each educated guess.
Divide: 8 goes into 49 at most 6 times.

Multiply: \(6 \times 8 = 48\). Write 48 below 49.

Subtract: \(49 - 48 = 1\). Bring down the 4.

Divide: 8 goes into 64 exactly 8 times.

Multiply: \(8 \times 8 = 64\). Write 64 below 64.

Subtract: \(64 - 64 = 0\).

Note: Not all divisions end in zero. We will examine such divisions in a subsequent subsection.

2.4.2.2 Practice Set A

Perform the following divisions.

Exercise 2.149
\[126 \div 7\]
(Solution on p. 144.)

Exercise 2.150
\[324 \div 4\]
(Solution on p. 144.)

Exercise 2.151
\[2,559 \div 3\]
(Solution on p. 144.)

Exercise 2.152
\[5,645 \div 5\]
(Solution on p. 144.)

Exercise 2.153
\[757,125 \div 9\]
(Solution on p. 144.)

2.4.3 Division with a Multiple Digit Divisor

The process of division also works when the divisor consists of two or more digits. We now make educated guesses using the first digit of the divisor and one or two digits of the dividend.

2.4.3.1 Sample Set B

Example 2.25
Find 2,232 \(\div 36\).

\[36 \overline{)2232}\]

Use the first digit of the divisor and the first two digits of the dividend to make the educated guess.

3 goes into 22 at most 7 times.

Try 7: \(7 \times 36 = 252\) which is greater than 223. Reduce the estimate.

Try 6: \(6 \times 36 = 216\) which is less than 223.
Multiply: \(6 \times 36 = 216\). Write 216 below 223.

Subtract: \(223 - 216 = 7\). Bring down the 2.

Divide 3 into 7 to estimate the number of times 36 goes into 72. The 3 goes into 7 at most 2 times.

Try 2: \(2 \times 36 = 72\).

\[
\begin{array}{c}
\text{36)2232} \\
\hline
\text{216} \\
\hline
\text{72} \\
\hline
\text{0}
\end{array}
\]

\[
\begin{array}{c}
\text{2232 \div 36 \ast 62}
\end{array}
\]

Check: \(2232 \div 2232\)

Thus, \(2, 232 \div 36 = 62\).

Example 2.26

Find \(2, 417, 228 \div 802\).

\[
\begin{array}{c}
\text{802)2417228} \\
\hline
\text{2406} \\
\hline
\text{112}
\end{array}
\]

Subtract: \(2417 - 2406 = 11\).

Bring down the 2.

The divisor 802 goes into 112 at most 0 times. Use 0.

\[
\begin{array}{c}
\text{802)2417228} \\
\hline
\text{2406} \\
\hline
\text{112} \\
\hline
\text{0}
\end{array}
\]
Multiply: \(0 \times 802 = 0\).

Subtract: \(112 - 0 = 112\).

Bring down the 2.

The 8 goes into 11 at most 1 time, and \(1 \times 802 = 802\), which is less than 112. Try 1.

\[
\begin{array}{c|c|c}
& 3014 & \\
802 & 2417228 & \\
-24061 & & \\
112 & & \\
-0 & & \\
1122 & & \\
-802 & & \\
3208 & & \\
\end{array}
\]

Subtract \(1122 - 802 = 320\)

Bring down the 8.

8 goes into 32 at most 4 times.

\(4 \times 802 = 3208\).

Use 4.

\[
\begin{array}{c|c|c}
& 3014 & \\
802 & 2417228 & \\
-24061 & & \\
112 & & \\
-0 & & \\
1122 & & \\
-802 & & \\
3208 & & \\
-3208 & & \\
0 & & \\
\end{array}
\]

\(2417228 \div 3014 \times 802\)

Check: \(2417228 \div 2417228\)

Thus, \(2,417,228 \div 802 = 3,014\).

2.4.3.2 Practice Set B

Perform the following divisions.

Exercise 2.154

\(1,376 \div 32\)

(Solution on p. 145.)

Exercise 2.155

\(6,160 \div 55\)

(Solution on p. 145.)

Exercise 2.156

\(18,605 \div 61\)

(Solution on p. 145.)

Exercise 2.157

\(144,768 \div 48\)

(Solution on p. 145.)
2.4.4 Division with a Remainder

We might wonder how many times 4 is contained in 10. Repeated subtraction yields

\[
\begin{array}{c}
10 \\
- 4 \\
6 \\
- 4 \\
2 \\
\end{array}
\]

Since the remainder is less than 4, we stop the subtraction. Thus, 4 goes into 10 two times with 2 remaining. We can write this as a division as follows.

\[
\begin{array}{c}
2 \, \underline{4) 10} \\
- \, 8 \\
2 \\
\end{array}
\]

Divide: 4 goes into 10 at most 2 times.

Multiply: \(2 \times 4 = 8\). Write 8 below 0.

Subtract: \(10 - 8 = 2\).

Since 4 does not divide into 2 (the remainder is less than the divisor) and there are no digits to bring down to continue the process, we are done. We write

\[
\begin{array}{c}
2 \, \underline{R2} \\
\end{array}
\]

or \(10 \div 4 = \underline{2 \, R2}\) 2 with remainder 2

2.4.4.1 Sample Set C

Example 2.27

Find \(85 \div 3\).

\[
\begin{array}{c}
28 \\
3) 85 \\
61 \\
24 \\
1 \\
\end{array}
\]
Divide: 3 goes into 8 at most 2 times. Divide: 3 goes into 25 at most 8 times.
{ Multiply: 2 \times 3 = 6. Write 6 below 8. { Multiply: 3 \times 8 = 24. Write 24 below 25.

There are no more digits to bring down to continue the process. We are done. One is the remainder.

Check: Multiply 28 and 3, then add 1.

\[
\begin{align*}
28 \\
\times 3 \\
84 \\
\pm 1 \\
85
\end{align*}
\]

Thus, \(85 \div 3 = 28R1\).

Example 2.28
Find \(726 \div 23\).

\[
\begin{array}{c|c}
31 & 726 \\
\hline
23 & 69 \\
\hline
& 36 \\
& 23 \\
& 13
\end{array}
\]

Check: Multiply 31 by 23, then add 13.

\[
\begin{align*}
31 \\
\times 23 \\
93 \\
62 \\
\hline
713 \\
\pm 13 \\
\hline
726
\end{align*}
\]

Thus, \(726 \div 23 = 31R13\).

2.4.4.2 Practice Set C

Perform the following divisions.

Exercise 2.158
\(75 \div 4\) \(\text{(Solution on p. 145.)}\)

Exercise 2.159
\(346 \div 8\) \(\text{(Solution on p. 145.)}\)

Exercise 2.160
\(489 \div 21\) \(\text{(Solution on p. 145.)}\)

Exercise 2.161
\(5,016 \div 82\) \(\text{(Solution on p. 145.)}\)
2.4.5 Calculators

The calculator can be useful for finding quotients with single and multiple digit divisors. If, however, the division should result in a remainder, the calculator is unable to provide us with the particular value of the remainder. Also, some calculators (most nonscientific) are unable to perform divisions in which one of the numbers has more than eight digits.

2.4.5.1 Sample Set D

Use a calculator to perform each division.

Example 2.29

\[328 \div 8 \]

<table>
<thead>
<tr>
<th>Type</th>
<th>328</th>
</tr>
</thead>
<tbody>
<tr>
<td>Press</td>
<td>\div</td>
</tr>
<tr>
<td>Type</td>
<td>8</td>
</tr>
<tr>
<td>Press</td>
<td>$=$</td>
</tr>
</tbody>
</table>

Table 2.7

The display now reads 41.

Example 2.30

\[53,136 \div 82 \]

<table>
<thead>
<tr>
<th>Type</th>
<th>53136</th>
</tr>
</thead>
<tbody>
<tr>
<td>Press</td>
<td>\div</td>
</tr>
<tr>
<td>Type</td>
<td>82</td>
</tr>
<tr>
<td>Press</td>
<td>$=$</td>
</tr>
</tbody>
</table>

Table 2.8

The display now reads 648.

Example 2.31

\[730,019,001 \div 326 \]

We first try to enter 730,019,001 but find that we can only enter 73001900. If our calculator has only an eight-digit display (as most nonscientific calculators do), we will be unable to use the calculator to perform this division.

Example 2.32

\[3727 \div 49 \]
CHAPTER 2. MULTIPLICATION AND DIVISION OF WHOLE NUMBERS

<table>
<thead>
<tr>
<th>Type</th>
<th>3727</th>
</tr>
</thead>
<tbody>
<tr>
<td>Press</td>
<td>÷</td>
</tr>
<tr>
<td>Type</td>
<td>49</td>
</tr>
<tr>
<td>Press</td>
<td>=</td>
</tr>
</tbody>
</table>

Table 2.9

The display now reads 76.061224.

This number is an example of a decimal number (see Section 6.1). When a decimal number results in a calculator division, we can conclude that the division produces a remainder.

2.4.5.2 Practice Set D

Use a calculator to perform each division.

Exercise 2.163
3,330 ÷ 74

(Solution on p. 145.)

Exercise 2.164
63,365 ÷ 115

(Solution on p. 145.)

Exercise 2.165
21,996,385,287 ÷ 53

(Solution on p. 145.)

Exercise 2.166
4,558 ÷ 67

(Solution on p. 145.)

2.4.6 Exercises

For the following problems, perform the divisions.

The first 38 problems can be checked with a calculator by multiplying the divisor and quotient then adding the remainder.

Exercise 2.167
52 ÷ 4

(Solution on p. 145.)

Exercise 2.168
776 ÷ 8

(Solution on p. 145.)

Exercise 2.169
603 ÷ 9

(Solution on p. 145.)

Exercise 2.170
240 ÷ 8

Exercise 2.171
208 ÷ 4

(Solution on p. 145.)

Exercise 2.172
576 ÷ 6

(Solution on p. 145.)

Exercise 2.173
21 ÷ 7
Exercise 2.174
0 ÷ 0

Exercise 2.175
140 ÷ 2 \(\text{ (Solution on p. 145.)} \)

Exercise 2.176
528 ÷ 8

Exercise 2.177
244 ÷ 4 \(\text{ (Solution on p. 145.)} \)

Exercise 2.178
0 ÷ 7

Exercise 2.179
177 ÷ 3 \(\text{ (Solution on p. 145.)} \)

Exercise 2.180
96 ÷ 8

Exercise 2.181
67 ÷ 1 \(\text{ (Solution on p. 145.)} \)

Exercise 2.182
896 ÷ 56

Exercise 2.183
1,044 ÷ 12 \(\text{ (Solution on p. 145.)} \)

Exercise 2.184
988 ÷ 19

Exercise 2.185
5,238 ÷ 97 \(\text{ (Solution on p. 145.)} \)

Exercise 2.186
2,530 ÷ 55

Exercise 2.187
4,264 ÷ 82 \(\text{ (Solution on p. 145.)} \)

Exercise 2.188
637 ÷ 13

Exercise 2.189
3,420 ÷ 90 \(\text{ (Solution on p. 146.)} \)

Exercise 2.190
5,655 ÷ 87

Exercise 2.191
2,115 ÷ 47 \(\text{ (Solution on p. 146.)} \)

Exercise 2.192
9,328 ÷ 22

Exercise 2.193
55,167 ÷ 71 \(\text{ (Solution on p. 146.)} \)

Exercise 2.194
68,356 ÷ 92

Exercise 2.195
27,702 ÷ 81 \(\text{ (Solution on p. 146.)} \)

Exercise 2.196
6,510 ÷ 31
Exercise 2.197
60,536 ÷ 94

Exercise 2.198
31,844 ÷ 38

Exercise 2.199
23,985 ÷ 45

Exercise 2.200
60,606 ÷ 74

Exercise 2.201
2,975,400 ÷ 285

Exercise 2.202
1,389,660 ÷ 795

Exercise 2.203
7,162,060 ÷ 879

Exercise 2.204
7,561,060 ÷ 909

Exercise 2.205
38 ÷ 9

Exercise 2.206
97 ÷ 4

Exercise 2.207
199 ÷ 3

Exercise 2.208
573 ÷ 6

Exercise 2.209
10,701 ÷ 13

Exercise 2.210
13,521 ÷ 53

Exercise 2.211
3,628 ÷ 90

Exercise 2.212
10,592 ÷ 43

Exercise 2.213
19,965 ÷ 30

Exercise 2.214
8,320 ÷ 21

Exercise 2.215
61,282 ÷ 64

Exercise 2.216
1,030 ÷ 28

Exercise 2.217
7,319 ÷ 11

Exercise 2.218
3,628 ÷ 90

Exercise 2.219
35,279 ÷ 77

(Solution on p. 146.)
Exercise 2.220
32,196 ÷ 55

Exercise 2.221
67,751 ÷ 68

(Solution on p. 146.)

For the following 5 problems, use a calculator to find the quotients.

Exercise 2.222
4,346 ÷ 53

Exercise 2.223
3,234 ÷ 77

(Solution on p. 146.)

Exercise 2.224
6,771 ÷ 37

Exercise 2.225
4,272,320 ÷ 520

(Solution on p. 146.)

Exercise 2.226
7,558,110 ÷ 651

Exercise 2.227

A mathematics instructor at a high school is paid $17,775 for 9 months. How much money does this instructor make each month?

Exercise 2.228

A couple pays $4,380 a year for a one-bedroom apartment. How much does this couple pay each month for this apartment?

Exercise 2.229

Thirty-six people invest a total of $17,460 in a particular stock. If they each invested the same amount, how much did each person invest?

Exercise 2.230

Each of the 28 students in a mathematics class buys a textbook. If the bookstore sells $644 worth of books, what is the price of each book?

Exercise 2.231

A certain brand of refrigerator has an automatic ice cube maker that makes 336 ice cubes in one day. If the ice machine makes ice cubes at a constant rate, how many ice cubes does it make each hour?

Exercise 2.232

A beer manufacturer bottles 52,380 ounces of beer each hour. If each bottle contains the same number of ounces of beer, and the manufacturer fills 4,365 bottles per hour, how many ounces of beer does each bottle contain?

Exercise 2.233

A computer program consists of 68,112 bits. 68,112 bits equals 8,514 bytes. How many bits in one byte?

Exercise 2.234

A 26-story building in San Francisco has a total of 416 offices. If each floor has the same number of offices, how many floors does this building have?

Exercise 2.235

A college has 67 classrooms and a total of 2,546 desks. How many desks are in each classroom if each classroom has the same number of desks?
2.4.6.1 Exercises for Review

Exercise 2.236
(Section 1.2) What is the value of 4 in the number 124,621?

Exercise 2.237
(Section 1.4) Round 604,092 to the nearest hundred thousand.

Exercise 2.238
(Section 1.7) What whole number is the additive identity?

Exercise 2.239
(Section 2.2) Find the product. 625×100.

Exercise 2.240
(Section 2.3) Find the quotient. $0 ÷ 11$.

2.5 Some Interesting Facts about Division

2.5.1 Section Overview

- Division by 2, 3, 4, and 5
- Division by 6, 8, 9, and 10

Quite often, we are able to determine if a whole number is divisible by another whole number just by observing some simple facts about the number. Some of these facts are listed in this section.

2.5.2 Division by 2, 3, 4, and 5

Division by 2
A whole number is divisible by 2 if its last digit is 0, 2, 4, 6, or 8.

The numbers 80, 112, 64, 326, and 1,008 are all divisible by 2 since the last digit of each is 0, 2, 4, 6, or 8, respectively.

The numbers 85 and 731 are not divisible by 2.

Division by 3
A whole number is divisible by 3 if the sum of its digits is divisible by 3.

The number 432 is divisible by 3 since $4 + 3 + 2 = 9$ and 9 is divisible by 3.

$432 ÷ 3 = 144$

The number 25 is not divisible by 3 since $2 + 5 = 7$, and 7 is not divisible by 3.

Division by 4
A whole number is divisible by 4 if its last two digits form a number that is divisible by 4.

The number 31,048 is divisible by 4 since the last two digits, 4 and 8, form a number, 48, that is divisible by 4.

$31048 ÷ 4 = 7262$

5This content is available online at <http://cnx.org/content/m34866/1.2/>.
The number 137 is not divisible by 4 since 37 is not divisible by 4.

Division by 5
A whole number is **divisible by 5** if its last digit is 0 or 5.

2.5.2.1 Sample Set A

Example 2.33
The numbers 65, 110, 8,030, and 16,955 are each divisible by 5 since the last digit of each is 0 or 5.

2.5.2.2 Practice Set A

State which of the following whole numbers are divisible by 2, 3, 4, or 5. A number may be divisible by more than one number.

- **Exercise 2.241**
 - 26
 - (Solution on p. 147.)

- **Exercise 2.242**
 - 81
 - (Solution on p. 147.)

- **Exercise 2.243**
 - 51
 - (Solution on p. 147.)

- **Exercise 2.244**
 - 385
 - (Solution on p. 147.)

- **Exercise 2.245**
 - 6,112
 - (Solution on p. 147.)

- **Exercise 2.246**
 - 470
 - (Solution on p. 147.)

- **Exercise 2.247**
 - 113,154
 - (Solution on p. 147.)

2.5.3 Division by 6, 8, 9, 10

Division by 6
A number is **divisible by 6** if it is divisible by both 2 and 3.

The number 234 is divisible by 2 since its last digit is 4. It is also divisible by 3 since $2 + 3 + 4 = 9$ and 9 is divisible by 3. Therefore, 234 is divisible by 6.

The number 6,532 is *not* divisible by 6. Although its last digit is 2, making it divisible by 2, the sum of its digits, $6 + 5 + 3 + 2 = 16$, and 16 is not divisible by 3.

Division by 8
A whole number is **divisible by 8** if its last *three digits* form a number that is divisible by 8.

The number 4,000 is divisible by 8 since 000 is divisible by 8.

The number 13,128 is divisible by 8 since 128 is divisible by 8.

The number 1,170 is *not* divisible by 8 since 170 is not divisible by 8.
CHAPTER 2. MULTIPLICATION AND DIVISION OF WHOLE NUMBERS

Division by 9
A whole number is divisible by 9 if the sum of its digits is divisible by 9.
The number 702 is divisible by 9 since $7 + 0 + 2$ is divisible by 9.
The number 6588 is divisible by 9 since $6 + 5 + 8 + 8 = 27$ is divisible by 9.
The number 14123 is not divisible by 9 since $1 + 4 + 1 + 2 + 3 = 11$ is not divisible by 9.

Division by 10
A whole number is divisible by 10 if its last digit is 0.

2.5.3.1 Sample Set B

Example 2.34
The numbers 30, 170, 16240, and 865000 are all divisible by 10.

2.5.3.2 Practice Set B

State which of the following whole numbers are divisible by 6, 8, 9, or 10. Some numbers may be divisible by more than one number.

Exercise 2.248
900
Exercise 2.249
6402
Exercise 2.250
6660
Exercise 2.251
55116

(Solution on p. 147.)
(Solution on p. 147.)
(Solution on p. 147.)
(Solution on p. 147.)

2.5.4 Exercises

For the following 30 problems, specify if the whole number is divisible by 2, 3, 4, 5, 6, 8, 9, or 10. Write "none" if the number is not divisible by any digit other than 1. Some numbers may be divisible by more than one number.

Exercise 2.252
48
Exercise 2.253
85
Exercise 2.254
30
Exercise 2.255
83
Exercise 2.256
98
Exercise 2.257
972
Exercise 2.258
892

(Solution on p. 147.)
Exercise 2.259
676
(Solution on p. 147.)

Exercise 2.260
903

Exercise 2.261
800
(Solution on p. 147.)

Exercise 2.262
223
(Solution on p. 147.)

Exercise 2.263
836
(Solution on p. 147.)

Exercise 2.264
665

Exercise 2.265
4,381
(Solution on p. 147.)

Exercise 2.266
2,195
(Solution on p. 147.)

Exercise 2.267
2,544
(Solution on p. 147.)

Exercise 2.268
5,172

Exercise 2.269
1,307
(Solution on p. 147.)

Exercise 2.270
1,050
(Solution on p. 147.)

Exercise 2.271
3,898
(Solution on p. 147.)

Exercise 2.272
1,621

Exercise 2.273
27,808
(Solution on p. 147.)

Exercise 2.274
45,764
(Solution on p. 147.)

Exercise 2.275
49,198
(Solution on p. 147.)

Exercise 2.276
296,122
(Solution on p. 147.)

Exercise 2.277
178,656
(Solution on p. 148.)

Exercise 2.278
5,102,417
(Solution on p. 148.)

Exercise 2.279
16,990,792
(Solution on p. 148.)

Exercise 2.280
620,157,659
(Solution on p. 148.)

Exercise 2.281
457,687,705
2.6 Properties of Multiplication

2.6.1 Section Overview

- The Commutative Property of Multiplication
- The Associative Property of Multiplication
- The Multiplicative Identity

We will now examine three simple but very important properties of multiplication.

2.6.2 The Commutative Property of Multiplication

Commutative Property of Multiplication
The product of two whole numbers is the same regardless of the order of the factors.

2.6.2.1 Sample Set A

Example 2.35

Multiply the two whole numbers.

\[
\begin{array}{c}
6 \\
7
\end{array}
\]

\[6 \cdot 7 = 42\]
\[7 \cdot 6 = 42\]

The numbers 6 and 7 can be multiplied in any order. Regardless of the order they are multiplied, the product is 42.

\[6^a\text{This content is available online at <http://cnx.org/content/m34867/1.2/>.}\]
2.6.2.2 Practice Set A

Use the commutative property of multiplication to find the products in two ways.

Exercise 2.287

(Solution on p. 148.)

Exercise 2.288

(Solution on p. 148.)

2.6.3 The Associative Property of Multiplication

Associative Property of Multiplication

If three whole numbers are multiplied, the product will be the same if the first two are multiplied first and then that product is multiplied by the third, or if the second two are multiplied first and that product is multiplied by the first. Note that the order of the factors is maintained.

It is a common mathematical practice to use parentheses to show which pair of numbers is to be combined first.

2.6.3.1 Sample Set B

Example 2.36

Multiply the whole numbers.

\[(8 \cdot 3) \cdot 14 = 24 \cdot 14 = 336\]

\[8 \cdot (3 \cdot 14) = 8 \cdot 42 = 336\]

2.6.3.2 Practice Set B

Use the associative property of multiplication to find the products in two ways.

Exercise 2.289

(Solution on p. 148.)
2.6.4 The Multiplicative Identity

The Multiplicative Identity is 1

The whole number 1 is called the multiplicative identity, since any whole number multiplied by 1 is not changed.

2.6.4.1 Sample Set C

Example 2.37
Multiply the whole numbers.

\[12 \cdot 1 = 12 \]
\[1 \cdot 12 = 12 \]

2.6.4.2 Practice Set C

Multiply the whole numbers.

Exercise 2.291

(Solution on p. 148.)

2.6.5 Exercises

For the following problems, multiply the numbers.

Exercise 2.292

(Solution on p. 148.)

Exercise 2.293
Exercise 2.294

42
96

(Solution on p. 148.)

Exercise 2.295

6
132

Exercise 2.296

1000
326

(Solution on p. 148.)

Exercise 2.297

70
1400

Exercise 2.298

3
7
12

(Solution on p. 148.)

Exercise 2.299

40
16
5

Exercise 2.300

10
22
97

(Solution on p. 148.)

Exercise 2.301

110
85
0
CHAPTER 2. MULTIPLICATION AND DIVISION OF WHOLE NUMBERS

Exercise 2.302
(Solution on p. 148.)

Exercise 2.303

For the following 4 problems, show that the quantities yield the same products by performing the multiplications.

Exercise 2.304
(Solution on p. 148.)

Exercise 2.305

Exercise 2.306
(Solution on p. 148.)

Exercise 2.307
(Solution on p. 148.)

The fact that (a first number \cdot a second number) \cdot a third number = a first number \cdot (a second number \cdot a third number) is an example of the ______ property of multiplication.

Exercise 2.309

The fact that 1 \cdot any number = that particular number is an example of the ______ property of multiplication.

Exercise 2.310
(Solution on p. 148.)

Use the numbers 7 and 9 to illustrate the commutative property of multiplication.

Exercise 2.311
Use the numbers 6, 4, and 7 to illustrate the associative property of multiplication.

2.6.5.1 Exercises for Review

Exercise 2.312
(Solution on p. 148.)
(Section 1.2) In the number 84,526,098,441, how many millions are there?

Exercise 2.313

(Section 1.5) Replace the letter m with the whole number that makes the addition true.

\[\begin{array}{c}
1 + m \\
85 \\
97
\end{array} \]

Exercise 2.314
(Solution on p. 148.)
(Section 1.7) Use the numbers 4 and 15 to illustrate the commutative property of addition.

Exercise 2.315
(Section 2.3) Find the product. 8,000,000 \times 1,000.
Exercise 2.316 (Solution on p. 148.)
(Section 2.5) Specify which of the digits 2, 3, 4, 5, 6, 8, 10 are divisors of the number 2,244.

2.7 Summary of Key Concepts

2.7.1 Summary of Key Concepts

Multiplication (Section 2.2)
Multiplication is a description of repeated addition.

\[7 + 7 + 7 + 7 \]

7 appears 4 times
This expression is described by writing 4 X 7.

Multiplicand/Multiplier/Product (Section 2.2)
In a multiplication of whole numbers, the repeated addend is called the multiplicand, and the number that records the number of times the multiplicand is used is the multiplier. The result of the multiplication is the product.

Factors (Section 2.2)
In a multiplication, the numbers being multiplied are also called factors. Thus, the multiplicand and the multiplier can be called factors.

Division (Section 2.3)
Division is a description of repeated subtraction.

Dividend/Divisor/Quotient (Section 2.3)
In a division, the number divided into is called the dividend, and the number dividing into the dividend is called the divisor. The result of the division is called the quotient.

quotient
\[\frac{\text{divisor}}{\text{dividend}} \]

Division into Zero (Section 2.3)
Zero divided by any nonzero whole number is zero.

Division by Zero (Section 2.3)
Division by zero does not name a whole number. It is, therefore, undefined. The quotient \(\frac{0}{0} \) is indeterminant.

Division by 2, 3, 4, 5, 6, 8, 9, 10 (Section 2.5)
Division by the whole numbers 2, 3, 4, 5, 6, 8, 9, and 10 can be determined by noting some certain properties of the particular whole number.

Commutative Property of Multiplication (Section 2.6)
The product of two whole numbers is the same regardless of the order of the factors. \(3 \times 5 = 5 \times 3 \)

Associative Property of Multiplication (Section 2.6)
If three whole numbers are to be multiplied, the product will be the same if the first two are multiplied first and then that product is multiplied by the third, or if the second two are multiplied first and then that product is multiplied by the first.

\[(3 \times 5) \times 2 = 3 \times (5 \times 2) \]

Note that the order of the factors is maintained.

\(^{7}\text{This content is available online at } <\text{http://cnx.org/content/m34868/1.2/>}.\)
2.8 Exercise Supplement

2.8.1 Exercise Supplement

2.8.1.1 Multiplication of Whole Numbers (Section 2.2)

Exercise 2.317
In the multiplication $5 \times 9 = 45$, 5 and 9 are called _______ and 45 is called the _______.

Exercise 2.318
In the multiplication $4 \times 8 = 32$, 4 and 8 are called _______ and 32 is called the _______.

2.8.1.2 Concepts of Division of Whole Numbers (Section 2.3)

Exercise 2.319
In the division $24 \div 6 = 4$, 6 is called the _______, and 4 is called the _______.

Exercise 2.320
In the division $36 \div 2 = 18$, 2 is called the _______, and 18 is called the _______.

2.8.1.3 Some Interesting Facts about Division (Section 2.5)

Exercise 2.321
A number is divisible by 2 only if its last digit is _______.

Exercise 2.322
A number is divisible by 3 only if _______ of its digits is divisible by 3.

Exercise 2.323
A number is divisible by 4 only if the rightmost two digits form a number that is _______.

2.8.1.4 Multiplication and Division of Whole Numbers (Section 2.2, Section 2.4)

Find each product or quotient.

Exercise 2.324
\[
24 \\
\times 3
\]

Exercise 2.325
\[
14 \\
\times 8
\]

Exercise 2.326
\[
21 \div 7
\]

8This content is available online at <http://cnx.org/content/m34869/1.2/>.
Exercise 2.327
35 ÷ 5
(Solution on p. 149.)

Exercise 2.328
36 \times 22

Exercise 2.329
87 \times 35
(Solution on p. 149.)

Exercise 2.330
117 \times 42

Exercise 2.331
208 ÷ 52
(Solution on p. 149.)

Exercise 2.332
521 \times 87

Exercise 2.333
1005 \times 15
(Solution on p. 149.)

Exercise 2.334
1338 ÷ 446

Exercise 2.335
2814 ÷ 201
(Solution on p. 149.)

Exercise 2.336
5521 \times 8

Exercise 2.337
6016 \times 7
(Solution on p. 149.)

Exercise 2.338
576 ÷ 24

Exercise 2.339
3969 ÷ 63
(Solution on p. 149.)

Exercise 2.340
5482 \times 322

Exercise 2.341
9104 \times 115
(Solution on p. 149.)

Exercise 2.342
6102 \times 1000
Exercise 2.343
10101
\times 10000

Exercise 2.344
162,006 \div 31

Exercise 2.345
0 \div 25

Exercise 2.346
25 \div 0

Exercise 2.347
4280 \div 10

Exercise 2.348
2126000 \div 100

Exercise 2.349
84 \div 15

Exercise 2.350
126 \div 4

Exercise 2.351
424 \div 0

Exercise 2.352
1198 \div 46

Exercise 2.353
995 \div 31

Exercise 2.354
0 \div 18

Exercise 2.355
2162
\times 1421

Exercise 2.356
0 \times 0

Exercise 2.357
5 \times 0

Exercise 2.358
64 \times 1

Exercise 2.359
1 \times 0

Exercise 2.360
0 \div 3

Exercise 2.361
14 \div 0

Exercise 2.362
35 \div 1

Exercise 2.363
1 \div 1

(Solution on p. 149.)
2.8.1.5 Properties of Multiplication (Section 2.6)

Exercise 2.364
Use the commutative property of multiplication to rewrite 36×128.

Exercise 2.365
Use the commutative property of multiplication to rewrite 114×226. \hspace{1cm} (Solution on p. 149.)

Exercise 2.366
Use the associative property of multiplication to rewrite $(5 \cdot 4) \cdot 8$.

Exercise 2.367
Use the associative property of multiplication to rewrite $16 \cdot (14 \cdot 0)$. \hspace{1cm} (Solution on p. 149.)

2.8.1.6 Multiplication and Division of Whole Numbers (Section 2.2, Section 2.4)

Exercise 2.368
A computer store is selling diskettes for $4 each. At this price, how much would 15 diskettes cost?

Exercise 2.369
Light travels 186,000 miles in one second. How far does light travel in 23 seconds? \hspace{1cm} (Solution on p. 150.)

Exercise 2.370
A dinner bill for eight people comes to exactly $112. How much should each person pay if they all agree to split the bill equally?

Exercise 2.371
Each of the 33 students in a math class buys a textbook. If the bookstore sells $1089 worth of books, what is the price of each book? \hspace{1cm} (Solution on p. 150.)

2.9 Proficiency Exam 9

2.9.1 Proficiency Exam

Exercise 2.372
(Solution on p. 150.)
(Section 2.2) In the multiplication of $8 \times 7 = 56$, what are the names given to the 8 and 7 and the 56?

Exercise 2.373
(Solution on p. 150.)
(Section 2.2) Multiplication is a description of what repeated process?

Exercise 2.374
(Solution on p. 150.)
(Section 2.3) In the division $12 \div 3 = 4$, what are the names given to the 3 and the 4?

Exercise 2.375
(Solution on p. 150.)
(Section 2.5) Name the digits that a number must end in to be divisible by 2.

Exercise 2.376
(Solution on p. 150.)
(Section 2.6) Name the property of multiplication that states that the order of the factors in a multiplication can be changed without changing the product.

Exercise 2.377
(Solution on p. 150.)
(Section 2.6) Which number is called the multiplicative identity?

For problems 7-17, find the product or quotient.

Exercise 2.378
(Solution on p. 150.)
(Section 2.2) 14×6

9This content is available online at <http://cnx.org/content/m34870/1.2/>.
Exercise 2.379
(Section 2.2) 37 × 0

(Solution on p. 150.)

Exercise 2.380
(Section 2.2) 352 × 1000

(Solution on p. 150.)

Exercise 2.381
(Section 2.2) 5986 × 70

(Solution on p. 150.)

Exercise 2.382
(Section 2.2) 12 × 12

(Solution on p. 150.)

Exercise 2.383
(Section 2.3) 856 ÷ 0

(Solution on p. 150.)

Exercise 2.384
(Section 2.3) 0 ÷ 8

(Solution on p. 150.)

Exercise 2.385
(Section 2.4) 136 ÷ 8

(Solution on p. 150.)

Exercise 2.386
(Section 2.4) 432 ÷ 24

(Solution on p. 150.)

Exercise 2.387
(Section 2.4) 528 ÷ 37

(Solution on p. 150.)

Exercise 2.388
(Section 2.6) 211 × 1

(Solution on p. 150.)

For problems 18-20, use the numbers 216, 1,005, and 640.

Exercise 2.389
(Section 2.5) Which numbers are divisible by 3?

(Solution on p. 150.)

Exercise 2.390
(Section 2.5) Which number is divisible by 4?

(Solution on p. 150.)

Exercise 2.391
(Section 2.5) Which number(s) is divisible by 5?

(Solution on p. 150.)
Solutions to Exercises in Chapter 2

Solution to Exercise 2.1 (p. 93)
4 \times 12. Multiplier is 4. Multiplicand is 12.

Solution to Exercise 2.2 (p. 93)
8 \times 36. Multiplier is 8. Multiplicand is 36.

Solution to Exercise 2.3 (p. 93)
5 \times 0. Multiplier is 5. Multiplicand is 0.

Solution to Exercise 2.4 (p. 93)
12,000 \times 1,847. Multiplier is 12,000. Multiplicand is 1,847.

Solution to Exercise 2.5 (p. 94)
185

Solution to Exercise 2.6 (p. 94)
624

Solution to Exercise 2.7 (p. 95)
3,752

Solution to Exercise 2.8 (p. 95)
320,152

Solution to Exercise 2.9 (p. 95)
904,797

Solution to Exercise 2.10 (p. 97)
1,022

Solution to Exercise 2.11 (p. 97)
4,472

Solution to Exercise 2.12 (p. 97)
35,615

Solution to Exercise 2.13 (p. 97)
1,456,488

Solution to Exercise 2.14 (p. 97)
2,464,528

Solution to Exercise 2.15 (p. 97)
66,790,080

Solution to Exercise 2.16 (p. 97)
104,709

Solution to Exercise 2.17 (p. 97)
240

Solution to Exercise 2.18 (p. 97)
3,809,000

Solution to Exercise 2.19 (p. 97)
8,130,000

Solution to Exercise 2.20 (p. 98)
162,000

Solution to Exercise 2.21 (p. 98)
126,000,000

Solution to Exercise 2.22 (p. 98)
2,870,000,000,000

Solution to Exercise 2.23 (p. 99)
1,404

Solution to Exercise 2.24 (p. 99)
8,912,440

Solution to Exercise 2.25 (p. 99)
1,832,700,000,000
Solution to Exercise 2.26 (p. 100)
24
Solution to Exercise 2.28 (p. 100)
48
Solution to Exercise 2.30 (p. 100)
6
Solution to Exercise 2.32 (p. 100)
225
Solution to Exercise 2.34 (p. 100)
270
Solution to Exercise 2.36 (p. 100)
582
Solution to Exercise 2.38 (p. 100)
960
Solution to Exercise 2.40 (p. 100)
7,695
Solution to Exercise 2.42 (p. 101)
3,648
Solution to Exercise 2.44 (p. 101)
46,488
Solution to Exercise 2.46 (p. 101)
2,530
Solution to Exercise 2.48 (p. 101)
6,888
Solution to Exercise 2.50 (p. 101)
24,180
Solution to Exercise 2.52 (p. 101)
73,914
Solution to Exercise 2.54 (p. 101)
68,625
Solution to Exercise 2.56 (p. 102)
511,173
Solution to Exercise 2.58 (p. 102)
1,352,550
Solution to Exercise 2.60 (p. 102)
5,441,712
Solution to Exercise 2.62 (p. 102)
36,901,053
Solution to Exercise 2.64 (p. 102)
24,957,200
Solution to Exercise 2.66 (p. 102)
0
Solution to Exercise 2.68 (p. 102)
41,384
Solution to Exercise 2.70 (p. 103)
0
Solution to Exercise 2.72 (p. 103)
73,530
Solution to Exercise 2.74 (p. 103)
6,440,000,000
Solution to Exercise 2.76 (p. 103) 4,440,000
Solution to Exercise 2.78 (p. 103) 641,900,000
Solution to Exercise 2.80 (p. 103) 80,000
Solution to Exercise 2.82 (p. 104) 384 reports
Solution to Exercise 2.84 (p. 104) 3,330 problems
Solution to Exercise 2.86 (p. 104) 114 units
Solution to Exercise 2.88 (p. 104) 3,600 seconds
Solution to Exercise 2.90 (p. 104) 5,865,696,000,000 miles per year
Solution to Exercise 2.92 (p. 104) $110,055
Solution to Exercise 2.94 (p. 104) 448,100,000
Solution to Exercise 2.96 (p. 104) 712
Solution to Exercise 2.98 (p. 107) 4
Solution to Exercise 2.99 (p. 107) 2
Solution to Exercise 2.100 (p. 107) 5
Solution to Exercise 2.101 (p. 107) 6
Solution to Exercise 2.102 (p. 107) 4
Solution to Exercise 2.103 (p. 107) 9
Solution to Exercise 2.104 (p. 109) undefined
Solution to Exercise 2.105 (p. 109) 0
Solution to Exercise 2.106 (p. 109) indeterminant
Solution to Exercise 2.107 (p. 109) undefined
Solution to Exercise 2.108 (p. 109) undefined
Solution to Exercise 2.109 (p. 109) 0
Solution to Exercise 2.110 (p. 110) 5
Solution to Exercise 2.111 (p. 110) 7
Solution to Exercise 2.112 (p. 110)
0
Solution to Exercise 2.113 (p. 110)
An error message tells us that this operation is undefined. The particular message depends on the calculator.
Solution to Exercise 2.114 (p. 110)
An error message tells us that this operation cannot be performed. Some calculators actually set $0 \div 0$ equal to 1. We know better! $0 \div 0$ is indeterminant.
Solution to Exercise 2.115 (p. 111)
8
Solution to Exercise 2.117 (p. 111)
3
Solution to Exercise 2.119 (p. 111)
9
Solution to Exercise 2.121 (p. 111)
7
Solution to Exercise 2.123 (p. 111)
4
Solution to Exercise 2.125 (p. 111)
5
Solution to Exercise 2.127 (p. 111)
7
Solution to Exercise 2.129 (p. 111)
not defined
Solution to Exercise 2.131 (p. 111)
3
Solution to Exercise 2.133 (p. 111)
0
Solution to Exercise 2.135 (p. 111)
5
Solution to Exercise 2.137 (p. 112)
8
Solution to Exercise 2.139 (p. 112)
9
Solution to Exercise 2.141 (p. 112)
$27 \div 9 = 3$; $9)27 = 3$; $27 \div 9 = 3$
Solution to Exercise 2.143 (p. 112)
7 is quotient; 8 is divisor; 56 is dividend
Solution to Exercise 2.145 (p. 112)
12, 124
Solution to Exercise 2.147 (p. 112)
$(2 + 3) + 7 = 2 + (3 + 7) = 12$
$5 + 7 = 2 + 10 = 12$
Solution to Exercise 2.149 (p. 116)
18
Solution to Exercise 2.150 (p. 116)
81
Solution to Exercise 2.151 (p. 116)
853
Solution to Exercise 2.152 (p. 116)
1, 129
Solution to Exercise 2.153 (p. 116)
84,125
Solution to Exercise 2.154 (p. 118)
43
Solution to Exercise 2.155 (p. 118)
112
Solution to Exercise 2.156 (p. 118)
305
Solution to Exercise 2.157 (p. 118)
3,016
Solution to Exercise 2.158 (p. 120)
18 R3
Solution to Exercise 2.159 (p. 120)
43 R2
Solution to Exercise 2.160 (p. 120)
23 R6
Solution to Exercise 2.161 (p. 120)
61 R14
Solution to Exercise 2.162 (p. 121)
614 R58
Solution to Exercise 2.163 (p. 122)
45
Solution to Exercise 2.164 (p. 122)
551
Solution to Exercise 2.165 (p. 122)
Since the dividend has more than eight digits, this division cannot be performed on most nonscientific calculators. On others, the answer is 415,026,137.4
Solution to Exercise 2.166 (p. 122)
This division results in 68.02985075, a decimal number, and therefore, we cannot, at this time, find the value of the remainder. Later, we will discuss decimal numbers.
Solution to Exercise 2.167 (p. 122)
13
Solution to Exercise 2.169 (p. 122)
67
Solution to Exercise 2.171 (p. 122)
52
Solution to Exercise 2.173 (p. 122)
3
Solution to Exercise 2.175 (p. 123)
70
Solution to Exercise 2.177 (p. 123)
61
Solution to Exercise 2.179 (p. 123)
59
Solution to Exercise 2.181 (p. 123)
67
Solution to Exercise 2.183 (p. 123)
87
Solution to Exercise 2.185 (p. 123)
54
Solution to Exercise 2.187 (p. 123)
52
Solution to Exercise 2.189 (p. 123)
38
Solution to Exercise 2.191 (p. 123)
45
Solution to Exercise 2.193 (p. 123)
777
Solution to Exercise 2.195 (p. 123)
342
Solution to Exercise 2.197 (p. 124)
644
Solution to Exercise 2.199 (p. 124)
533
Solution to Exercise 2.201 (p. 124)
10,440
Solution to Exercise 2.203 (p. 124)
8,147 remainder 847
Solution to Exercise 2.205 (p. 124)
4 remainder 2
Solution to Exercise 2.207 (p. 124)
66 remainder 1
Solution to Exercise 2.209 (p. 124)
823 remainder 2
Solution to Exercise 2.211 (p. 124)
40 remainder 28
Solution to Exercise 2.213 (p. 124)
665 remainder 15
Solution to Exercise 2.215 (p. 124)
957 remainder 34
Solution to Exercise 2.217 (p. 124)
665 remainder 4
Solution to Exercise 2.219 (p. 124)
458 remainder 13
Solution to Exercise 2.221 (p. 125)
996 remainder 23
Solution to Exercise 2.223 (p. 125)
42
Solution to Exercise 2.225 (p. 125)
8,216
Solution to Exercise 2.227 (p. 125)
$1,975 per month
Solution to Exercise 2.229 (p. 125)
$485 each person invested
Solution to Exercise 2.231 (p. 125)
14 cubes per hour
Solution to Exercise 2.233 (p. 125)
8 bits in each byte
Solution to Exercise 2.235 (p. 125)
38
Solution to Exercise 2.237 (p. 126)
600,000
Solution to Exercise 2.239 (p. 126)
625,600
Solution to Exercise 2.241 (p. 127)
2
Solution to Exercise 2.242 (p. 127)
3
Solution to Exercise 2.243 (p. 127)
3
Solution to Exercise 2.244 (p. 127)
5
Solution to Exercise 2.245 (p. 127)
2, 4
Solution to Exercise 2.246 (p. 127)
2, 5
Solution to Exercise 2.247 (p. 127)
2, 3
Solution to Exercise 2.248 (p. 128)
6, 9, 10
Solution to Exercise 2.249 (p. 128)
6
Solution to Exercise 2.250 (p. 128)
6, 9, 10
Solution to Exercise 2.251 (p. 128)
6, 9
Solution to Exercise 2.252 (p. 128)
2, 3, 4, 6, 8
Solution to Exercise 2.254 (p. 128)
2, 3, 5, 6, 10
Solution to Exercise 2.256 (p. 128)
2
Solution to Exercise 2.258 (p. 128)
2, 4
Solution to Exercise 2.260 (p. 129)
3
Solution to Exercise 2.262 (p. 129)
none
Solution to Exercise 2.264 (p. 129)
5
Solution to Exercise 2.266 (p. 129)
5
Solution to Exercise 2.268 (p. 129)
2, 3, 4, 6
Solution to Exercise 2.270 (p. 129)
2, 3, 5, 6, 10
Solution to Exercise 2.272 (p. 129)
none
Solution to Exercise 2.274 (p. 129)
2, 4
Solution to Exercise 2.276 (p. 129)
2
Solution to Exercise 2.278 (p. 129)
none
Solution to Exercise 2.280 (p. 129)
none
Solution to Exercise 2.282 (p. 130)
1
Solution to Exercise 2.284 (p. 130)
\[(35 + 16) + 7 = 51 + 7 = 58 \]
\[35 + (16 + 7) = 35 + 23 = 58 \]
Solution to Exercise 2.286 (p. 130)
87
Solution to Exercise 2.287 (p. 131)
\[15 \cdot 6 = 90 \text{ and } 6 \cdot 15 = 90 \]
Solution to Exercise 2.288 (p. 131)
\[432 \cdot 428 = 184,896 \text{ and } 428 \cdot 432 = 184,896 \]
Solution to Exercise 2.289 (p. 131)
168
Solution to Exercise 2.290 (p. 132)
165,564
Solution to Exercise 2.291 (p. 132)
843
Solution to Exercise 2.292 (p. 132)
234
Solution to Exercise 2.294 (p. 133)
4,032
Solution to Exercise 2.296 (p. 133)
326,000
Solution to Exercise 2.298 (p. 133)
252
Solution to Exercise 2.300 (p. 133)
21,340
Solution to Exercise 2.302 (p. 134)
8,316
Solution to Exercise 2.304 (p. 134)
\[32 \cdot 2 = 64 = 4 \cdot 16 \]
Solution to Exercise 2.306 (p. 134)
\[23 \cdot 1,166 = 26,818 = 253 \cdot 106 \]
Solution to Exercise 2.308 (p. 134)
associative
Solution to Exercise 2.310 (p. 134)
\[7 \cdot 9 = 63 = 9 \cdot 7 \]
Solution to Exercise 2.312 (p. 134)
6
Solution to Exercise 2.314 (p. 134)
\[4 + 15 = 19 \]
\[15 + 4 = 19 \]
Solution to Exercise 2.316 (p. 135)
2, 3, 4, 6
Solution to Exercise 2.317 (p. 136)
factors; product
Solution to Exercise 2.319 (p. 136)
divisor; quotient
Solution to Exercise 2.321 (p. 136)
an even digit (0, 2, 4, 6, or 8)
Solution to Exercise 2.323 (p. 136)
divisible by 4
Solution to Exercise 2.325 (p. 136)
112
Solution to Exercise 2.327 (p. 136)
7
Solution to Exercise 2.329 (p. 137)
3,045
Solution to Exercise 2.331 (p. 137)
4
Solution to Exercise 2.333 (p. 137)
15,075
Solution to Exercise 2.335 (p. 137)
14
Solution to Exercise 2.337 (p. 137)
42,112
Solution to Exercise 2.339 (p. 137)
63
Solution to Exercise 2.341 (p. 137)
1,046,960
Solution to Exercise 2.343 (p. 138)
101,010,000
Solution to Exercise 2.345 (p. 138)
0
Solution to Exercise 2.347 (p. 138)
428
Solution to Exercise 2.349 (p. 138)
5 remainder 9
Solution to Exercise 2.351 (p. 138)
not defined
Solution to Exercise 2.353 (p. 138)
32 remainder 3
Solution to Exercise 2.355 (p. 138)
3,072,202
Solution to Exercise 2.357 (p. 138)
0
Solution to Exercise 2.359 (p. 138)
0
Solution to Exercise 2.361 (p. 138)
not defined
Solution to Exercise 2.363 (p. 138)
1
Solution to Exercise 2.365 (p. 139)
226 · 114
Solution to Exercise 2.367 (p. 139)
(16 \cdot 14) \cdot 0

Solution to Exercise 2.369 (p. 139)
4,278,000

Solution to Exercise 2.371 (p. 139)
83

Solution to Exercise 2.372 (p. 139)
8 and 7 are factors; 56 is the product

Solution to Exercise 2.373 (p. 139)

Addition

Solution to Exercise 2.374 (p. 139)
3 is the divisor; 4 is the quotient

Solution to Exercise 2.375 (p. 139)
0, 2, 4, 6, or 8

Solution to Exercise 2.376 (p. 139)

Commutative

Solution to Exercise 2.377 (p. 139)
1

Solution to Exercise 2.378 (p. 139)
84

Solution to Exercise 2.379 (p. 140)
0

Solution to Exercise 2.380 (p. 140)
352,000

Solution to Exercise 2.381 (p. 140)
419,020

Solution to Exercise 2.382 (p. 140)
252

Solution to Exercise 2.383 (p. 140)
not defined

Solution to Exercise 2.384 (p. 140)
0

Solution to Exercise 2.385 (p. 140)
17

Solution to Exercise 2.386 (p. 140)
18

Solution to Exercise 2.387 (p. 140)
142 remainder 32

Solution to Exercise 2.388 (p. 140)
211

Solution to Exercise 2.389 (p. 140)
216; 1,005

Solution to Exercise 2.390 (p. 140)
216; 640

Solution to Exercise 2.391 (p. 140)
1,005; 640
Chapter 3

Exponents, Roots, and Factorization of Whole Numbers

3.1 Objectives

After completing this chapter, you should

Exponents and Roots (Section 3.2)
- understand and be able to read exponential notation
- understand the concept of root and be able to read root notation
- be able to use a calculator having the y^x key to determine a root

Grouping Symbols and the Order of Operations (Section 3.3)
- understand the use of grouping symbols
- understand and be able to use the order of operations
- use the calculator to determine the value of a numerical expression

Prime Factorization of Natural Numbers (Section 3.4)
- be able to determine the factors of a whole number
- be able to distinguish between prime and composite numbers
- be familiar with the fundamental principle of arithmetic
- be able to find the prime factorization of a whole number

The Greatest Common Factor (Section 3.5)
- be able to find the greatest common factor of two or more whole numbers

The Least Common Multiple (Section 3.6)
- be able to find the least common multiple of two or more whole numbers

1This content is available online at <http://cnx.org/content/m18890/1.4/>.

151
3.2 Exponents and Roots

3.2.1 Section Overview
- Exponential Notation
- Reading Exponential Notation
- Roots
- Reading Root Notation
- Calculators

3.2.2 Exponential Notation

Exponential Notation
We have noted that multiplication is a description of repeated addition. Exponential notation is a description of repeated multiplication.

Suppose we have the repeated multiplication

\[8 \cdot 8 \cdot 8 \cdot 8 \cdot 8 \]

Exponent
The factor 8 is repeated 5 times. Exponential notation uses a superscript for the number of times the factor is repeated. The superscript is placed on the repeated factor, \(8^5 \), in this case. The superscript is called an exponent.

The Function of an Exponent
An exponent records the number of identical factors that are repeated in a multiplication.

3.2.2.1 Sample Set A

Write the following multiplication using exponents.

Example 3.1
3 \cdot 3. Since the factor 3 appears 2 times, we record this as

\[3^2 \]

Example 3.2
62 \cdot 62. Since the factor 62 appears 9 times, we record this as

\[62^9 \]

Expand (write without exponents) each number.

Example 3.3
12^4. The exponent 4 is recording 4 factors of 12 in a multiplication. Thus,

\[12^4 = 12 \cdot 12 \cdot 12 \cdot 12 \]

Example 3.4
706^3. The exponent 3 is recording 3 factors of 706 in a multiplication. Thus,

\[706^3 = 706 \cdot 706 \cdot 706 \]

2This content is available online at <http://cnx.org/content/m34871/1.2/>.
3.2.2.2 Practice Set A

Write the following using exponents.

Exercise 3.1
37 · 37

Exercise 3.2
16 · 16 · 16 · 16

Exercise 3.3
9 · 9 · 9 · 9 · 9 · 9 · 9

Write each number without exponents.

Exercise 3.4
85³

Exercise 3.5
4⁷

Exercise 3.6
1,739²

3.2.3 Reading Exponential Notation

In a number such as 8⁵,

Base
8 is called the base.

Exponent, Power
5 is called the exponent, or power. 8⁵ is read as "eight to the fifth power," or more simply as "eight to the fifth," or "the fifth power of eight."

Squared
When a whole number is raised to the second power, it is said to be squared. The number 5² can be read as

5 to the second power, or
5 to the second, or
5 squared.

Cubed
When a whole number is raised to the third power, it is said to be cubed. The number 5³ can be read as

5 to the third power, or
5 to the third, or
5 cubed.

When a whole number is raised to the power of 4 or higher, we simply say that that number is raised to that particular power. The number 5⁸ can be read as

5 to the eighth power, or just
5 to the eighth.
3.2.4 Roots

In the English language, the word "root" can mean a source of something. In mathematical terms, the word "root" is used to indicate that one number is the source of another number through repeated multiplication.

Square Root
We know that $49 = 7^2$, that is, $49 = 7 \cdot 7$. Through repeated multiplication, 7 is the source of 49. Thus, 7 is a root of 49. Since two 7's must be multiplied together to produce 49, the 7 is called the second or square root of 49.

Cube Root
We know that $8 = 2^3$, that is, $8 = 2 \cdot 2 \cdot 2$. Through repeated multiplication, 2 is the source of 8. Thus, 2 is a root of 8. Since three 2's must be multiplied together to produce 8, 2 is called the third or cube root of 8.

We can continue this way to see such roots as fourth roots, fifth roots, sixth roots, and so on.

3.2.5 Reading Root Notation

There is a symbol used to indicate roots of a number. It is called the radical sign \sqrt{n}

The Radical Sign \sqrt{n}
The symbol \sqrt{n} is called a radical sign and indicates the nth root of a number.

We discuss particular roots using the radical sign as follows:

Square Root
$\sqrt{\text{number}}$ indicates the square root of the number under the radical sign. It is customary to drop the 2 in the radical sign when discussing square roots. The symbol \sqrt{n} is understood to be the square root radical sign.

$\sqrt{49} = 7$ since $7 \cdot 7 = 7^2 = 49$

Cube Root
$\sqrt[3]{\text{number}}$ indicates the cube root of the number under the radical sign.

$\sqrt[3]{8} = 2$ since $2 \cdot 2 \cdot 2 = 2^3 = 8$

Fourth Root
$\sqrt[4]{\text{number}}$ indicates the fourth root of the number under the radical sign.

$\sqrt[4]{81} = 3$ since $3 \cdot 3 \cdot 3 \cdot 3 = 3^4 = 81$

In an expression such as $\sqrt[5]{32}$

Radical Sign
$\sqrt[n]{\text{number}}$ is called the radical sign.

Index
5 is called the index. (The index describes the indicated root.)

Radicand
32 is called the radicand.

Radical
$\sqrt[5]{32}$ is called a radical (or radical expression).
3.2.5.1 Sample Set B

Find each root.

Example 3.5
\(\sqrt{25} \) To determine the square root of 25, we ask, "What whole number squared equals 25?" From our experience with multiplication, we know this number to be 5. Thus,

\[\sqrt{25} = 5 \]

Check: \(5 \cdot 5 = 5^2 = 25 \)

Example 3.6
\(\sqrt[5]{32} \) To determine the fifth root of 32, we ask, "What whole number raised to the fifth power equals 32?" This number is 2.

\[\sqrt[5]{32} = 2 \]

Check: \(2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 2^5 = 32 \)

3.2.5.2 Practice Set B

Find the following roots using only a knowledge of multiplication.

Exercise 3.7 \((\text{Solution on p. 198.})\)
\(\sqrt{64} \)

Exercise 3.8 \((\text{Solution on p. 198.})\)
\(\sqrt{100} \)

Exercise 3.9 \((\text{Solution on p. 198.})\)
\(\sqrt[3]{64} \)

Exercise 3.10 \((\text{Solution on p. 198.})\)
\(\sqrt[6]{64} \)

3.2.6 Calculators

Calculators with the \(\sqrt{x}, y^x, \) and \(1/x \) keys can be used to find or approximate roots.

3.2.6.1 Sample Set C

Example 3.7
Use the calculator to find \(\sqrt{121} \)

<table>
<thead>
<tr>
<th>Type</th>
<th>Display Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td>121</td>
</tr>
<tr>
<td>(\sqrt{x})</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 3.1

Example 3.8
Find \(\sqrt{2187} \).
Table 3.2

\[\sqrt{2187} = 3 \] (Which means that \(3^7 = 2187 \).)

3.2.6.2 Practice Set C

Use a calculator to find the following roots.

- **Exercise 3.11**
 \[\sqrt[3]{729} \]
 (Solution on p. 198.)

- **Exercise 3.12**
 \[\sqrt[4]{8503056} \]
 (Solution on p. 198.)

- **Exercise 3.13**
 \[\sqrt{53361} \]
 (Solution on p. 198.)

- **Exercise 3.14**
 \[\sqrt[12]{16777216} \]
 (Solution on p. 198.)

3.2.7 Exercises

For the following problems, write the expressions using exponential notation.

- **Exercise 3.15**
 \[4 \cdot 4 \]
 (Solution on p. 198.)

- **Exercise 3.16**
 \[12 \cdot 12 \]
 (Solution on p. 198.)

- **Exercise 3.17**
 \[9 \cdot 9 \cdot 9 \cdot 9 \]
 (Solution on p. 198.)

- **Exercise 3.18**
 \[10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \]
 (Solution on p. 198.)

- **Exercise 3.19**
 \[826 \cdot 826 \cdot 826 \]
 (Solution on p. 198.)

- **Exercise 3.20**
 \[3,021 \cdot 3,021 \cdot 3,021 \cdot 3,021 \cdot 3,021 \]
 (Solution on p. 198.)

- **Exercise 3.21**
 \[6 \cdot 6 \cdot \cdots \cdot 6 \]
 85 factors of 6
 (Solution on p. 198.)

- **Exercise 3.22**
 \[2 \cdot 2 \cdot \cdots \cdot 2 \]
 112 factors of 2
For the following problems, expand the terms. (Do not find the actual value.)

Exercise 3.23
\[\underbrace{1 \cdot 1 \cdot \cdots \cdot 1}_{3,008 \text{ factors of } 1} \]

(Solution on p. 198.)

For the following problems, determine the value of each of the powers. Use a calculator to check each result.

Exercise 3.30
\[3^2 \]

(Solution on p. 198.)

Exercise 3.31
\[4^2 \]

(Solution on p. 198.)

Exercise 3.32
\[1^2 \]

(Solution on p. 198.)

Exercise 3.33
\[10^2 \]

(Solution on p. 198.)

Exercise 3.34
\[11^2 \]

(Solution on p. 198.)

Exercise 3.35
\[12^2 \]

(Solution on p. 198.)

Exercise 3.36
\[13^2 \]

(Solution on p. 198.)

Exercise 3.37
\[15^2 \]

(Solution on p. 198.)

Exercise 3.38
\[1^4 \]

(Solution on p. 199.)

Exercise 3.39
\[3^4 \]

(Solution on p. 199.)

Exercise 3.40
\[7^3 \]

(Solution on p. 199.)

Exercise 3.41
\[10^3 \]

(Solution on p. 199.)

Exercise 3.42
\[100^2 \]

(Solution on p. 199.)

Exercise 3.43
\[8^3 \]

(Solution on p. 199.)
CHAPTER 3. EXPONENTS, ROOTS, AND FACTORIZATION OF WHOLE NUMBERS

Exercise 3.44
\[5^5 \]

Exercise 3.45
\[9^3 \] (Solution on p. 199.)

Exercise 3.46
\[6^2 \]

Exercise 3.47
\[7^1 \] (Solution on p. 199.)

Exercise 3.48
\[128 \]

Exercise 3.49
\[2^7 \] (Solution on p. 199.)

Exercise 3.50
\[0^5 \]

Exercise 3.51
\[8^4 \] (Solution on p. 199.)

Exercise 3.52
\[5^8 \]

Exercise 3.53
\[6^9 \] (Solution on p. 199.)

Exercise 3.54
\[25^3 \]

Exercise 3.55
\[42^2 \] (Solution on p. 199.)

Exercise 3.56
\[31^3 \]

Exercise 3.57
\[15^5 \] (Solution on p. 199.)

Exercise 3.58
\[2^{20} \]

Exercise 3.59
\[816^2 \] (Solution on p. 199.)

For the following problems, find the roots (using your knowledge of multiplication). Use a calculator to check each result.

Exercise 3.60
\[\sqrt{9} \]

Exercise 3.61
\[\sqrt{16} \] (Solution on p. 199.)

Exercise 3.62
\[\sqrt{36} \]

Exercise 3.63
\[\sqrt{64} \] (Solution on p. 199.)

Exercise 3.64
\[\sqrt{121} \]

Exercise 3.65
\[\sqrt{144} \] (Solution on p. 199.)
Exercise 3.66
$\sqrt{169}$

Exercise 3.67
$\sqrt{225}$ (Solution on p. 199.)

Exercise 3.68
$\sqrt{27}$

Exercise 3.69
$\sqrt{32}$ (Solution on p. 199.)

Exercise 3.70
$\sqrt{256}$

Exercise 3.71
$\sqrt{216}$ (Solution on p. 199.)

Exercise 3.72
$\sqrt{1}$

Exercise 3.73
$\sqrt{400}$ (Solution on p. 199.)

Exercise 3.74
$\sqrt{900}$

Exercise 3.75
$\sqrt{10,000}$ (Solution on p. 199.)

Exercise 3.76
$\sqrt{321}$

Exercise 3.77
$\sqrt{3,600}$ (Solution on p. 199.)

For the following problems, use a calculator with the keys \sqrt{x}, y^x, and $1/x$ to find each of the values.

Exercise 3.78
$\sqrt{676}$

Exercise 3.79
$\sqrt{1,156}$ (Solution on p. 199.)

Exercise 3.80
$\sqrt{46,225}$

Exercise 3.81
$\sqrt{17,288,964}$ (Solution on p. 199.)

Exercise 3.82
$\sqrt{3,375}$

Exercise 3.83
$\sqrt{331,776}$ (Solution on p. 199.)

Exercise 3.84
$\sqrt{5,764,801}$

Exercise 3.85
$\sqrt{16,777,216}$ (Solution on p. 199.)

Exercise 3.86
$\sqrt{16,777,216}$

Exercise 3.87
$\sqrt{9,765,625}$ (Solution on p. 199.)
CHAPTER 3. EXPONENTS, ROOTS, AND FACTORIZATION OF WHOLE NUMBERS

Exercise 3.88
\[\sqrt[4]{160,000} \]

Exercise 3.89
\[\sqrt[3]{531,441} \]

(Solution on p. 200.)

3.2.7.1 Exercises for Review

Exercise 3.90
(Section 1.7) Use the numbers 3, 8, and 9 to illustrate the associative property of addition.

Exercise 3.91
(Section 2.2) In the multiplication \(8 \cdot 4 = 32 \), specify the name given to the numbers 8 and 4.

Exercise 3.92
(Section 2.3) Does the quotient \(15 \div 0 \) exist? If so, what is it?

Exercise 3.93
(Section 2.3) Does the quotient \(0 \div 15 \) exist? If so, what is it?

Exercise 3.94
(Section 2.6) Use the numbers 4 and 7 to illustrate the commutative property of multiplication.

3.3 Grouping Symbols and the Order of Operations

3.3.1 Section Overview

- Grouping Symbols
- Multiple Grouping Symbols
- The Order of Operations
- Calculators

3.3.2 Grouping Symbols

Grouping symbols are used to indicate that a particular collection of numbers and meaningful operations are to be grouped together and considered as one number. The grouping symbols commonly used in mathematics are the following:

- Parentheses: ()
- Brackets: []
- Braces: { }
- Bar: __

In a computation in which more than one operation is involved, grouping symbols indicate which operation to perform first. If possible, we perform operations inside grouping symbols first.

\(^3\)This content is available online at <http://cnx.org/content/m34872/1.2/>.

3.3.2.1 Sample Set A

If possible, determine the value of each of the following.

Example 3.9
9 + (3 \cdot 8)

Since 3 and 8 are within parentheses, they are to be combined first.

9 + (3 \cdot 8) = 9 + 24
= 33

Thus,
9 + (3 \cdot 8) = 33

Example 3.10
(10 \div 0) \cdot 6

Since $10 \div 0$ is undefined, this operation is meaningless, and we attach no value to it. We write, "undefined."

3.3.2.2 Practice Set A

If possible, determine the value of each of the following.

Exercise 3.95 (Solution on p. 200.)
16 − (3 \cdot 2)

Exercise 3.96 (Solution on p. 200.)
5 + (7 \cdot 9)

Exercise 3.97 (Solution on p. 200.)
(4 + 8) \cdot 2

Exercise 3.98 (Solution on p. 200.)
28 \div (18 − 11)

Exercise 3.99 (Solution on p. 200.)
(33 \div 3) − 11

Exercise 3.100 (Solution on p. 200.)
4 + (0 \div 0)

3.3.3 Multiple Grouping Symbols

When a set of grouping symbols occurs inside another set of grouping symbols, we perform the operations within the innermost set first.
3.3.3.1 Sample Set B

Determine the value of each of the following.

Example 3.11

\[2 + (8 \cdot 3) - (5 + 6)\]

Combine 8 and 3 first, then combine 5 and 6.

\[2 + 24 - 11\] Now combine left to right.

\[26 - 11\]

\[15\]

Example 3.12

\[10 + [30 - (2 \cdot 9)]\]

Combine 2 and 9 since they occur in the innermost set of parentheses.

\[10 + [30 - 18]\] Now combine 30 and 18.

\[10 + 12\]

\[22\]

3.3.3.2 Practice Set B

Determine the value of each of the following.

Exercise 3.101

\[(17 + 8) + (9 + 20)\]
(Solution on p. 200.)

Exercise 3.102

\[(55 - 6) - (13 \cdot 2)\]
(Solution on p. 200.)

Exercise 3.103

\[23 + (12 ÷ 4) - (11 \cdot 2)\]
(Solution on p. 200.)

Exercise 3.104

\[86 + [14 ÷ (10 - 8)]\]
(Solution on p. 200.)

Exercise 3.105

\[31 + \{9 + [1 + (35 - 2)]\}\]
(Solution on p. 200.)

Exercise 3.106

\[\{6 - [24 ÷ (4 - 2)]\}^3\]
(Solution on p. 200.)

3.3.4 The Order of Operations

Sometimes there are no grouping symbols indicating which operations to perform first. For example, suppose we wish to find the value of \(3 + 5 \cdot 2\). We could do *either* of two things:

Add 3 and 5, then multiply this sum by 2.

\[3 + 5 \cdot 2 = 8 \cdot 2\]

\[= 16\]

Multiply 5 and 2, then add 3 to this product.
\[3 + 5 \cdot 2 = 3 + 10\]
\[= 13\]

We now have two values for one number. To determine the correct value, we must use the accepted order of operations.

Order of Operations

1. Perform all operations inside grouping symbols, beginning with the innermost set, in the order 2, 3, 4 described below,
2. Perform all exponential and root operations.
3. Perform all multiplications and divisions, moving left to right.
4. Perform all additions and subtractions, moving left to right.

3.3.4.1 Sample Set C

Determine the value of each of the following.

Example 3.13

\[21 + 3 \cdot 12\] Multiply first.
\[21 + 36\] Add.
\[57\]

Example 3.14

\[(15 - 8) + 5 \cdot (6 + 4)\] Simplify inside parentheses first.
\[7 + 5 \cdot 10\] Multiply.
\[7 + 50\] Add.
\[57\]

Example 3.15

\[63 - (4 + 6 \cdot 3) + 76 - 4\] Simplify first within the parenthesis by multiplying, then adding.
\[63 - (4 + 18) + 76 - 4\]
\[63 - 22 + 76 - 4\] Now perform the additions and subtractions, moving left to right.
\[41 + 76 - 4\] Add 41 and 76: \[41 + 76 = 117\].
\[117 - 4\] Subtract 4 from 117: \[117 - 4 = 113\].
\[113\]

Example 3.16

\[7 \cdot 6 - 4^2 + 1^5\] Evaluate the exponential forms, moving left to right.
\[7 \cdot 6 - 16 + 1\] Multiply 7 and 6: \[7 \cdot 6 = 42\]
\[42 - 16 + 1\] Subtract 16 from 42: \[42 - 16 = 26\]
\[26 + 1\] Add 26 and 1: \[26 + 1 = 27\]
\[27\]
Example 3.17

Evaluate the exponential forms in the parentheses: $3^2 = 9$ and $2^2 = 4$

$6 \cdot (9 + 4) + 4^2$

Add the 9 and 4 in the parentheses: $9 + 4 = 13$

$6 \cdot (13) + 16$

Multiply 6 and 13: $6 \cdot 13 = 78$

$78 + 16$

Add 78 and 16: $78 + 16 = 94$

Example 3.18

Recall that the bar is a grouping symbol.

The fraction $\frac{6^2 + 2^2}{3^2 + 6^2}$ is equivalent to $(6^2 + 2^2) ÷ (3^2 + 6^2)$

$\frac{36 + 4}{10 + 36}$

$\frac{1 + 64}{100 - 95}$

$\frac{1 + 13}{14}$

3.3.4.2 Practice Set C

Determine the value of each of the following.

Exercise 3.107

$8 + (32 - 7)$

(Solution on p. 200.)

Exercise 3.108

$(34 + 18 - 2 \cdot 3) + 11$

(Solution on p. 200.)

Exercise 3.109

$8 (10) + 4 (2 + 3) - (20 + 3 \cdot 15 + 40 - 5)$

(Solution on p. 200.)

Exercise 3.110

$5 \cdot 8 + 4^2 - 2^2$

(Solution on p. 200.)

Exercise 3.111

$4 (6^2 - 3^2) ÷ (4^2 - 4)$

(Solution on p. 200.)

Exercise 3.112

$(8 + 9 \cdot 3) ÷ 7 + 5 \cdot (8 ÷ 4 + 7 + 3 \cdot 5)$

(Solution on p. 200.)

Exercise 3.113

$\frac{2^2 + 2^2}{6^2 - 29} + 5 \left(\frac{8^2 + 2^4}{7^2 - 3^2} \right) ÷ \frac{8^3 + 1^8}{2^3 - 3^2}$

(Solution on p. 200.)

3.3.5 Calculators

Using a calculator is helpful for simplifying computations that involve large numbers.
3.3.5.1 Sample Set D

Use a calculator to determine each value.

Example 3.19

\[9,842 + 56 \cdot 85 \]

<table>
<thead>
<tr>
<th>Key</th>
<th>Display Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform the multiplication first.</td>
<td>Type 56 56</td>
</tr>
<tr>
<td></td>
<td>Press (\times) 56</td>
</tr>
<tr>
<td></td>
<td>Type 85 85</td>
</tr>
<tr>
<td>Now perform the addition.</td>
<td>Press + 4760</td>
</tr>
<tr>
<td></td>
<td>Type 9842 9842</td>
</tr>
<tr>
<td></td>
<td>Press = 14602</td>
</tr>
</tbody>
</table>

Table 3.3

The display now reads 14,602.

Example 3.20

\[42 (27 + 18) + 105 (810 \div 18) \]

<table>
<thead>
<tr>
<th>Key</th>
<th>Display Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operate inside the parentheses</td>
<td>Type 27 27</td>
</tr>
<tr>
<td></td>
<td>Press + 27</td>
</tr>
<tr>
<td></td>
<td>Type 18 18</td>
</tr>
<tr>
<td></td>
<td>Press = 45</td>
</tr>
<tr>
<td>Multiply by 42.</td>
<td>Press (\times) 45</td>
</tr>
<tr>
<td></td>
<td>Type 42 42</td>
</tr>
<tr>
<td></td>
<td>Press = 1890</td>
</tr>
</tbody>
</table>

Table 3.4

Place this result into memory by pressing the memory key.
CHAPTER 3. EXPONENTS, ROOTS, AND FACTORIZATION OF WHOLE NUMBERS

<table>
<thead>
<tr>
<th>Key</th>
<th>Display Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Now operate in the other parentheses.</td>
<td>Type 810 810</td>
</tr>
<tr>
<td></td>
<td>Press ÷ 810</td>
</tr>
<tr>
<td></td>
<td>Type 18 18</td>
</tr>
<tr>
<td></td>
<td>Press = 45</td>
</tr>
<tr>
<td>Now multiply by 105.</td>
<td>Press × 45</td>
</tr>
<tr>
<td></td>
<td>Type 105 105</td>
</tr>
<tr>
<td></td>
<td>Press = 4725</td>
</tr>
<tr>
<td>We are now ready to add these two quantities together.</td>
<td>Press + 4725</td>
</tr>
<tr>
<td>Press the memory recall key.</td>
<td>Press = 1890</td>
</tr>
<tr>
<td></td>
<td>Press = 6615</td>
</tr>
</tbody>
</table>

Table 3.5

Thus, \(42 (27 + 18) + 105 (810 ÷ 18) = 6,615\)

Example 3.21

\(16^4 + 37^3\)

<table>
<thead>
<tr>
<th>Key</th>
<th>Display Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonscientific Calculators</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>16 16</td>
</tr>
<tr>
<td>Press</td>
<td>× 16</td>
</tr>
<tr>
<td>Type</td>
<td>16 16</td>
</tr>
<tr>
<td>Press</td>
<td>× 256</td>
</tr>
<tr>
<td>Type</td>
<td>16 16</td>
</tr>
<tr>
<td>Press</td>
<td>× 4096</td>
</tr>
<tr>
<td>Type</td>
<td>16 16</td>
</tr>
<tr>
<td>Press</td>
<td>= 65536</td>
</tr>
<tr>
<td>Press the memory key</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>37 37</td>
</tr>
<tr>
<td>Press</td>
<td>× 37</td>
</tr>
<tr>
<td>Type</td>
<td>37 37</td>
</tr>
<tr>
<td>Press</td>
<td>× 1396</td>
</tr>
<tr>
<td>Type</td>
<td>37 37</td>
</tr>
<tr>
<td>Press</td>
<td>× 50653</td>
</tr>
<tr>
<td>Press</td>
<td>+ 50653</td>
</tr>
<tr>
<td>Press memory recall key</td>
<td>65536</td>
</tr>
<tr>
<td>Press</td>
<td>= 116189</td>
</tr>
</tbody>
</table>
Table 3.6

<table>
<thead>
<tr>
<th>Key</th>
<th>Display Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 16</td>
<td>16</td>
</tr>
<tr>
<td>Press y^x</td>
<td>16</td>
</tr>
<tr>
<td>Type 4</td>
<td>4</td>
</tr>
<tr>
<td>Press $=$</td>
<td>4096</td>
</tr>
<tr>
<td>Press $+$</td>
<td>4096</td>
</tr>
<tr>
<td>Type 37</td>
<td>37</td>
</tr>
<tr>
<td>Press y^x</td>
<td>37</td>
</tr>
<tr>
<td>Type 3</td>
<td>3</td>
</tr>
<tr>
<td>Press $=$</td>
<td>116189</td>
</tr>
</tbody>
</table>

Table 3.7

Thus, $16^4 + 37^3 = 116,189$

We can certainly see that the more powerful calculator simplifies computations.

Example 3.22

Nonscientific calculators are unable to handle calculations involving very large numbers.

$85612 \cdot 21065$

<table>
<thead>
<tr>
<th>Key</th>
<th>Display Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 85612</td>
<td>85612</td>
</tr>
<tr>
<td>Press \times</td>
<td>85612</td>
</tr>
<tr>
<td>Type 21065</td>
<td>21065</td>
</tr>
<tr>
<td>Press $=$</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.8

This number is too big for the display of some calculators and we'll probably get some kind of error message. On some scientific calculators such large numbers are coped with by placing them in a form called "scientific notation." Others can do the multiplication directly. (1803416780)

3.3.5.2 Practice Set D

Use a calculator to find each value.

Exercise 3.114

9, 285 + 86 (49)

(Solution on p. 200.)

Exercise 3.115

55 (84 − 26) + 120 (512 − 488)

(Solution on p. 200.)
Exercise 3.116
\[106^3 - 17^4 \]
(Solution on p. 200.)

Exercise 3.117
\[6,053^3 \]
(Solution on p. 201.)

3.3.6 Exercises

For the following problems, find each value. Check each result with a calculator.

Exercise 3.118
\[2 + 3 \cdot (8) \]
(Solution on p. 201.)

Exercise 3.119
\[18 + 7 \cdot (4 - 1) \]

Exercise 3.120
\[3 + 8 \cdot (6 - 2) + 11 \]

Exercise 3.121
\[1 - 5 \cdot (8 - 8) \]

Exercise 3.122
\[37 - 1 \cdot 6^2 \]

Exercise 3.123
\[98 \div 2 \div 7^2 \]

Exercise 3.124
\[(4^2 - 2 \cdot 4) - 2^3 \]

Exercise 3.125
\[\sqrt{9} + 14 \]

Exercise 3.126
\[\sqrt{100} + \sqrt{81} - 4^2 \]

Exercise 3.127
\[\sqrt{5} + 8 - 2 \cdot 5 \]

Exercise 3.128
\[\sqrt{16} - 1 + 5^2 \]

Exercise 3.129
\[61 - 22 + 4 \cdot (3 \cdot (10) + 11) \]

Exercise 3.130
\[121 - 4 \cdot [(4 \cdot 5) - 12] + \frac{16}{2} \]

Exercise 3.131
\[\frac{(1 + 16) - 5}{7} + 5 \cdot (12) \]

Exercise 3.132
\[\frac{9 \cdot (6 + 20)}{8} + \frac{3 \cdot (6 + 16)}{22} \]

Exercise 3.133
\[10 \cdot [8 + 2 \cdot (6 + 7)] \]

Exercise 3.134
\[21 \div 7 \div 3 \]

Exercise 3.135
\[10^2 \cdot 3 \div 5^2 \cdot 3 - 2 \cdot 3 \]
Exercise 3.136
\[\frac{85}{5} \cdot 5 - 85 \]
(Solution on p. 201.)

Exercise 3.137
\[\frac{51}{12} + 7 - 2 \cdot 5 \cdot \left(\frac{12}{3} \right) \]
(Solution on p. 201.)

Exercise 3.138
\[2^2 \cdot 3 + 2^3 \cdot (6 - 2) - (3 + 17) + 11 \]
(Solution on p. 201.)

Exercise 3.139
\[26 - 2 \cdot \left(\frac{5+20}{13} \right) \]
(Solution on p. 201.)

Exercise 3.140
\[2 \cdot \{(7 + 7) + 6 \cdot [4 \cdot (8 + 2)]} \]
(Solution on p. 201.)

Exercise 3.141
\[0 + 10 (0) + 15 \cdot \{4 \cdot 3 + 1\} \]
(Solution on p. 201.)

Exercise 3.142
\[18 + \frac{7+2}{9} \]
(Solution on p. 201.)

Exercise 3.143
\[(4 + 7) \cdot (8 - 3) \]
(Solution on p. 201.)

Exercise 3.144
\[(6 + 8) \cdot (5 + 2 - 4) \]
(Solution on p. 201.)

Exercise 3.145
\[(21 - 3) \cdot (6 - 1) \cdot (7) + 4 (6 + 3) \]
(Solution on p. 201.)

Exercise 3.146
\[(10 + 5) \cdot (10 + 5) - 4 \cdot (60 - 4) \]
(Solution on p. 201.)

Exercise 3.147
\[6 \cdot \{2 \cdot 8 + 3\} - (5) \cdot (2) + \frac{8}{4} + (1 + 8) \cdot (1 + 11) \]
(Solution on p. 201.)

Exercise 3.148
\[2^5 + 3 \cdot (8 + 1) \]
(Solution on p. 201.)

Exercise 3.149
\[3^4 + 2^4 \cdot (1 + 5) \]
(Solution on p. 201.)

Exercise 3.150
\[1^6 + 0^8 + 5^2 \cdot (2 + 8)^3 \]
(Solution on p. 201.)

Exercise 3.151
\[(7) \cdot (16) - 3^4 + 2^2 \cdot (1^7 + 3^2) \]
(Solution on p. 201.)

Exercise 3.152
\[\frac{2^5 - 7}{2^{-1}} \]
(Solution on p. 201.)

Exercise 3.153
\[\frac{(1+6)^2 + 2}{3 \cdot 8 + 1} \]
(Solution on p. 201.)

Exercise 3.154
\[\frac{6^2 - 1}{2^7 - 3} + \frac{4^3 + 2 \cdot 3}{2 \cdot 5} \]
(Solution on p. 201.)

Exercise 3.155
\[\frac{5 \cdot (6^2 - 9)}{2 \cdot 2^7} + \frac{6^2 \cdot 2^2}{2 \cdot 5^5} \]
(Solution on p. 201.)

Exercise 3.156
\[\frac{(2+1)^3 + 2^3 + 1^{10}}{6^2} - \frac{15^2 - (2.5)^2}{5 \cdot 5^4} \]
(Solution on p. 201.)

Exercise 3.157
\[\frac{6^3 - 2 \cdot 10^2}{2^4} + \frac{18(2^3 + 7)^2}{2(10) - 3^4} \]
CHAPTER 3. EXPONENTS, ROOTS, AND FACTORIZATION OF WHOLE NUMBERS

Exercise 3.158
\[2 \cdot \{6 + [10^2 - 6\sqrt{25}]\} \]

Exercise 3.159
\[181 - 3 \cdot (2\sqrt{64} + 3\sqrt{64}) \]

Exercise 3.160
\[\frac{2 \cdot (\sqrt{81} - \sqrt{125})}{4^2 - 10 + 2^2} \]

3.3.6.1 Exercises for Review

Exercise 3.161
(Section 1.7) The fact that 0 + any whole number = that particular whole number is an example of which property of addition?

Exercise 3.162
(Section 2.2) Find the product. 4,271 \times 630.

Exercise 3.163
(Section 2.3) In the statement 27 \div 3 = 9, what name is given to the result 9?

Exercise 3.164
(Section 2.7) What number is the multiplicative identity?

Exercise 3.165
(Section 2.7) Find the value of 2^4.

3.4 Prime Factorization of Natural Numbers

3.4.1 Section Overview
- Factors
- Determining the Factors of a Whole Number
- Prime and Composite Numbers
- The Fundamental Principle of Arithmetic
- The Prime Factorization of a Natural Number

3.4.2 Factors
From observations made in the process of multiplication, we have seen that

\[(\text{factor}) \cdot (\text{factor}) = \text{product}\]

Factors, Product
The two numbers being multiplied are the factors and the result of the multiplication is the product. Now, using our knowledge of division, we can see that a first number is a factor of a second number if the first number divides into the second number a whole number of times (without a remainder).

One Number as a Factor of Another
A first number is a factor of a second number if the first number divides into the second number a whole number of times (without a remainder).

This content is available online at http://cnx.org/content/m34873/1.2/.
We show this in the following examples:

Example 3.23
3 is a factor of 27, since $27 \div 3 = 9$, or $3 \cdot 9 = 27$.

Example 3.24
7 is a factor of 56, since $56 \div 7 = 8$, or $7 \cdot 8 = 56$.

Example 3.25
4 is *not* a factor of 10, since $10 \div 4 = 2R2$. (There is a remainder.)

3.4.3 Determining the Factors of a Whole Number

We can use the tests for divisibility from Section 2.5 to determine all the factors of a whole number.

3.4.3.1 Sample Set A

Example 3.26
Find all the factors of 24.

Try 1: $24 \div 1 = 24$
1 and 24 are factors

Try 2: 24 is even, so 24 is divisible by 2.
$24 \div 2 = 12$
2 and 12 are factors

Try 3: $2 + 4 = 6$ and 6 is divisible by 3, so 24 is divisible by 3.
$24 \div 3 = 8$
3 and 8 are factors

Try 4: $24 \div 4 = 6$
4 and 6 are factors

Try 5: $24 \div 5 = 4R4$
5 is not a factor.

The next number to try is 6, but we already have that 6 is a factor. Once we come upon a factor that we already have discovered, we can stop.

All the whole number factors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24.

3.4.3.2 Practice Set A

Find all the factors of each of the following numbers.

Exercise 3.166
6
(Solution on p. 202.)

Exercise 3.167
12
(Solution on p. 202.)

Exercise 3.168
18
(Solution on p. 202.)

Exercise 3.169
5
(Solution on p. 202.)

Exercise 3.170
10
(Solution on p. 202.)

Exercise 3.171
33
(Solution on p. 202.)
CHAPTER 3. EXPONENTS, ROOTS, AND FACTORIZATION OF WHOLE NUMBERS

Exercise 3.172

(Solution on p. 202.)

3.4.4 Prime and Composite Numbers

Notice that the only factors of 7 are 1 and 7 itself, and that the only factors of 3 are 1 and 3 itself. However, the number 8 has the factors 1, 2, 4, and 8, and the number 10 has the factors 1, 2, 5, and 10. Thus, we can see that a whole number can have only two factors (itself and 1) and another whole number can have several factors.

We can use this observation to make a useful classification for whole numbers: prime numbers and composite numbers.

Prime Number
A whole number (greater than one) whose only factors are itself and 1 is called a prime number.

The Number 1 is Not a Prime Number
The first seven prime numbers are 2, 3, 5, 7, 11, 13, and 17. Notice that the whole number 1 is not considered to be a prime number, and the whole number 2 is the first prime and the only even prime number.

Composite Number
A whole number composed of factors other than itself and 1 is called a composite number. Composite numbers are not prime numbers.

Some composite numbers are 4, 6, 8, 9, 10, 12, and 15.

3.4.4.1 Sample Set B

Determine which whole numbers are prime and which are composite.

Example 3.27
39. Since 3 divides into 39, the number 39 is composite: $39 \div 3 = 13$

Example 3.28
47. A few division trials will assure us that 47 is only divisible by 1 and 47. Therefore, 47 is prime.

3.4.4.2 Practice Set B

Determine which of the following whole numbers are prime and which are composite.

Exercise 3.173
3

(Solution on p. 202.)

Exercise 3.174
16

(Solution on p. 202.)

Exercise 3.175
21

(Solution on p. 202.)

Exercise 3.176
35

(Solution on p. 202.)

Exercise 3.177
47

(Solution on p. 202.)

Exercise 3.178
29

(Solution on p. 202.)
3.4.5 The Fundamental Principle of Arithmetic

Prime numbers are very useful in the study of mathematics. We will see how they are used in subsequent sections. We now state the Fundamental Principle of Arithmetic.

Fundamental Principle of Arithmetic

Except for the order of the factors, every natural number other than 1 can be factored in one and only one way as a product of prime numbers.

Prime Factorization

When a number is factored so that all its factors are prime numbers, the factorization is called the prime factorization of the number.

The technique of prime factorization is illustrated in the following three examples.

1. \(10 = 5 \cdot 2\). Both 2 and 5 are primes. Therefore, \(2 \cdot 5\) is the prime factorization of 10.
2. \(11\). The number 11 is a prime number. Prime factorization applies only to composite numbers. Thus, 11 has no prime factorization.
3. \(60 = 2 \cdot 30\). The number 30 is not prime: \(30 = 2 \cdot 15\).

\(60 = 2 \cdot 2 \cdot 15\)

The number 15 is not prime: \(15 = 3 \cdot 5\)

\(60 = 2 \cdot 2 \cdot 3 \cdot 5\)

We'll use exponents.

\(60 = 2^2 \cdot 3 \cdot 5\)

The numbers 2, 3, and 5 are each prime. Therefore, \(2^2 \cdot 3 \cdot 5\) is the prime factorization of 60.

3.4.6 The Prime Factorization of a Natural Number

The following method provides a way of finding the prime factorization of a natural number.

The Method of Finding the Prime Factorization of a Natural Number

1. Divide the number repeatedly by the smallest prime number that will divide into it a whole number of times (without a remainder).
2. When the prime number used in step 1 no longer divides into the given number without a remainder, repeat the division process with the next largest prime that divides the given number.
3. Continue this process until the quotient is smaller than the divisor.
4. The prime factorization of the given number is the product of all these prime divisors. If the number has no prime divisors, it is a prime number.

We may be able to use some of the tests for divisibility we studied in Section 2.5 to help find the primes that divide the given number.
3.4.6.1 Sample Set C

Example 3.29
Find the prime factorization of 60.

Since the last digit of 60 is 0, which is even, 60 is divisible by 2. We will repeatedly divide by 2 until we no longer can. We shall divide as follows:

\[
\begin{array}{c|c}
2 & 60 \\
2 & 30 \\
3 & 15 \\
5 & 5 \\
& 1 \\
\end{array}
\]

30 is divisible by 2 again.
15 is not divisible by 2, but it is divisible by 3, the next prime.
5 is not divisible by 3, but it is divisible by 5, the next prime.

The quotient 1 is finally smaller than the divisor 5, and the prime factorization of 60 is the product of these prime divisors.

\[60 = 2 \cdot 2 \cdot 3 \cdot 5\]

We use exponents when possible.

\[60 = 2^2 \cdot 3 \cdot 5\]

Example 3.30
Find the prime factorization of 441.

441 is not divisible by 2 since its last digit is not divisible by 2.

441 is divisible by 3 since \(4 + 4 + 1 = 9\) and 9 is divisible by 3.

\[
\begin{array}{c|c}
3 & 441 \\
3 & 147 \\
7 & 49 \\
7 & 7 \\
& 1 \\
\end{array}
\]

147 is divisible by 3 \((1 + 4 + 7 = 12)\).
49 is not divisible by 3, nor is it divisible by 5. It is divisible by 7.

The quotient 1 is finally smaller than the divisor 7, and the prime factorization of 441 is the product of these prime divisors.

\[441 = 3 \cdot 3 \cdot 7 \cdot 7\]

Use exponents.

\[441 = 3^2 \cdot 7^2\]

Example 3.31
Find the prime factorization of 31.
31 is not divisible by 2 Its last digit is not even

\[31 \div 2 = 15 \text{ R} 1 \]

The quotient, 15, is larger than the divisor, 3. Continue.

31 is not divisible by 3 The digits 3 + 1 = 4, and 4 is not divisible by 3.

\[31 \div 3 = 10 \text{ R} 1 \]

The quotient, 10, is larger than the divisor, 3. Continue.

31 is not divisible by 5 The last digit of 31 is not 0 or 5.

\[31 \div 5 = 6 \text{ R} 1 \]

The quotient, 6, is larger than the divisor, 5. Continue.

31 is not divisible by 7. Divide by 7.

\[31 \div 7 = 4 \text{ R} 1 \]

The quotient, 4, is smaller than the divisor, 7.

We can stop the process and conclude that 31 is a prime number.

The number 31 is a prime number.

3.4.6.2 Practice Set C

Find the prime factorization of each whole number.

Exercise 3.181 22 (Solution on p. 202.)

Exercise 3.182 40 (Solution on p. 202.)

Exercise 3.183 48 (Solution on p. 202.)

Exercise 3.184 63 (Solution on p. 202.)

Exercise 3.185 945 (Solution on p. 202.)

Exercise 3.186 1,617 (Solution on p. 202.)

Exercise 3.187 17 (Solution on p. 202.)

Exercise 3.188 61 (Solution on p. 202.)

3.4.7 Exercises

For the following problems, determine the missing factor(s).

Exercise 3.189 14 = 7•______ (Solution on p. 202.)
CHAPTER 3. EXPONENTS, ROOTS, AND FACTORIZATION OF WHOLE NUMBERS

Exercise 3.190
20 = 4

Exercise 3.191
36 = 9

Exercise 3.192
42 = 21

Exercise 3.193
44 = 4

Exercise 3.194
38 = 2

Exercise 3.195
18 = 3

Exercise 3.196
28 = 2

Exercise 3.197
300 = 2

Exercise 3.198
840 = 2

For the following problems, find all the factors of each of the numbers.

Exercise 3.199
16

Exercise 3.200
22

Exercise 3.201
56

Exercise 3.202
105

Exercise 3.203
220

Exercise 3.204
15

Exercise 3.205
32

Exercise 3.206
80

Exercise 3.207
142

Exercise 3.208
218

For the following problems, determine which of the whole numbers are prime and which are composite.

Exercise 3.209
23

Exercise 3.210
25
Exercise 3.211
27
(Solution on p. 203.)

Exercise 3.212
2

Exercise 3.213
3
(Solution on p. 203.)

Exercise 3.214
5
(Solution on p. 203.)

Exercise 3.215
7
(Solution on p. 203.)

Exercise 3.216
9
(Solution on p. 203.)

Exercise 3.217
11
(Solution on p. 203.)

Exercise 3.218
34
(Solution on p. 203.)

Exercise 3.219
55
(Solution on p. 203.)

Exercise 3.220
63
(Solution on p. 203.)

Exercise 3.221
1,044
(Solution on p. 203.)

Exercise 3.222
924
(Solution on p. 203.)

Exercise 3.223
339
(Solution on p. 203.)

Exercise 3.224
103
(Solution on p. 203.)

Exercise 3.225
209
(Solution on p. 203.)

Exercise 3.226
667
(Solution on p. 203.)

Exercise 3.227
4,575
(Solution on p. 203.)

Exercise 3.228
119

For the following problems, find the prime factorization of each of the whole numbers.

Exercise 3.229
26
(Solution on p. 203.)

Exercise 3.230
38
(Solution on p. 203.)

Exercise 3.231
54
(Solution on p. 203.)

Exercise 3.232
62
CHAPTER 3. EXPONENTS, ROOTS, AND FACTORIZATION OF WHOLE NUMBERS

Exercise 3.233
56
(Solution on p. 203.)
Exercise 3.234
176
Exercise 3.235
480
(Solution on p. 203.)
Exercise 3.236
819
Exercise 3.237
2,025
(Solution on p. 203.)
Exercise 3.238
148,225

3.4.7.1 Exercises For Review
Exercise 3.239
(Section 1.4) Round 26,584 to the nearest ten.
Exercise 3.240
(Section 1.6) How much bigger is 106 than 79?
Exercise 3.241
(Section 2.3) True or false? Zero divided by any nonzero whole number is zero.
Exercise 3.242
(Section 2.4) Find the quotient. $10,584 \div 126$.
Exercise 3.243
(Section 3.3) Find the value of $\sqrt{121} - \sqrt{81} + 6^2 \div 3$.

3.5 The Greatest Common Factor

3.5.1 Section Overview
- The Greatest Common Factor (GCF)
- A Method for Determining the Greatest Common Factor

3.5.2 The Greatest Common Factor (GCF)
Using the method we studied in Section 3.4, we could obtain the prime factorizations of 30 and 42.

$30 = 2 \cdot 3 \cdot 5$
$42 = 2 \cdot 3 \cdot 7$

Common Factor
We notice that 2 appears as a factor in both numbers, that is, 2 is a common factor of 30 and 42. We also notice that 3 appears as a factor in both numbers. Three is also a common factor of 30 and 42.

This content is available online at <http://cnx.org/content/m34874/1.2/>.
Greatest Common Factor (GCF)

When considering two or more numbers, it is often useful to know if there is a largest common factor of the numbers, and if so, what that number is. The largest common factor of two or more whole numbers is called the greatest common factor, and is abbreviated by GCF. The greatest common factor of a collection of whole numbers is useful in working with fractions (which we will do in Section 4.1).

3.5.3 A Method for Determining the Greatest Common Factor

A straightforward method for determining the GCF of two or more whole numbers makes use of both the prime factorization of the numbers and exponents.

Finding the GCF

To find the greatest common factor (GCF) of two or more whole numbers:

1. Write the prime factorization of each number, using exponents on repeated factors.
2. Write each base that is common to each of the numbers.
3. To each base listed in step 2, attach the smallest exponent that appears on it in either of the prime factorizations.
4. The GCF is the product of the numbers found in step 3.

3.5.3.1 Sample Set A

Find the GCF of the following numbers.

Example 3.32
12 and 18

1. \(12 = 2 \cdot 6 = 2 \cdot 2 \cdot 3 = 2^2 \cdot 3\)
2. \(18 = 2 \cdot 9 = 2 \cdot 3 \cdot 3 = 2 \cdot 3^2\)
3. The common bases are 2 and 3.
4. The GCF is the product of these numbers. \(2 \cdot 3 = 6\)

The GCF of 30 and 42 is 6 because 6 is the largest number that divides both 30 and 42 without a remainder.

Example 3.33
18, 60, and 72

\(18 = 2 \cdot 9 = 2 \cdot 3 \cdot 3 = 2 \cdot 3^2\)

1. \(60 = 2 \cdot 30 = 2 \cdot 2 \cdot 15 = 2 \cdot 2 \cdot 3 \cdot 5 = 2^2 \cdot 3 \cdot 5\)
2. The common bases are 2 and 3.
3. The smallest exponents appearing on 2 and 3 in the prime factorizations are, respectively, 1 and 1 (\(2^1\) and \(3^1\)), or 2 and 3.
4. The GCF is the product of these numbers. \(2 \cdot 3 = 6\)
Thus, 6 is the largest number that divides 18, 60, and 72 without a remainder.

Example 3.34

700, 1,880, and 6,160

1.

$$700 = 2 \cdot 350 = 2 \cdot 2 \cdot 175 = 2 \cdot 2 \cdot 5 \cdot 35$$

$$= 2 \cdot 2 \cdot 5 \cdot 7$$

$$= 2^2 \cdot 5^1 \cdot 7$$

$$1,880 = 2 \cdot 940 = 2 \cdot 2 \cdot 470 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 235$$

$$= 2 \cdot 2 \cdot 2 \cdot 2 \cdot 5 \cdot 47$$

$$= 2^3 \cdot 5 \cdot 47$$

$$6,160 = 2 \cdot 3,080 = 2 \cdot 2 \cdot 1,540 = 2 \cdot 2 \cdot 2 \cdot 770$$

$$= 2 \cdot 2 \cdot 2 \cdot 2 \cdot 385$$

$$= 2 \cdot 2 \cdot 2 \cdot 2 \cdot 5 \cdot 77$$

$$= 2 \cdot 2 \cdot 2 \cdot 2 \cdot 5 \cdot 7 \cdot 11$$

$$= 2^4 \cdot 5 \cdot 7 \cdot 11$$

2. The common bases are 2 and 5

3. The smallest exponents appearing on 2 and 5 in the prime factorizations are, respectively, 2 and 1.

$$2^2$$ from 700.

$$5^1$$ from either 1,880 or 6,160.

4. The GCF is the product of these numbers.

GCF is $$2^2 \cdot 5 = 4 \cdot 5 = 20$$

Thus, 20 is the largest number that divides 700, 1,880, and 6,160 without a remainder.

3.5.3.2 Practice Set A

Find the GCF of the following numbers.

Exercise 3.244

24 and 36
(Solution on p. 204.)

Exercise 3.245

48 and 72
(Solution on p. 204.)

Exercise 3.246

50 and 140
(Solution on p. 204.)

Exercise 3.247

21 and 225
(Solution on p. 204.)

Exercise 3.248

450, 600, and 540
(Solution on p. 204.)
3.5.4 Exercises

For the following problems, find the greatest common factor (GCF) of the numbers.

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.249</td>
<td>6 and 8</td>
</tr>
<tr>
<td>3.250</td>
<td>5 and 10</td>
</tr>
<tr>
<td>3.251</td>
<td>8 and 12</td>
</tr>
<tr>
<td>3.252</td>
<td>9 and 12</td>
</tr>
<tr>
<td>3.253</td>
<td>20 and 24</td>
</tr>
<tr>
<td>3.254</td>
<td>35 and 175</td>
</tr>
<tr>
<td>3.255</td>
<td>25 and 45</td>
</tr>
<tr>
<td>3.256</td>
<td>45 and 189</td>
</tr>
<tr>
<td>3.257</td>
<td>66 and 165</td>
</tr>
<tr>
<td>3.258</td>
<td>264 and 132</td>
</tr>
<tr>
<td>3.259</td>
<td>99 and 135</td>
</tr>
<tr>
<td>3.260</td>
<td>65 and 15</td>
</tr>
<tr>
<td>3.261</td>
<td>33 and 77</td>
</tr>
<tr>
<td>3.262</td>
<td>245 and 80</td>
</tr>
<tr>
<td>3.263</td>
<td>351 and 165</td>
</tr>
<tr>
<td>3.264</td>
<td>60, 140, and 100</td>
</tr>
<tr>
<td>3.265</td>
<td>147, 343, and 231</td>
</tr>
<tr>
<td>3.266</td>
<td>24, 30, and 45</td>
</tr>
<tr>
<td>3.267</td>
<td>175, 225, and 400</td>
</tr>
<tr>
<td>3.268</td>
<td>210, 630, and 182</td>
</tr>
<tr>
<td>3.269</td>
<td>14, 44, and 616</td>
</tr>
<tr>
<td></td>
<td>(Solution on p. 204.)</td>
</tr>
</tbody>
</table>
CHAPTER 3. EXPONENTS, ROOTS, AND FACTORIZATION OF WHOLE NUMBERS

Exercise 3.270
1,617, 735, and 429

Exercise 3.271
1,573, 4,862, and 3,553

(Solution on p. 204.)

Exercise 3.272
3,672, 68, and 920

(Solution on p. 204.)

Exercise 3.273
7, 2,401, 343, 16, and 807

(Solution on p. 204.)

Exercise 3.274
5, 7, 2, 401, 343, 16, and 807

(Solution on p. 204.)

Exercise 3.275
441, 275, and 221

(Solution on p. 204.)

3.6 The Least Common Multiple

3.6.1 Section Overview

- Multiples
- Common Multiples
- The Least Common Multiple (LCM)
- Finding the Least Common Multiple

3.6.2 Multiples

When a whole number is multiplied by other whole numbers, with the exception of zero, the resulting products are called multiples of the given whole number. Note that any whole number is a multiple of itself.

This content is available online at <http://cnx.org/content/m34876/1.2/>.
3.6.2.1 Sample Set A

<table>
<thead>
<tr>
<th>Multiples of 2</th>
<th>Multiples of 3</th>
<th>Multiples of 8</th>
<th>Multiples of 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2 \times 1 = 2$</td>
<td>$3 \times 1 = 3$</td>
<td>$8 \times 1 = 8$</td>
<td>$10 \times 1 = 10$</td>
</tr>
<tr>
<td>$2 \times 2 = 4$</td>
<td>$3 \times 2 = 6$</td>
<td>$8 \times 2 = 16$</td>
<td>$10 \times 2 = 20$</td>
</tr>
<tr>
<td>$2 \times 3 = 6$</td>
<td>$3 \times 3 = 9$</td>
<td>$8 \times 3 = 24$</td>
<td>$10 \times 3 = 30$</td>
</tr>
<tr>
<td>$2 \times 4 = 8$</td>
<td>$3 \times 4 = 12$</td>
<td>$8 \times 4 = 32$</td>
<td>$10 \times 4 = 40$</td>
</tr>
<tr>
<td>$2 \times 5 = 10$</td>
<td>$3 \times 5 = 15$</td>
<td>$8 \times 5 = 40$</td>
<td>$10 \times 5 = 50$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Table 3.9

3.6.2.2 Practice Set A

Find the first five multiples of the following numbers.

Exercise 3.281

4
(Solution on p. 204.)

Exercise 3.282

5
(Solution on p. 204.)

Exercise 3.283

6
(Solution on p. 204.)

Exercise 3.284

7
(Solution on p. 205.)

Exercise 3.285

9
(Solution on p. 205.)

3.6.3 Common Multiples

There will be times when we are given two or more whole numbers and we will need to know if there are any multiples that are common to each of them. If there are, we will need to know what they are. For example, some of the multiples that are common to 2 and 3 are 6, 12, and 18.

3.6.3.1 Sample Set B

Example 3.35

We can visualize common multiples using the number line.

Notice that the common multiples can be divided by *both* whole numbers.
3.6.3.2 Practice Set B

Find the first five common multiples of the following numbers.

- **Exercise 3.286**
 2 and 4
 (Solution on p. 205.)

- **Exercise 3.287**
 3 and 4
 (Solution on p. 205.)

- **Exercise 3.288**
 2 and 5
 (Solution on p. 205.)

- **Exercise 3.289**
 3 and 6
 (Solution on p. 205.)

- **Exercise 3.290**
 4 and 5
 (Solution on p. 205.)

3.6.4 The Least Common Multiple (LCM)

Notice that in our number line visualization of common multiples (above), the first common multiple is also the smallest, or **least common multiple**, abbreviated by **LCM**.

Least Common Multiple

The **least common multiple**, LCM, of two or more whole numbers is the smallest whole number that each of the given numbers will divide into without a remainder.

The least common multiple will be extremely useful in working with fractions (Section 4.1).

3.6.5 Finding the Least Common Multiple

Finding the LCM

To find the LCM of two or more numbers:

1. Write the prime factorization of each number, using exponents on repeated factors.
2. Write each base that appears in each of the prime factorizations.
3. To each base, attach the **largest** exponent that appears on it in the prime factorizations.
4. The LCM is the product of the numbers found in step 3.

There are some major differences between using the processes for obtaining the GCF and the LCM that we must note carefully:

The Difference Between the Processes for Obtaining the GCF and the LCM

1. Notice the difference between step 2 for the LCM and step 2 for the GCF. For the GCF, we use only the bases that are **common** in the prime factorizations, whereas for the LCM, we use **each** base that appears in the prime factorizations.
2. Notice the difference between step 3 for the LCM and step 3 for the GCF. For the GCF, we attach the **smallest** exponents to the common bases, whereas for the LCM, we attach the **largest** exponents to the bases.
3.6.5.1 Sample Set C

Find the LCM of the following numbers.

Example 3.36

9 and 12

1. \(9 = 3 \cdot 3 = 3^2\)
2. \(12 = 2 \cdot 6 = 2 \cdot 2 \cdot 3 = 2^2 \cdot 3\)
3. The bases that appear in the prime factorizations are 2 and 3.
4. The largest exponents appearing on 2 and 3 in the prime factorizations are, respectively, 2 and 2:
 - \(3^2\) from 9.
 - \(2^2\) from 12.

Thus, 36 is the smallest number that both 9 and 12 divide into without remainders.

Example 3.37

90 and 630

1. \(90 = 2 \cdot 45 = 2 \cdot 3 \cdot 15 = 2 \cdot 3 \cdot 3 \cdot 5 = 2 \cdot 3^2 \cdot 5\)
2. \(630 = 2 \cdot 315 = 2 \cdot 3 \cdot 105 = 2 \cdot 3 \cdot 3 \cdot 35 = 2 \cdot 3 \cdot 5 \cdot 7\)
3. The bases that appear in the prime factorizations are 2, 3, 5, and 7.
4. The largest exponents that appear on 2, 3, 5, and 7 are, respectively, 1, 2, 1, and 1:
 - \(2^1\) from either 90 or 630.
 - \(3^2\) from either 90 or 630.
 - \(5^1\) from either 90 or 630.
 - \(7^1\) from 630.

Thus, 630 is the smallest number that both 90 and 630 divide into with no remainders.

Example 3.38

33, 110, and 484

1. \(33 = 3 \cdot 11\)
2. \(110 = 2 \cdot 55 = 2 \cdot 5 \cdot 11\)
3. \(484 = 2 \cdot 242 = 2 \cdot 2 \cdot 121 = 2 \cdot 2 \cdot 11 \cdot 11 = 2^2 \cdot 11^2\).
4. The bases that appear in the prime factorizations are 2, 3, 5, and 11.
5. The largest exponents that appear on 2, 3, 5, and 11 are, respectively, 2, 1, 1, and 2:
 - \(2^2\) from 484.
 - \(3^1\) from 33.
 - \(5^1\) from 110
 - \(11^2\) from 484.

Thus, 7260 is the smallest number that 33, 110, and 484 divide into without remainders.
3.6.5.2 Practice Set C

Find the LCM of the following numbers.

Exercise 3.291
20 and 54
(Solution on p. 205.)

Exercise 3.292
14 and 28
(Solution on p. 205.)

Exercise 3.293
6 and 63
(Solution on p. 205.)

Exercise 3.294
28, 40, and 98
(Solution on p. 205.)

Exercise 3.295
16, 27, 125, and 363
(Solution on p. 205.)

3.6.6 Exercises

For the following problems, find the least common multiple of the numbers.

Exercise 3.296
8 and 12
(Solution on p. 205.)

Exercise 3.297
6 and 15
(Solution on p. 205.)

Exercise 3.298
8 and 10
(Solution on p. 205.)

Exercise 3.299
10 and 14
(Solution on p. 205.)

Exercise 3.300
4 and 6
(Solution on p. 205.)

Exercise 3.301
6 and 12
(Solution on p. 205.)

Exercise 3.302
9 and 18
(Solution on p. 205.)

Exercise 3.303
6 and 8
(Solution on p. 205.)

Exercise 3.304
5 and 6
(Solution on p. 205.)

Exercise 3.305
7 and 8
(Solution on p. 205.)

Exercise 3.306
3 and 4
(Solution on p. 205.)

Exercise 3.307
2 and 9
(Solution on p. 205.)

Exercise 3.308
7 and 9
(Solution on p. 205.)

Exercise 3.309
28 and 36
Exercise 3.310
24 and 36 (Solution on p. 205.)

Exercise 3.311
28 and 42

Exercise 3.312
240 and 360 (Solution on p. 205.)

Exercise 3.313
162 and 270

Exercise 3.314
20 and 24 (Solution on p. 205.)

Exercise 3.315
25 and 30

Exercise 3.316
24 and 54 (Solution on p. 205.)

Exercise 3.317
16 and 24

Exercise 3.318
36 and 48 (Solution on p. 205.)

Exercise 3.319
24 and 40

Exercise 3.320
15 and 21 (Solution on p. 205.)

Exercise 3.321
50 and 140

Exercise 3.322
7, 11, and 33 (Solution on p. 206.)

Exercise 3.323
8, 10, and 15

Exercise 3.324
18, 21, and 42 (Solution on p. 206.)

Exercise 3.325
4, 5, and 21

Exercise 3.326
45, 63, and 98 (Solution on p. 206.)

Exercise 3.327
15, 25, and 40

Exercise 3.328
12, 16, and 20 (Solution on p. 206.)

Exercise 3.329
84 and 96

Exercise 3.330
48 and 54 (Solution on p. 206.)

Exercise 3.331
12, 16, and 24

Exercise 3.332
12, 16, 24, and 36 (Solution on p. 206.)
CHAPTER 3. EXPONENTS, ROOTS, AND FACTORIZATION OF WHOLE NUMBERS

Exercise 3.333
6, 9, 12, and 18

Exercise 3.334
8, 14, 28, and 32

Exercise 3.335
18, 80, 108, and 490

Exercise 3.336
22, 27, 130, and 225

Exercise 3.337
38, 92, 115, and 189

Exercise 3.338
8 and 8

Exercise 3.339
12, 12, and 12

Exercise 3.340
3, 9, 12, and 3

(Solution on p. 206.)

3.6.6.1 Exercises for Review

Exercise 3.341
(Section 1.4) Round 434,892 to the nearest ten thousand.

Exercise 3.342
(Section 1.6) How much bigger is 14,061 than 7,509?

Exercise 3.343
(Section 2.4) Find the quotient. 22,428 ÷ 14.

Exercise 3.344
(Section 3.2) Expand 84^3. Do not find the value.

Exercise 3.345
(Section 3.5) Find the greatest common factor of 48 and 72.

(Solution on p. 206.)

3.7 Summary of Key Concepts

3.7.1 Summary of Key Concepts

Exponential Notation (Section 3.2)
Exponential notation is a description of repeated multiplication.

Exponent (Section 3.2)
An exponent records the number of identical factors repeated in a multiplication.

In a number such as 7^3,

Base (Section 3.2)
7 is called the base.

This content is available online at <http://cnx.org/content/m34877/1.2/>.
Exponent (Section 3.2)
3 is called the exponent, or power.

Power (Section 3.2)
7^3 is read "seven to the third power," or "seven cubed."

Squared, Cubed (Section 3.2)
A number raised to the second power is often called squared. A number raised to the third power is often called cubed.

Root (Section 3.2)
In mathematics, the word root is used to indicate that, through repeated multiplication, one number is the source of another number.

The Radical Sign $\sqrt{\text{ }}$ (Section 3.2)
The symbol $\sqrt{\text{ }}$ is called a radical sign and indicates the square root of a number. The symbol \sqrt{n} represents the nth root.

Radical, Index, Radicand (Section 3.2)
An expression such as $\sqrt[4]{16}$ is called a radical and 4 is called the index. The number 16 is called the radicand.

Grouping Symbols (Section 3.3)
Grouping symbols are used to indicate that a particular collection of numbers and meaningful operations are to be grouped together and considered as one number. The grouping symbols commonly used in mathematics are

- Parentheses: $()$
- Brackets: $[]$
- Braces: $\{ \}$
- Bar:

Order of Operations (Section 3.3)
1. Perform all operations inside grouping symbols, beginning with the innermost set, in the order of 2, 3, and 4 below.
2. Perform all exponential and root operations, moving left to right.
3. Perform all multiplications and division, moving left to right.
4. Perform all additions and subtractions, moving left to right.

One Number as the Factor of Another (Section 3.4)
A first number is a factor of a second number if the first number divides into the second number a whole number of times.

Prime Number (Section 3.4)
A whole number greater than one whose only factors are itself and 1 is called a prime number. The whole number 1 is not a prime number. The whole number 2 is the first prime number and the only even prime number.

Composite Number (Section 3.4)
A whole number greater than one that is composed of factors other than itself and 1 is called a composite number.
CHAPTER 3. EXPONENTS, ROOTS, AND FACTORIZATION OF WHOLE NUMBERS

Fundamental Principle of Arithmetic (Section 3.4)
Except for the order of factors, every whole number other than 1 can be written in one and only one way as a product of prime numbers.

Prime Factorization (Section 3.4)
The prime factorization of 45 is $3 \cdot 3 \cdot 5$. The numbers that occur in this factorization of 45 are each prime.

Determining the Prime Factorization of a Whole Number (Section 3.4)
There is a simple method, based on division by prime numbers, that produces the prime factorization of a whole number. For example, we determine the prime factorization of 132 as follows.

\[
\begin{array}{c|c|c}
2 & 132 \\
\hline
2 & 66 \\
\hline
3 & 33 \\
\hline
11 & \ \\
\end{array}
\]

The prime factorization of 132 is $2 \cdot 2 \cdot 3 \cdot 11 = 2^2 \cdot 3 \cdot 11$.

Common Factor (Section 3.5)
A factor that occurs in each number of a group of numbers is called a common factor. 3 is a common factor to the group 18, 6, and 45.

Greatest Common Factor (GCF) (Section 3.5)
The largest common factor of a group of whole numbers is called the greatest common factor. For example, to find the greatest common factor of 12 and 20,

1. Write the prime factorization of each number:
 \begin{align*}
 12 &= 2 \cdot 2 \cdot 3 = 2^2 \cdot 3 \\
 60 &= 2 \cdot 2 \cdot 3 \cdot 5 = 2^2 \cdot 3 \cdot 5
 \end{align*}

2. Write each base that is common to each of the numbers: 2 and 3
3. The smallest exponent appearing on 2 is 2.
 The smallest exponent appearing on 3 is 1.
4. The GCF of 12 and 60 is the product of the numbers 2^2 and $3 \cdot 3 = 4 \cdot 3 = 12$

Thus, 12 is the largest number that divides both 12 and 60 without a remainder.

Finding the GCF (Section 3.5)
There is a simple method, based on prime factorization, that determines the GCF of a group of whole numbers.

Multiple (Section 3.6)
When a whole number is multiplied by all other whole numbers, with the exception of zero, the resulting individual products are called multiples of that whole number. Some multiples of 7 are 7, 14, 21, and 28.

Common Multiples (Section 3.6)
Multiples that are common to a group of whole numbers are called common multiples. Some common multiples of 6 and 9 are 18, 36, and 54.

The LCM (Section 3.6)
The least common multiple (LCM) of a group of whole numbers is the smallest whole number that each of the given whole numbers divides into without a remainder. The least common multiple of 9 and 6 is 18.

Finding the LCM (Section 3.6)
There is a simple method, based on prime factorization, that determines the LCM of a group of whole numbers. For example, the least common multiple of 28 and 72 is found in the following way.
1. Write the prime factorization of each number

\[28 = 2 \cdot 2 \cdot 7 = 2^2 \cdot 7 \]

\[72 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 = 2^3 \cdot 3^2 \]

2. Write each base that appears in each of the prime factorizations, 2, 3, and 7.

3. To each of the bases listed in step 2, attach the largest exponent that appears on it in the prime factorization: 2, 3, and 7.

4. The LCM is the product of the numbers found in step 3.
\[2^3 \cdot 3^2 \cdot 7 = 8 \cdot 9 \cdot 7 = 504 \]

Thus, 504 is the smallest number that both 28 and 72 will divide into without a remainder.

The Difference Between the GCF and the LCM (Section 3.6)
The GCF of two or more whole numbers is the largest number that divides into each of the given whole numbers. The LCM of two or more whole numbers is the smallest whole number that each of the given numbers divides into without a remainder.

3.8 Exercise Supplement

3.8.1 Exercise Supplement

3.8.1.1 Exponents and Roots (Section 3.2)

For problems 1 - 25, determine the value of each power and root.

Exercise 3.346
\[3^3 \]

Exercise 3.347
\[4^3 \]

Exercise 3.348
\[0^5 \]

Exercise 3.349
\[1^4 \]

Exercise 3.350
\[12^2 \]

Exercise 3.351
\[7^2 \]

Exercise 3.352
\[8^2 \]

Exercise 3.353
\[11^2 \]

Exercise 3.354
\[2^5 \]

Exercise 3.355
\[3^4 \]

Exercise 3.356
\[15^2 \]

Exercise 3.357
\[20^2 \]

Exercise 3.358
\[25^2 \]

(Solution on p. 206.)

(Solution on p. 206.)
CHAPTER 3. EXPONENTS, ROOTS, AND FACTORIZATION OF WHOLE NUMBERS

Exercise 3.359
\[\sqrt{36} \]

Exercise 3.360
\[\sqrt{225} \]

(Solution on p. 206.)

Exercise 3.361
\[\sqrt{64} \]

(Solution on p. 206.)

Exercise 3.362
\[\sqrt{16} \]

(Solution on p. 206.)

Exercise 3.363
\[\sqrt{0} \]

(Solution on p. 206.)

Exercise 3.364
\[\sqrt{1} \]

Exercise 3.365
\[\sqrt{216} \]

Exercise 3.366
\[\sqrt{144} \]

(Solution on p. 206.)

Exercise 3.367
\[\sqrt{196} \]

(Solution on p. 206.)

Exercise 3.368
\[\sqrt{1} \]

Exercise 3.369
\[\sqrt{0} \]

(Solution on p. 206.)

Exercise 3.370
\[\sqrt{64} \]

(Solution on p. 206.)

3.8.1.2 Section 3.2

For problems 26–45, use the order of operations to determine each value.

Exercise 3.371
\[2^3 - 2 \cdot 4 \]

(Solution on p. 207.)

Exercise 3.372
\[5^2 - 10 \cdot 2 - 5 \]

Exercise 3.373
\[\sqrt{51} - 3^2 + 6 \cdot 2 \]

(Solution on p. 207.)

Exercise 3.374
\[15^2 + 5^2 \cdot 2^2 \]

Exercise 3.375
\[3 \cdot (2^2 + 3^2) \]

(Solution on p. 207.)

Exercise 3.376
\[64 \cdot (3^2 - 2^1) \]

Exercise 3.377
\[\frac{5^2 + 1}{15} + \frac{3^2 + 1}{14} \]

(Solution on p. 207.)

Exercise 3.378
\[\frac{6^2 - 1}{5 \cdot 7} - \frac{40 + 7}{2 \cdot 7} \]
Exercise 3.379
\[
\frac{2(3+5(2^2+1))}{5-3^2} - 3^2(2^6-1^4(2^3+25))
\]
\[
\frac{2+5^{2+1+2}}{2-5^{2+1}}
\]
Exercise 3.380
\[
\frac{(5^2-2^3)^2-2^7}{2^2-1} + 5 \cdot \left[\frac{3^2-3}{2} + 1 \right]
\]
Exercise 3.381
\[
(8 - 3)^2 + (2 + 3^2)^2
\]
Exercise 3.382
\[
3^2 \cdot (4^2 + \sqrt{25}) + 2^4 \cdot (\sqrt{81} - 3^2)
\]
Exercise 3.383
\[
\sqrt{16} + 9
\]
Exercise 3.384
\[
\sqrt{16} + \sqrt{9}
\]
Exercise 3.385
\[
\sqrt{16} + \sqrt{9}
\]
Exercise 3.386
\[
\sqrt{16} + \sqrt{9}
\]
Compare the results of problems 39 and 40. What might we conclude?
Exercise 3.387
\[
\sqrt{16} \cdot 2
\]
Exercise 3.388
\[
\sqrt{6} \cdot 6
\]
Exercise 3.389
\[
\sqrt{7} \cdot 7
\]
Exercise 3.390
\[
\sqrt{8} \cdot 8
\]
Exercise 3.391
An \underline{_______} records the number of identical factors that are repeated in a multiplication.

3.8.1.3 Prime Factorization of Natural Numbers (Section 3.4)

For problems 47-53, find all the factors of each number.

Exercise 3.392
\[
18
\]
Exercise 3.393
\[
24
\]
Exercise 3.394
\[
11
\]
Exercise 3.395
\[
12
\]
Exercise 3.396
\[
51
\]
Exercise 3.397
\[
25
\]
Exercise 3.398
\[
2
\]
Exercise 3.399
What number is the smallest prime number?

3.8.1.4 Grouping Symbol and the Order of Operations (Section 3.3)
For problems 55 - 64, write each number as a product of prime factors.

Exercise 3.400
55
Exercise 3.401
20
Exercise 3.402
80
Exercise 3.403
284
Exercise 3.404
700
Exercise 3.405
845
Exercise 3.406
1,614
Exercise 3.407
921
Exercise 3.408
29
Exercise 3.409
37

3.8.1.5 The Greatest Common Factor (Section 3.5)
For problems 65 - 75, find the greatest common factor of each collection of numbers.

Exercise 3.410
5 and 15
Exercise 3.411
6 and 14
Exercise 3.412
10 and 15
Exercise 3.413
6, 8, and 12
Exercise 3.414
18 and 24
Exercise 3.415
42 and 54
Exercise 3.416
40 and 60

(Solution on p. 207.)
3.8.1.6 The Least Common Multiple (Section 3.6)

For problems 76-86, find the least common multiple of each collection of numbers.

Exercise 3.421
5 and 15
(Solution on p. 208.)

Exercise 3.422
6 and 14
(Solution on p. 208.)

Exercise 3.423
10 and 15
(Solution on p. 208.)

Exercise 3.424
36 and 90
(Solution on p. 208.)

Exercise 3.425
42 and 54
(Solution on p. 208.)

Exercise 3.426
8, 12, and 20
(Solution on p. 208.)

Exercise 3.427
40, 50, and 180
(Solution on p. 208.)

Exercise 3.428
135, 147, and 324
(Solution on p. 208.)

Exercise 3.429
108, 144, and 324
(Solution on p. 208.)

Exercise 3.430
5, 18, 25, and 30
(Solution on p. 208.)

Exercise 3.431
12, 15, 18, and 20
(Solution on p. 208.)

Exercise 3.432
Find all divisors of 24.
(Solution on p. 208.)

Exercise 3.433
Find all factors of 24.
(Solution on p. 208.)

Exercise 3.434
Write all divisors of $2^3 \cdot 5^2 \cdot 7$.
(Solution on p. 208.)

Exercise 3.435
Write all divisors of $6 \cdot 8^2 \cdot 10^4$.
(Solution on p. 208.)

Exercise 3.436
Does 7 divide $5^3 \cdot 6^4 \cdot 7^2 \cdot 8^5$?
CHAPTER 3. EXPONENTS, ROOTS, AND FACTORIZATION OF WHOLE NUMBERS

Exercise 3.437
Does 13 divide $8^3 \cdot 10^2 \cdot 11^4 \cdot 13^2 \cdot 15$?

3.9 Proficiency Exam 9

3.9.1 Proficiency Exam

Exercise 3.438 (Solution on p. 208.)
(Section 3.2) In the number 8^5, write the names used for the number 8 and the number 5.

Exercise 3.439 (Solution on p. 208.)
(Section 3.2) Write using exponents. $12 \times 12 \times 12 \times 12 \times 12 \times 12$.

Exercise 3.440 (Solution on p. 208.)
(Section 3.2) Expand 9^4.

For problems 4-15, determine the value of each expression.

Exercise 3.441 (Solution on p. 208.)
(Section 3.3) 4^3.

Exercise 3.442 (Solution on p. 208.)
(Section 3.3) 1^5.

Exercise 3.443 (Solution on p. 208.)
(Section 3.3) 0^3.

Exercise 3.444 (Solution on p. 208.)
(Section 3.3) 2^6.

Exercise 3.445 (Solution on p. 208.)
(Section 3.3) $\sqrt{39}$.

Exercise 3.446 (Solution on p. 208.)
(Section 3.3) $\sqrt{27}$.

Exercise 3.447 (Solution on p. 208.)
(Section 3.3) $\sqrt{17}$.

Exercise 3.448 (Solution on p. 208.)
(Section 3.3) $16 + 2 \cdot (8 - 6)$.

Exercise 3.449 (Solution on p. 208.)
(Section 3.3) $5^3 - \sqrt{100} + 8 \cdot 2 - 20 \div 5$.

Exercise 3.450 (Solution on p. 208.)
(Section 3.3) $3 \cdot \frac{s^3 - 2 \cdot 3^2}{s^3 - 2} \cdot \frac{6^2 - 4 \cdot 5^2}{29}$.

Exercise 3.451 (Solution on p. 208.)
(Section 3.3) $\frac{29 + 2^4 \cdot 5^7 - \sqrt{17}}{7 + 3 \cdot 2}$.

Exercise 3.452 (Solution on p. 208.)
(Section 3.3) $\left[(8 - 3)^2 + (33 - 4 \sqrt{17}) \right] - 2 \left[(10 - 3^2) + 9 \right] - 5$.

For problems 16-20, find the prime factorization of each whole number. If the number is prime, write "prime."

Exercise 3.453 (Solution on p. 208.)
(Section 3.4) 18.

Exercise 3.454 (Solution on p. 208.)
(Section 3.4) 68.

9This content is available online at <http://cnx.org/content/m34879/1.2/>.
Exercise 3.455
(Solution on p. 209.) (Section 3.4) 142

Exercise 3.456
(Solution on p. 209.) (Section 3.4) 151

Exercise 3.457
(Solution on p. 209.) (Section 3.4) 468

For problems 21 and 22, find the greatest common factor.

Exercise 3.458
(Solution on p. 209.) (Section 3.5) 200 and 36

Exercise 3.459
(Solution on p. 209.) (Section 3.5) 900 and 135

Exercise 3.460
(Solution on p. 209.) (Section 3.5) Write all the factors of 36.

Exercise 3.461
(Solution on p. 209.) (Section 3.5) Write all the divisors of 18.

Exercise 3.462
(Solution on p. 209.) (Section 3.5) Does 7 divide into $5^2 \cdot 6^3 \cdot 7^4 \cdot 8$? Explain.

Exercise 3.463
(Solution on p. 209.) (Section 3.5) Is 3 a factor of $2^6 \cdot 3^2 \cdot 5^3 \cdot 4^6$? Explain.

Exercise 3.464
(Solution on p. 209.) (Section 3.5) Does 13 divide into $11^3 \cdot 12^4 \cdot 15^2$? Explain.

For problems 28 and 29, find the least common multiple.

Exercise 3.465
(Solution on p. 209.) (Section 3.6) 432 and 180

Exercise 3.466
(Solution on p. 209.) (Section 3.6) 28, 40, and 95
Solutions to Exercises in Chapter 3

Solution to Exercise 3.1 (p. 153)
37^2

Solution to Exercise 3.2 (p. 153)
16^5

Solution to Exercise 3.3 (p. 153)
9^{10}

Solution to Exercise 3.4 (p. 153)
$85 \cdot 85 \cdot 85$

Solution to Exercise 3.5 (p. 153)
$4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4$

Solution to Exercise 3.6 (p. 153)
$1,739 \cdot 1,739$

Solution to Exercise 3.7 (p. 155)
8

Solution to Exercise 3.8 (p. 155)
10

Solution to Exercise 3.9 (p. 155)
4

Solution to Exercise 3.10 (p. 155)
2

Solution to Exercise 3.11 (p. 156)
9

Solution to Exercise 3.12 (p. 156)
54

Solution to Exercise 3.13 (p. 156)
231

Solution to Exercise 3.14 (p. 156)
4

Solution to Exercise 3.15 (p. 156)
4^2

Solution to Exercise 3.17 (p. 156)
9^4

Solution to Exercise 3.19 (p. 156)
826^3

Solution to Exercise 3.21 (p. 156)
6^{65}

Solution to Exercise 3.23 (p. 157)
3008

Solution to Exercise 3.25 (p. 157)
$7 \cdot 7 \cdot 7 \cdot 7$

Solution to Exercise 3.27 (p. 157)
$117 \cdot 117 \cdot 117 \cdot 117 \cdot 117$

Solution to Exercise 3.29 (p. 157)
$30 \cdot 30$

Solution to Exercise 3.31 (p. 157)
$4 \cdot 4 = 16$

Solution to Exercise 3.33 (p. 157)
$10 \cdot 10 = 100$

Solution to Exercise 3.35 (p. 157)
$12 \cdot 12 = 144$
Solution to Exercise 3.37 (p. 157)
$15 \cdot 15 = 225$

Solution to Exercise 3.39 (p. 157)
$3 \cdot 3 \cdot 3 \cdot 3 = 81$

Solution to Exercise 3.41 (p. 157)
$10 \cdot 10 \cdot 10 = 1,000$

Solution to Exercise 3.43 (p. 157)
$8 \cdot 8 \cdot 8 = 512$

Solution to Exercise 3.45 (p. 158)
$9 \cdot 9 \cdot 9 = 729$

Solution to Exercise 3.47 (p. 158)
$7^1 = 7$

Solution to Exercise 3.49 (p. 158)
$2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 128$

Solution to Exercise 3.51 (p. 158)
$8 \cdot 8 \cdot 8 \cdot 8 = 4,096$

Solution to Exercise 3.53 (p. 158)
$6 \cdot 6 \cdot 6 \cdot 6 \cdot 6 \cdot 6 \cdot 6 = 10,077,696$

Solution to Exercise 3.55 (p. 158)
$42 \cdot 42 = 1,764$

Solution to Exercise 3.57 (p. 158)
$15 \cdot 15 \cdot 15 \cdot 15 \cdot 15 = 759,375$

Solution to Exercise 3.59 (p. 158)
$816 \cdot 816 = 665,566$

Solution to Exercise 3.61 (p. 158)
4

Solution to Exercise 3.63 (p. 158)
8

Solution to Exercise 3.65 (p. 158)
12

Solution to Exercise 3.67 (p. 159)
15

Solution to Exercise 3.69 (p. 159)
2

Solution to Exercise 3.71 (p. 159)
6

Solution to Exercise 3.73 (p. 159)
20

Solution to Exercise 3.75 (p. 159)
100

Solution to Exercise 3.77 (p. 159)
60

Solution to Exercise 3.79 (p. 159)
34

Solution to Exercise 3.81 (p. 159)
$4,158$

Solution to Exercise 3.83 (p. 159)
24

Solution to Exercise 3.85 (p. 159)
4
Solution to Exercise 3.87 (p. 159)
5
Solution to Exercise 3.89 (p. 160)
81
Solution to Exercise 3.91 (p. 160)
8 is the multiplier; 4 is the multiplicand
Solution to Exercise 3.93 (p. 160)
Yes; 0
Solution to Exercise 3.95 (p. 161)
10
Solution to Exercise 3.96 (p. 161)
68
Solution to Exercise 3.97 (p. 161)
24
Solution to Exercise 3.98 (p. 161)
4
Solution to Exercise 3.99 (p. 161)
0
Solution to Exercise 3.100 (p. 161)
not possible (indeterminate)
Solution to Exercise 3.101 (p. 162)
54
Solution to Exercise 3.102 (p. 162)
23
Solution to Exercise 3.103 (p. 162)
4
Solution to Exercise 3.104 (p. 162)
93
Solution to Exercise 3.105 (p. 162)
74
Solution to Exercise 3.106 (p. 162)
27
Solution to Exercise 3.107 (p. 164)
33
Solution to Exercise 3.108 (p. 164)
57
Solution to Exercise 3.109 (p. 164)
0
Solution to Exercise 3.110 (p. 164)
52
Solution to Exercise 3.111 (p. 164)
3
Solution to Exercise 3.112 (p. 164)
125
Solution to Exercise 3.113 (p. 164)
7
Solution to Exercise 3.114 (p. 167)
13,499
Solution to Exercise 3.115 (p. 167)
6,070
Solution to Exercise 3.116 (p. 168)
1,107,495

Solution to Exercise 3.117 (p. 168)
This number is too big for a nonscientific calculator. A scientific calculator will probably give you $2.217747109 \times 10^{11}$

Solution to Exercise 3.118 (p. 168)
26

Solution to Exercise 3.120 (p. 168)
46

Solution to Exercise 3.122 (p. 168)
1

Solution to Exercise 3.124 (p. 168)
0

Solution to Exercise 3.126 (p. 168)
3

Solution to Exercise 3.128 (p. 168)
26

Solution to Exercise 3.130 (p. 168)
97

Solution to Exercise 3.132 (p. 168)
29

Solution to Exercise 3.134 (p. 168)
1

Solution to Exercise 3.136 (p. 169)
0

Solution to Exercise 3.138 (p. 169)
90

Solution to Exercise 3.140 (p. 169)
508

Solution to Exercise 3.142 (p. 169)
19

Solution to Exercise 3.144 (p. 169)
144

Solution to Exercise 3.146 (p. 169)
1

Solution to Exercise 3.148 (p. 169)
52

Solution to Exercise 3.150 (p. 169)
25,001

Solution to Exercise 3.152 (p. 169)
$\frac{1}{35}$

Solution to Exercise 3.154 (p. 169)
14

Solution to Exercise 3.156 (p. 169)
0

Solution to Exercise 3.158 (p. 170)
152

Solution to Exercise 3.160 (p. 170)
$\frac{4}{7}$

Solution to Exercise 3.162 (p. 170)
2,690,730
Solution to Exercise 3.164 (p. 170)
1
Solution to Exercise 3.166 (p. 171)
1, 2, 3, 6
Solution to Exercise 3.167 (p. 171)
1, 2, 3, 4, 6, 12
Solution to Exercise 3.168 (p. 171)
1, 2, 3, 6, 9, 18
Solution to Exercise 3.169 (p. 171)
1, 5
Solution to Exercise 3.170 (p. 171)
1, 2, 5, 10
Solution to Exercise 3.171 (p. 171)
1, 3, 11, 33
Solution to Exercise 3.172 (p. 172)
1, 19
Solution to Exercise 3.173 (p. 172)
prime
Solution to Exercise 3.174 (p. 172)
composite
Solution to Exercise 3.175 (p. 172)
composite
Solution to Exercise 3.176 (p. 172)
composite
Solution to Exercise 3.177 (p. 172)
prime
Solution to Exercise 3.178 (p. 172)
prime
Solution to Exercise 3.179 (p. 173)
prime
Solution to Exercise 3.180 (p. 173)
composite
Solution to Exercise 3.181 (p. 175)
22 = 2 \cdot 11
Solution to Exercise 3.182 (p. 175)
40 = 2^3 \cdot 5
Solution to Exercise 3.183 (p. 175)
48 = 2^4 \cdot 3
Solution to Exercise 3.184 (p. 175)
63 = 3^2 \cdot 7
Solution to Exercise 3.185 (p. 175)
945 = 3^3 \cdot 5 \cdot 7
Solution to Exercise 3.186 (p. 175)
1617 = 3 \cdot 7^2 \cdot 11
Solution to Exercise 3.187 (p. 175)
17 is prime
Solution to Exercise 3.188 (p. 175)
61 is prime
Solution to Exercise 3.189 (p. 175)
2
Solution to Exercise 3.191 (p. 176)
4
Solution to Exercise 3.193 (p. 176)
11
Solution to Exercise 3.195 (p. 176)
3 · 2
Solution to Exercise 3.197 (p. 176)
2 · 3 · 5
Solution to Exercise 3.199 (p. 176)
1, 2, 4, 8, 16
Solution to Exercise 3.201 (p. 176)
1, 2, 4, 7, 8, 14, 28, 56
Solution to Exercise 3.203 (p. 176)
1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110, 220
Solution to Exercise 3.205 (p. 176)
1, 2, 4, 8, 16, 32
Solution to Exercise 3.207 (p. 176)
1, 2, 71, 142
Solution to Exercise 3.209 (p. 176)
prime
Solution to Exercise 3.211 (p. 177)
composite
Solution to Exercise 3.213 (p. 177)
prime
Solution to Exercise 3.215 (p. 177)
prime
Solution to Exercise 3.217 (p. 177)
prime
Solution to Exercise 3.219 (p. 177)
composite (5 · 11)
Solution to Exercise 3.221 (p. 177)
composite
Solution to Exercise 3.223 (p. 177)
composite
Solution to Exercise 3.225 (p. 177)
composite (11 · 19)
Solution to Exercise 3.227 (p. 177)
composite
Solution to Exercise 3.229 (p. 177)
2 · 13
Solution to Exercise 3.231 (p. 177)
2 · 3³
Solution to Exercise 3.233 (p. 178)
2³ · 7
Solution to Exercise 3.235 (p. 178)
2⁵ · 3 · 5
Solution to Exercise 3.237 (p. 178)
3⁴ · 5²
Solution to Exercise 3.239 (p. 178)
26,580
Solution to Exercise 3.241 (p. 178) true
Solution to Exercise 3.243 (p. 178) 14
Solution to Exercise 3.244 (p. 180) 12
Solution to Exercise 3.245 (p. 180) 24
Solution to Exercise 3.246 (p. 180) 10
Solution to Exercise 3.247 (p. 180) 3
Solution to Exercise 3.248 (p. 180) 30
Solution to Exercise 3.249 (p. 181) 2
Solution to Exercise 3.251 (p. 181) 4
Solution to Exercise 3.253 (p. 181) 4
Solution to Exercise 3.255 (p. 181) 5
Solution to Exercise 3.257 (p. 181) 33
Solution to Exercise 3.259 (p. 181) 9
Solution to Exercise 3.261 (p. 181) 11
Solution to Exercise 3.263 (p. 181) 3
Solution to Exercise 3.265 (p. 181) 7
Solution to Exercise 3.267 (p. 181) 25
Solution to Exercise 3.269 (p. 181) 2
Solution to Exercise 3.271 (p. 182) 11
Solution to Exercise 3.273 (p. 182) 1
Solution to Exercise 3.275 (p. 182) 1
Solution to Exercise 3.277 (p. 182) 53
Solution to Exercise 3.279 (p. 182) \(8^6 = 262,144\)
Solution to Exercise 3.281 (p. 183) 4, 8, 12, 16, 20
Solution to Exercise 3.282 (p. 183) 5, 10, 15, 20, 25
Solution to Exercise 3.283 (p. 183)
6, 12, 18, 24, 30
Solution to Exercise 3.284 (p. 183)
7, 14, 21, 28, 35
Solution to Exercise 3.285 (p. 183)
9, 18, 27, 36, 45
Solution to Exercise 3.286 (p. 184)
4, 8, 12, 16, 20
Solution to Exercise 3.287 (p. 184)
12, 24, 36, 48, 60
Solution to Exercise 3.288 (p. 184)
10, 20, 30, 40, 50
Solution to Exercise 3.289 (p. 184)
6, 12, 18, 24, 30
Solution to Exercise 3.290 (p. 184)
20, 40, 60, 80, 100
Solution to Exercise 3.291 (p. 186)
540
Solution to Exercise 3.292 (p. 186)
28
Solution to Exercise 3.293 (p. 186)
126
Solution to Exercise 3.294 (p. 186)
1,960
Solution to Exercise 3.295 (p. 186)
6,534,000
Solution to Exercise 3.296 (p. 186)
24
Solution to Exercise 3.298 (p. 186)
40
Solution to Exercise 3.300 (p. 186)
12
Solution to Exercise 3.302 (p. 186)
18
Solution to Exercise 3.304 (p. 186)
30
Solution to Exercise 3.306 (p. 186)
12
Solution to Exercise 3.308 (p. 186)
63
Solution to Exercise 3.310 (p. 187)
72
Solution to Exercise 3.312 (p. 187)
720
Solution to Exercise 3.314 (p. 187)
120
Solution to Exercise 3.316 (p. 187)
216
Solution to Exercise 3.318 (p. 187)
144
Solution to Exercise 3.320 (p. 187) 105
Solution to Exercise 3.322 (p. 187) 231
Solution to Exercise 3.324 (p. 187) 126
Solution to Exercise 3.326 (p. 187) 4,410
Solution to Exercise 3.328 (p. 187) 240
Solution to Exercise 3.330 (p. 187) 432
Solution to Exercise 3.332 (p. 187) 144
Solution to Exercise 3.334 (p. 188) 224
Solution to Exercise 3.336 (p. 188) 193,050
Solution to Exercise 3.338 (p. 188) 8
Solution to Exercise 3.340 (p. 188) 36
Solution to Exercise 3.342 (p. 188) 6,552
Solution to Exercise 3.344 (p. 188) $84 \cdot 84 \cdot 84$
Solution to Exercise 3.346 (p. 191) 27
Solution to Exercise 3.348 (p. 191) 0
Solution to Exercise 3.350 (p. 191) 144
Solution to Exercise 3.352 (p. 191) 64
Solution to Exercise 3.354 (p. 191) 32
Solution to Exercise 3.356 (p. 191) 225
Solution to Exercise 3.358 (p. 191) 625
Solution to Exercise 3.360 (p. 192) 15
Solution to Exercise 3.362 (p. 192) 2
Solution to Exercise 3.364 (p. 192) 1
Solution to Exercise 3.366 (p. 192) 12
Solution to Exercise 3.368 (p. 192) 1
Solution to Exercise 3.370 (p. 192)
2
Solution to Exercise 3.372 (p. 192)
0
Solution to Exercise 3.374 (p. 192)
325
Solution to Exercise 3.376 (p. 192)
64
Solution to Exercise 3.378 (p. 192)
-3
Solution to Exercise 3.380 (p. 193)
$-\frac{9}{17}$
Solution to Exercise 3.382 (p. 193)
146
Solution to Exercise 3.384 (p. 193)
5
Solution to Exercise 3.386 (p. 193)
The sum of square roots is not necessarily equal to the square root of the sum.
Solution to Exercise 3.388 (p. 193)
6
Solution to Exercise 3.390 (p. 193)
8
Solution to Exercise 3.392 (p. 193)
1, 2, 3, 6, 9, 18
Solution to Exercise 3.394 (p. 193)
1, 11
Solution to Exercise 3.396 (p. 193)
1, 3, 17, 51,
Solution to Exercise 3.398 (p. 193)
1, 2
Solution to Exercise 3.400 (p. 194)
5 · 11
Solution to Exercise 3.402 (p. 194)
$2^4 · 5$
Solution to Exercise 3.404 (p. 194)
$2^2 · 5^2 · 7$
Solution to Exercise 3.406 (p. 194)
2 · 3 · 269
Solution to Exercise 3.408 (p. 194)
29 is a prime number
Solution to Exercise 3.410 (p. 194)
5
Solution to Exercise 3.412 (p. 194)
5
Solution to Exercise 3.414 (p. 194)
6
Solution to Exercise 3.416 (p. 194)
20
Solution to Exercise 3.418 (p. 195)
21
Solution to Exercise 3.420 (p. 195) 11
Solution to Exercise 3.422 (p. 195) 42
Solution to Exercise 3.424 (p. 195) 180
Solution to Exercise 3.426 (p. 195) 120
Solution to Exercise 3.428 (p. 195) 79, 380
Solution to Exercise 3.430 (p. 195) 450
Solution to Exercise 3.432 (p. 195) 1, 2, 3, 4, 6, 8, 12, 24
Solution to Exercise 3.434 (p. 195) 1, 2, 4, 5, 7, 8, 10, 14, 20, 25, 35, 40, 50, 56, 70, 100, 140, 175, 200, 280, 700, 1,400
Solution to Exercise 3.436 (p. 195) yes
Solution to Exercise 3.438 (p. 196) base; exponent
Solution to Exercise 3.439 (p. 196) 12^7
Solution to Exercise 3.440 (p. 196) $9^4 = 9 \cdot 9 \cdot 9 \cdot 9 = 6,561$
Solution to Exercise 3.441 (p. 196) 64
Solution to Exercise 3.442 (p. 196) 1
Solution to Exercise 3.443 (p. 196) 0
Solution to Exercise 3.444 (p. 196) 64
Solution to Exercise 3.445 (p. 196) 7
Solution to Exercise 3.446 (p. 196) 3
Solution to Exercise 3.447 (p. 196) 1
Solution to Exercise 3.448 (p. 196) 20
Solution to Exercise 3.449 (p. 196) 127
Solution to Exercise 3.450 (p. 196) 24
Solution to Exercise 3.451 (p. 196) 8
Solution to Exercise 3.452 (p. 196) 5
Solution to Exercise 3.453 (p. 196) $3^2 \cdot 2$
Solution to Exercise 3.454 (p. 196)
$2^2 \cdot 17$

Solution to Exercise 3.455 (p. 197)
$2 \cdot 71$

Solution to Exercise 3.456 (p. 197)
prime

Solution to Exercise 3.457 (p. 197)
$2^2 \cdot 3^2 \cdot 13$

Solution to Exercise 3.458 (p. 197)
4

Solution to Exercise 3.459 (p. 197)
45

Solution to Exercise 3.460 (p. 197)
1, 2, 3, 4, 6, 9, 12, 18, 36

Solution to Exercise 3.461 (p. 197)
1, 2, 3, 6, 9, 18

Solution to Exercise 3.462 (p. 197)
Yes, because one of the (prime) factors of the number is 7.

Solution to Exercise 3.463 (p. 197)
Yes, because it is one of the factors of the number.

Solution to Exercise 3.464 (p. 197)
No, because the prime 13 is not a factor any of the listed factors of the number.

Solution to Exercise 3.465 (p. 197)
2,160

Solution to Exercise 3.466 (p. 197)
5,320
Chapter 4

Introduction to Fractions and
Multiplication and Division of Fractions

4.1 Objectives

After completing this chapter, you should

Fractions of Whole Numbers (Section 4.2)
- understand the concept of fractions of whole numbers
- be able to recognize the parts of a fraction

Proper Fractions, improper Fractions, and Mixed Numbers (Section 4.3)
- be able to distinguish between proper fractions, improper fractions, and mixed numbers
- be able to convert an improper fraction to a mixed number
- be able to convert a mixed number to an improper fraction

Equivalent Fractions, Reducing Fractions to Lowest Terms, and Raising Fractions to Higher Terms (Section 4.4)
- be able to recognize equivalent fractions
- be able to reduce a fraction to lowest terms
- be able to raise a fraction to higher terms

Multiplication of Fractions (Section 4.5)
- understand the concept of multiplication of fractions
- be able to multiply one fraction by another
- be able to multiply mixed numbers
- be able to find powers and roots of various fractions

Division of Fractions (Section 4.6)
- be able to determine the reciprocal of a number
- be able to divide one fraction by another

Applications Involving Fractions (Section 4.7)
- be able to solve missing product statements
- be able to solve missing factor statements

This content is available online at <http://cnx.org/content/m18892/1.3/>.
4.2 Fractions of Whole Numbers \(^2\)

4.2.1 Section Overview

- More Numbers on the Number Line
- Fractions of Whole Numbers
- The Parts of a Fraction
- Reading and Writing Fractions

4.2.2 More Numbers on the Number Line

In Chapters Section 1.1, Section 2.1, and Section 3.1, we studied the whole numbers and methods of combining them. We noted that we could visually display the whole numbers by drawing a number line and placing closed circles at whole number locations.

By observing this number line, we can see that the whole numbers do not account for every point on the line. What numbers, if any, can be associated with these points? In this section we will see that many of the points on the number line, including the points already associated with whole numbers, can be associated with numbers called fractions.

4.2.3 Fractions of Whole Numbers

The Nature of the Positive Fractions

We can extend our collection of numbers, which now contains only the whole numbers, by including fractions of whole numbers. We can determine the nature of these fractions using the number line.

If we place a pencil at some whole number and proceed to travel to the right to the next whole number, we see that our journey can be broken into different types of equal parts as shown in the following examples.

a. 1 part.

b. 2 equal parts.

c. 3 equal parts.

\(^2\)This content is available online at <http://cnx.org/content/m34908/1.2/>.
d. 4 equal parts.

The Latin Word Fractio
Notice that the number of parts, 2, 3, and 4, that we are breaking the original quantity into is always a *nonzero whole number*. The idea of breaking up a whole quantity gives us the word *fraction*. The word fraction comes from the Latin word "fractio" which means a breaking, or fracture.

Suppose we break up the interval from some whole number to the next whole number into five equal parts.

After starting to move from one whole number to the next, we decide to stop after covering only two parts. We have covered 2 parts of 5 equal parts. This situation is described by writing \(\frac{2}{5} \).

Positive Fraction
A number such as \(\frac{2}{5} \) is called a *positive fraction*, or more simply, a *fraction*.

4.2.4 The Parts of a Fraction
A fraction has *three parts*.

1. **The fraction bar — Fraction Bar**
 The fraction bar serves as a grouping symbol. It separates a quantity into individual groups. These groups have names, as noted in 2 and 3 below.

2. **The nonzero number below the fraction bar: Denominator**
 This number is called the denominator of the fraction, and it indicates the number of parts the whole quantity has been divided into. Notice that the denominator must be a nonzero whole number since the least number of parts any quantity can have is one.

3. **The number above the fraction bar: Numerator**
 This number is called the numerator of the fraction, and it indicates how many of the specified parts are being considered. Notice that the numerator can be any whole number (including zero) since any number of the specified parts can be considered.

\[
\frac{\text{whole number}}{\text{nonzero whole number}} \quad \leftrightarrow \quad \frac{\text{numerator}}{\text{denominator}}
\]

4.2.4.1 Sample Set A
The diagrams in the following problems are illustrations of fractions.

Example 4.1
Diagrams 4.1:
(a) A whole circle
(b) The whole circle divided into 3 equal parts
(c) 1 of the 3 equal parts

The fraction $\frac{1}{3}$ is read as "one third."

Example 4.2

Figure 4.2:
(a) A whole rectangle
(b) The whole rectangle divided into 5 equal parts
(c) 3 of the 5 equal parts

The fraction $\frac{3}{5}$ is read as "three fifths."

Example 4.3
Figure 4.3: (a) The number line between 0 and 1 (b) The number line between 0 and 1 divided into 7 equal parts (c) 6 of the 7 equal parts

6 \frac{6}{7} \text{ of the } 7 \text{ equal parts}

The fraction $\frac{6}{7}$ is read as "six sevenths."

Example 4.4

Figure 4.4: (a) A whole circle (b) The whole circle divided into 4 equal parts (c) 4 of the 4 equal parts

\[
\frac{4}{4} \leftarrow \frac{4}{4} \text{ of the } 4 \text{ equal parts}
\]

When the numerator and denominator are equal, the fraction represents the entire quantity, and its value is 1.

\[
\frac{\text{nonzero whole number}}{\text{same nonzero whole number}} = 1
\]

4.2.4.2 Practice Set A

Specify the numerator and denominator of the following fractions.
4.2.5 Reading and Writing Fractions

In order to properly translate fractions from word form to number form, or from number form to word form, it is necessary to understand the use of the *hyphen*.

Use of the Hyphen

One of the main uses of the *hyphen* is to tell the reader that two words not ordinarily joined are to be taken in combination as a unit. Hyphens are *always* used for numbers between and including 21 and 99 (except those ending in zero).

4.2.5.1 Sample Set B

Write each fraction using whole numbers.

Example 4.5

Fifty three-hundredths. The hyphen joins the words three and hundredths and tells us to consider them as a single unit. Therefore, fifty three-hundredths translates as $\frac{50}{300}$.

Example 4.6

Fifty-three hundredths. The hyphen joins the numbers fifty and three and tells us to consider them as a single unit. Therefore, fifty-three hundredths translates as $\frac{53}{100}$.

Example 4.7

Four hundred seven-thousandths. The hyphen joins the words seven and thousandths and tells us to consider them as a single unit. Therefore, four hundred seven-thousandths translates as $\frac{407}{1000}$.

Example 4.8

Four hundred seven thousandths. The absence of hyphens indicates that the words *seven* and *thousandths* are to be considered individually.

Four hundred seven thousandths translates as $\frac{407}{1000}$.

Write each fraction using words.

Example 4.9

$\frac{21}{85}$ translates as twenty-one eighty-fifths.

Example 4.10

$\frac{200}{5000}$ translates as two hundred three-thousandths. A hyphen is needed between the words three and thousandths to tell the reader that these words are to be considered as a single unit.
Example 4.11
\[
\frac{200}{1000}
\]
translates as two hundred three thousandths.

4.2.5.2 Practice Set B

Write the following fractions using whole numbers.

Exercise 4.6
one tenth
(Solution on p. 276.)

Exercise 4.7
eleven fourteenth
(Solution on p. 276.)

Exercise 4.8
sixteen thirty-fifths
(Solution on p. 276.)

Exercise 4.9
eight hundred seven-thousandths
(Solution on p. 276.)

Write the following using words.

Exercise 4.10
\[
\frac{3}{8}
\]
(Solution on p. 276.)

Exercise 4.11
\[
\frac{1}{10}
\]
(Solution on p. 276.)

Exercise 4.12
\[
\frac{3}{250}
\]
(Solution on p. 276.)

Exercise 4.13
\[
\frac{114}{3190}
\]
(Solution on p. 276.)

Name the fraction that describes each shaded portion.

Exercise 4.14
(Solution on p. 276.)

Exercise 4.15
(Solution on p. 276.)

In the following 2 problems, state the numerator and denominator, and write each fraction in words.

Exercise 4.16
The number \[
\frac{5}{9}
\]
is used in converting from Fahrenheit to Celsius.
(Solution on p. 276.)

Exercise 4.17
A dime is \[
\frac{1}{10}
\] of a dollar.
(Solution on p. 276.)
4.2.6 Exercises

For the following 10 problems, specify the numerator and denominator in each fraction.

Exercise 4.18 \(\frac{3}{4} \) \hspace{1cm} (Solution on p. 276.)

Exercise 4.19 \(\frac{9}{10} \)

Exercise 4.20 \(\frac{1}{5} \) \hspace{1cm} (Solution on p. 276.)

Exercise 4.21 \(\frac{5}{6} \)

Exercise 4.22 \(\frac{7}{?} \) \hspace{1cm} (Solution on p. 276.)

Exercise 4.23 \(\frac{4}{8} \)

Exercise 4.24 \(\frac{0}{12} \) \hspace{1cm} (Solution on p. 276.)

Exercise 4.25 \(\frac{25}{25} \)

Exercise 4.26 \(\frac{18}{1} \) \hspace{1cm} (Solution on p. 276.)

Exercise 4.27 \(\frac{0}{15} \)

For the following 10 problems, write the fractions using whole numbers.

Exercise 4.28 four fifths \hspace{1cm} (Solution on p. 276.)

Exercise 4.29 two ninths

Exercise 4.30 fifteen twentieths \hspace{1cm} (Solution on p. 276.)

Exercise 4.31 forty-seven eighty-thirds

Exercise 4.32 ninety-one one hundred sevenths \hspace{1cm} (Solution on p. 276.)

Exercise 4.33 twenty-two four hundred elevenths

Exercise 4.34 six hundred five eight hundred thirty-fourths \hspace{1cm} (Solution on p. 277.)

Exercise 4.35 three thousand three forty-four ten-thousandths \hspace{1cm} (Solution on p. 277.)

Exercise 4.36 ninety-two one-millionths

Exercise 4.37 one three-billionths

For the following 10 problems, write the fractions using words.
Exercise 4.38
\(\frac{5}{7} \)
(Solution on p. 277.)

Exercise 4.39
\(\frac{6}{10} \)

Exercise 4.40
\(\frac{8}{15} \)
(Solution on p. 277.)

Exercise 4.41
\(\frac{10}{13} \)

Exercise 4.42
\(\frac{75}{100} \)
(Solution on p. 277.)

Exercise 4.43
\(\frac{86}{135} \)

Exercise 4.44
\(\frac{916}{1,014} \)
(Solution on p. 277.)

Exercise 4.45
\(\frac{501}{10,001} \)

Exercise 4.46
\(\frac{18}{51,508} \)
(Solution on p. 277.)

Exercise 4.47
\(\frac{1}{500,000} \)

For the following 4 problems, name the fraction corresponding to the shaded portion.

Exercise 4.48
(Solution on p. 277.)

Exercise 4.49

Exercise 4.50
(Solution on p. 277.)

Exercise 4.51

For the following 4 problems, shade the portion corresponding to the given fraction on the given figure.
Exercise 4.52
\[\frac{2}{3} \]

Exercise 4.53
\[\frac{1}{6} \]

Exercise 4.54
\[\frac{6}{9} \]

Exercise 4.55
\[\frac{0}{3} \]

State the numerator and denominator and write in words each of the fractions appearing in the statements for the following 10 problems.

Exercise 4.56
A contractor is selling houses on \(\frac{1}{4} \) acre lots.

Exercise 4.57
The fraction \(\frac{22}{7} \) is sometimes used as an approximation to the number \(\pi \). (The symbol is read “pi.”)

Exercise 4.58
The fraction \(\frac{4}{3} \) is used in finding the volume of a sphere.

Exercise 4.59
One inch is \(\frac{1}{12} \) of a foot.

Exercise 4.60
About \(\frac{2}{3} \) of the students in a college statistics class received a “B” in the course.

Exercise 4.61
The probability of randomly selecting a club when drawing one card from a standard deck of 52 cards is \(\frac{13}{52} \).

(Solution on p. 277.)
Exercise 4.62 (Solution on p. 277.)
In a box that contains eight computer chips, five are known to be good and three are known to be
defective. If three chips are selected at random, the probability that all three are defective is $\frac{1}{56}$.

Exercise 4.63
In a room of 25 people, the probability that at least two people have the same birthdate (date and
month, not year) is $\frac{569}{1000}$.

Exercise 4.64 (Solution on p. 277.)
The mean (average) of the numbers 21, 25, 43, and 36 is $\frac{125}{4}$.

Exercise 4.65
If a rock falls from a height of 20 meters on Jupiter, the rock will be $\frac{32}{25}$ meters high after $\frac{6}{5}$ seconds.

4.2.6.1 Exercises For Review

Exercise 4.66 (Solution on p. 277.)
(Section 1.7) Use the numbers 3 and 11 to illustrate the commutative property of addition.

Exercise 4.67
(Section 2.4) Find the quotient. $676 \div 26$

Exercise 4.68 (Solution on p. 277.)
(Section 3.2) Write $7 \cdot 7 \cdot 7 \cdot 7$ using exponents.

Exercise 4.69
(Section 3.3) Find the value of $\frac{8(6+20)}{8} + \frac{3(6+16)}{22}$.

Exercise 4.70 (Solution on p. 277.)
(Section 3.6) Find the least common multiple of 12, 16, and 18.

4.3 Proper Fractions, Improper Fractions, and Mixed Numbers

4.3.1 Section Overview

- Positive Proper Fractions
- Positive Improper Fractions
- Positive Mixed Numbers
- Relating Positive Improper Fractions and Positive Mixed Numbers
- Converting an Improper Fraction to a Mixed Number
- Converting a Mixed Number to an Improper Fraction

Now that we know what positive fractions are, we consider three types of positive fractions: proper fractions,
improper fractions, and mixed numbers.

4.3.2 Positive Proper Fractions

Positive Proper Fraction
Fractions in which the whole number in the numerator is strictly less than the whole number in the de-
nominator are called positive proper fractions. On the number line, proper fractions are located in the
interval from 0 to 1. Positive proper fractions are always less than one.

3This content is available online at <http://cnx.org/content/m34912/1.2/>.
The closed circle at 0 indicates that 0 is included, while the open circle at 1 indicates that 1 is not included.

Some examples of positive proper fractions are

\[
\frac{1}{2}, \frac{3}{5}, \frac{20}{27}, \text{ and } \frac{106}{225}
\]

Note that \(1 < 2, 3 < 5, 20 < 27, \text{ and } 106 < 225\).

4.3.3 Positive Improper Fractions

Positive Improper Fractions

Fractions in which the whole number in the numerator is greater than or equal to the whole number in the denominator are called **positive improper fractions**. On the number line, improper fractions lie to the right of (and including) 1. Positive improper fractions are always greater than or equal to 1.

Some examples of positive improper fractions are

\[
\frac{3}{2}, \frac{8}{5}, \frac{4}{4}, \text{ and } \frac{105}{16}
\]

Note that \(3 \geq 2, 8 \geq 5, 4 \geq 4, \text{ and } 105 \geq 16\).

4.3.4 Positive Mixed Numbers

Positive Mixed Numbers

A number of the form

\[
\text{nonzero whole number } + \text{ proper fraction}
\]

is called a **positive mixed number**. For example, \(2\frac{3}{4}\) is a mixed number. On the number line, mixed numbers are located in the interval to the right of (and including) 1. Mixed numbers are always greater than or equal to 1.

4.3.5 Relating Positive Improper Fractions and Positive Mixed Numbers

A relationship between improper fractions and mixed numbers is suggested by two facts. The first is that improper fractions and mixed numbers are located in the same interval on the number line. The second fact, that mixed numbers are the sum of a natural number and a fraction, can be seen by making the following observations.

Divide a whole quantity into 3 equal parts.
Now, consider the following examples by observing the respective shaded areas.

In the shaded region, there are 2 one thirds, or \(\frac{2}{3} \).

\[
2 \left(\frac{1}{3} \right) = \frac{2}{3}
\]

There are 3 one thirds, or \(\frac{3}{3} \), or 1.

\[
3 \left(\frac{1}{3} \right) = \frac{3}{3} \text{ or } 1
\]

Thus,

\[
\frac{3}{3} = 1
\]

Improper fraction = whole number.

There are 4 one thirds, or \(\frac{4}{3} \), or 1 and \(\frac{1}{3} \).

\[
4 \left(\frac{1}{3} \right) = \frac{4}{3} \text{ or } 1 \text{ and } \frac{1}{3}
\]

The terms 1 and \(\frac{1}{3} \) can be represented as \(1 + \frac{1}{3} \) or \(1\frac{1}{3} \).

Thus,

\[
\frac{4}{3} = 1\frac{1}{3}
\]

Improper fraction = mixed number.

There are 5 one thirds, or \(\frac{5}{3} \), or 1 and \(\frac{2}{3} \).

\[
5 \left(\frac{1}{3} \right) = \frac{5}{3} \text{ or } 1 \text{ and } \frac{2}{3}
\]

The terms 1 and \(\frac{2}{3} \) can be represented as \(1 + \frac{2}{3} \) or \(1\frac{2}{3} \).

Thus,

\[
\frac{5}{3} = 1\frac{2}{3}
\]

Improper fraction = mixed number.

There are 6 one thirds, or \(\frac{6}{3} \), or 2.

\[
6 \left(\frac{1}{3} \right) = \frac{6}{3} = 2
\]
Thus,

\[
\frac{6}{3} = 2
\]

Improper fraction = whole number.

The following important fact is illustrated in the preceding examples.

Mixed Number = Natural Number + Proper Fraction

Mixed numbers are the sum of a natural number and a proper fraction. Mixed number = (natural number) + (proper fraction)

For example, \(1 \frac{1}{3}\) can be expressed as \(1 + \frac{1}{3}\). The fraction \(5 \frac{7}{8}\) can be expressed as \(5 + \frac{7}{8}\).

It is important to note that a number such as \(5 + \frac{7}{8}\) does not indicate multiplication. To indicate multiplication, we would need to use a multiplication symbol (such as \(\cdot\)).

Note: \(5 \frac{7}{8}\) means \(5 + \frac{7}{8}\) and not \(5 \cdot \frac{7}{8}\), which means 5 times \(\frac{7}{8}\) or 5 multiplied by \(\frac{7}{8}\).

Thus, mixed numbers may be represented by improper fractions, and improper fractions may be represented by mixed numbers.

4.3.6 Converting Improper Fractions to Mixed Numbers

To understand how we might convert an improper fraction to a mixed number, let’s consider the fraction, \(\frac{4}{3}\).

\[
\begin{array}{c|c|c}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\hline
1 & 1 & 1 \\
\hline
\frac{4}{3} & \frac{1}{3} + \frac{1}{3} + \frac{1}{3}
\end{array}
\]

\[
\frac{4}{3} = 1 + \frac{1}{3}
\]

Thus, \(\frac{4}{3} = 1\frac{1}{3}\).

We can illustrate a procedure for converting an improper fraction to a mixed number using this example. However, the conversion is more easily accomplished by dividing the numerator by the denominator and using the result to write the mixed number.

Converting an Improper Fraction to a Mixed Number

To convert an improper fraction to a mixed number, divide the numerator by the denominator.

1. The whole number part of the mixed number is the quotient.
2. The fractional part of the mixed number is the remainder written over the divisor (the denominator of the improper fraction).
4.3.6.1 Sample Set A

Convert each improper fraction to its corresponding mixed number.

Example 4.12

\[\frac{5}{3} \]

Divide 5 by 3.

\[
\begin{array}{c|c|c}
\hline
3 & \downarrow & 5 \\
\hline
\uparrow & 3 \\
\hline
2 & \downarrow & \text{numerator of the fractional part} \\
\hline
\uparrow & \text{denominator of the fractional part} \\
\hline
\end{array}
\]

The improper fraction \(\frac{5}{3} = 1 \frac{2}{3} \).

Example 4.13

\[\frac{46}{9} \]

Divide 46 by 9.

\[
\begin{array}{c|c|c}
\hline
9 & \downarrow & 46 \\
\hline
\uparrow & 45 \\
\hline
1 & \downarrow & \text{numerator of the fractional part} \\
\hline
\uparrow & \text{denominator of the fractional part} \\
\hline
\end{array}
\]

The improper fraction \(\frac{46}{9} = 5 \frac{1}{9} \).

Example 4.14

\[\frac{83}{11} \]

Divide 83 by 11.

\[
\begin{array}{c|c|c}
\hline
11 & \downarrow & 83 \\
\hline
\uparrow & 77 \\
\hline
6 & \downarrow & \text{numerator of the fractional part} \\
\hline
\uparrow & \text{denominator of the fractional part} \\
\hline
\end{array}
\]

The improper fraction \(\frac{83}{11} = 7 \frac{6}{11} \).

Example 4.15

\[\frac{104}{4} \]

Divide 104 by 4.
CHAPTER 4. INTRODUCTION TO FRACTIONS AND MULTIPLICATION AND DIVISION OF FRACTIONS

4.3.6.2 Practice Set A

Convert each improper fraction to its corresponding mixed number.

Exercise 4.71
\[\frac{9}{7} \]
(Solution on p. 277.)

Exercise 4.72
\[\frac{11}{7} \]
(Solution on p. 277.)

Exercise 4.73
\[\frac{14}{7} \]
(Solution on p. 277.)

Exercise 4.74
\[\frac{31}{13} \]
(Solution on p. 277.)

Exercise 4.75
\[\frac{20}{4} \]
(Solution on p. 278.)

Exercise 4.76
\[\frac{496}{8} \]
(Solution on p. 278.)

4.3.7 Converting Mixed Numbers to Improper Fractions

To understand how to convert a mixed number to an improper fraction, we'll recall

mixed number = (natural number) + (proper fraction)

and consider the following diagram.
Recall that multiplication describes repeated addition.

Notice that \(\frac{5}{3} \) can be obtained from \(1 \frac{2}{3} \) using multiplication in the following way.

Multiply: \(3 \cdot 1 = 3 \)

\[\frac{2}{3} \]

Add: \(3 + 2 = 5 \). Place the 5 over the 3: \(\frac{5}{3} \)

The procedure for converting a mixed number to an improper fraction is illustrated in this example.

Converting a Mixed Number to an Improper Fraction

To convert a mixed number to an improper fraction,

1. Multiply the denominator of the fractional part of the mixed number by the whole number part.
2. To this product, add the numerator of the fractional part.
3. Place this result over the denominator of the fractional part.

4.3.7.1 Sample Set B

Convert each mixed number to an improper fraction.

Example 4.16

\(5 \frac{7}{8} \)

1. Multiply: \(8 \cdot 5 = 40 \).
2. Add: \(40 + 7 = 47 \).
3. Place 47 over 8: \(\frac{47}{8} \).

Thus, \(5 \frac{7}{8} = \frac{47}{8} \).

Example 4.17

\(16 \frac{2}{3} \)

1. Multiply: \(3 \cdot 16 = 48 \).
2. Add: \(48 + 2 = 50 \).
3. Place 50 over 3: \(\frac{50}{3} \).

Thus, \(16 \frac{2}{3} = \frac{50}{3} \).
4.3.7.2 Practice Set B

Convert each mixed number to its corresponding improper fraction.

Exercise 4.77
\[8 \frac{1}{4}\]
(Solution on p. 278.)

Exercise 4.78
\[5 \frac{3}{7}\]
(Solution on p. 278.)

Exercise 4.79
\[1 \frac{1}{10}\]
(Solution on p. 278.)

Exercise 4.80
\[12 \frac{2}{7}\]
(Solution on p. 278.)

4.3.8 Exercises

For the following 15 problems, identify each expression as a proper fraction, an improper fraction, or a mixed number.

Exercise 4.81
\[\frac{3}{2}\]
(Solution on p. 278.)

Exercise 4.82
\[\frac{4}{9}\]
(Solution on p. 278.)

Exercise 4.83
\[\frac{5}{7}\]
(Solution on p. 278.)

Exercise 4.84
\[\frac{1}{8}\]
(Solution on p. 278.)

Exercise 4.85
\[6 \frac{1}{4}\]
(Solution on p. 278.)

Exercise 4.86
\[\frac{11}{8}\]
(Solution on p. 278.)

Exercise 4.87
\[\frac{1000}{12}\]
(Solution on p. 278.)

Exercise 4.88
\[191 \frac{1}{5}\]
(Solution on p. 278.)

Exercise 4.89
\[1 \frac{9}{17}\]
(Solution on p. 278.)

Exercise 4.90
\[31 \frac{6}{7}\]
(Solution on p. 278.)

Exercise 4.91
\[3 \frac{7}{35}\]
(Solution on p. 278.)

Exercise 4.92
\[\frac{55}{12}\]
(Solution on p. 278.)

Exercise 4.93
\[\frac{9}{5}\]
(Solution on p. 278.)

Exercise 4.94
\[\frac{8}{5}\]
(Solution on p. 278.)

Exercise 4.95
\[101 \frac{1}{11}\]
(Solution on p. 278.)
For the following 15 problems, convert each of the improper fractions to its corresponding mixed number.

Exercise 4.96
$$\frac{11}{6}$$

Exercise 4.97
$$\frac{14}{3}$$

Exercise 4.98
$$\frac{25}{4}$$

Exercise 4.99
$$\frac{35}{4}$$

Exercise 4.100
$$\frac{71}{8}$$

Exercise 4.101
$$\frac{63}{7}$$

Exercise 4.102
$$\frac{121}{17}$$

Exercise 4.103
$$\frac{155}{19}$$

Exercise 4.104
$$\frac{500}{9}$$

Exercise 4.105
$$\frac{5,000}{9}$$

Exercise 4.106
$$\frac{23}{5}$$

Exercise 4.107
$$\frac{73}{2}$$

Exercise 4.108
$$\frac{19}{2}$$

Exercise 4.109
$$\frac{316}{41}$$

Exercise 4.110
$$\frac{800}{3}$$

For the following 15 problems, convert each of the mixed numbers to its corresponding improper fraction.

Exercise 4.111
$$\frac{4\frac{1}{8}}{}$$

Exercise 4.112
$$\frac{1\frac{5}{7}}{}$$

Exercise 4.113
$$\frac{6\frac{2}{9}}{}$$

Exercise 4.114
$$\frac{15\frac{1}{4}}{}$$

Exercise 4.115
$$\frac{10\frac{5}{11}}{}$$

Exercise 4.116
$$\frac{15\frac{3}{17}}{}$$

Exercise 4.117
$$\frac{8\frac{2}{9}}{}$$
Exercise 4.118
\[\frac{4}{7} \]

Exercise 4.119
\[\frac{21}{2} \]
(Solution on p. 279.)

Exercise 4.120
\[17 \frac{9}{10} \]

Exercise 4.121
\[9 \frac{20}{27} \]
(Solution on p. 279.)

Exercise 4.122
\[5 \frac{1}{16} \]

Exercise 4.123
\[90 \frac{1}{100} \]
(Solution on p. 279.)

Exercise 4.124
\[300 \frac{13}{1000} \]

Exercise 4.125
\[19 \frac{7}{8} \]
(Solution on p. 279.)

Exercise 4.126
Why does \(\frac{4}{7} \) not qualify as a mixed number?

Hint: See the definition of a mixed number.

Exercise 4.127
Why does \(5 \) qualify as a mixed number?

Note: See the definition of a mixed number.

Calculator Problems
For the following 8 problems, use a calculator to convert each mixed number to its corresponding improper fraction.

Exercise 4.128
\[35 \frac{11}{77} \]

Exercise 4.129
\[27 \frac{5}{61} \]
(Solution on p. 279.)

Exercise 4.130
\[83 \frac{40}{31} \]

Exercise 4.131
\[105 \frac{21}{27} \]
(Solution on p. 279.)

Exercise 4.132
\[72 \frac{605}{606} \]

Exercise 4.133
\[816 \frac{19}{25} \]
(Solution on p. 279.)

Exercise 4.134
\[708 \frac{32}{51} \]

Exercise 4.135
\[6,012 \frac{4216}{8,117} \]
(Solution on p. 279.)
4.3.8.1 Exercises For Review

Exercise 4.136
(Section 1.4) Round 2,614,000 to the nearest thousand.

Exercise 4.137
(Section 2.2) Find the product. \(1,004 \cdot 1,005\).

Exercise 4.138
(Section 2.5) Determine if 41,826 is divisible by 2 and 3.

Exercise 4.139
(Section 3.6) Find the least common multiple of 28 and 36.

Exercise 4.140
(Section 4.2) Specify the numerator and denominator of the fraction \(\frac{12}{19}\).

4.4 Equivalent Fractions, Reducing Fractions to Lowest Terms, and Raising Fractions to Higher Terms

4.4.1 Section Overview

- Equivalent Fractions
- Reducing Fractions to Lowest Terms
- Raising Fractions to Higher Terms

4.4.2 Equivalent Fractions

Let's examine the following two diagrams.

\[
\begin{array}{c|c|c}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\hline
\frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\
\end{array}
\]

\(\frac{3}{3}\) of the whole is shaded.

\[
\begin{array}{c|c|c|c|c|c|c}
\frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\
\hline
\end{array}
\]

\(\frac{4}{6}\) of the whole is shaded.

Notice that both \(\frac{2}{3}\) and \(\frac{4}{6}\) represent the same part of the whole, that is, they represent the same number.

Equivalent Fractions
Fractions that have the same value are called equivalent fractions. Equivalent fractions may look different, but they are still the same point on the number line.

There is an interesting property that equivalent fractions satisfy.

\[
\frac{2}{3} \times \frac{4}{6}
\]

A Test for Equivalent Fractions Using the Cross Product
These pairs of products are called cross products.

\[2 \cdot 6 \neq 3 \cdot 4\]

\[12 \neq 12\]

\[^{4}\text{This content is available online at <http://cnx.org/content/m34927/1.3/>].\]
232

CHAPTER 4. INTRODUCTION TO FRACTIONS AND MULTIPLICATION
AND DIVISION OF FRACTIONS

If the cross products are equal, the fractions are equivalent. If the cross products are not equal, the fractions
are not equivalent.

Thus, $\frac{2}{3}$ and $\frac{4}{6}$ are equivalent, that is, $\frac{2}{3} = \frac{4}{6}$.

4.4.2.1 Sample Set A

Determine if the following pairs of fractions are equivalent.

Example 4.18

$\frac{3}{4}$ and $\frac{6}{8}$. Test for equality of the cross products.

$$
\begin{align*}
\frac{3}{4} \times \frac{6}{8} \\
3 \times 8 \neq 6 \times 4 \\
24 \neq 24
\end{align*}
$$

The cross products are equals.

The fractions $\frac{3}{4}$ and $\frac{6}{8}$ are equivalent, so $\frac{3}{4} = \frac{6}{8}$.

Example 4.19

$\frac{3}{8}$ and $\frac{9}{16}$. Test for equality of the cross products.

$$
\begin{align*}
\frac{3}{8} \times \frac{9}{16} \\
3 \times 16 \neq 9 \times 8 \\
48 \neq 72
\end{align*}
$$

The cross products are not equal.

The fractions $\frac{3}{8}$ and $\frac{9}{16}$ are not equivalent.

4.4.2.2 Practice Set A

Determine if the pairs of fractions are equivalent.

Exercise 4.141

$\frac{1}{2}$, $\frac{3}{5}$
(Solution on p. 279.)

Exercise 4.142

$\frac{4}{5}$, $\frac{12}{15}$
(Solution on p. 279.)

Exercise 4.143

$\frac{2}{3}$, $\frac{8}{15}$
(Solution on p. 279.)

Exercise 4.144

$\frac{1}{5}$, $\frac{3}{10}$
(Solution on p. 279.)

Exercise 4.145

$\frac{3}{17}$, $\frac{1}{3}$
(Solution on p. 279.)

4.4.3 Reducing Fractions to Lowest Terms

It is often very useful to convert one fraction to an equivalent fraction that has reduced values in the
numerator and denominator. We can suggest a method for doing so by considering the equivalent fractions
$\frac{9}{15}$ and $\frac{3}{5}$. First, divide both the numerator and denominator of $\frac{9}{15}$ by 3. The fractions $\frac{9}{15}$ and $\frac{3}{5}$ are equivalent.
(Can you prove this?) So, \(\frac{9}{15} = \frac{3}{5} \). We wish to convert \(\frac{9}{15} \) to \(\frac{3}{5} \). Now divide the numerator and denominator of \(\frac{9}{15} \) by 3, and see what happens.

\[
\frac{9 \div 3}{15 \div 3} = \frac{3}{5}
\]

The fraction \(\frac{9}{15} \) is converted to \(\frac{3}{5} \).

A natural question is "Why did we choose to divide by 3?" Notice that

\[
\frac{9}{15} = \frac{3 \times 3}{5 \times 3}
\]

We can see that the factor 3 is common to both the numerator and denominator.

Reducing a Fraction

From these observations we can suggest the following method for converting one fraction to an equivalent fraction that has reduced values in the numerator and denominator. The method is called reducing a fraction.

A fraction can be reduced by dividing both the numerator and denominator by the same nonzero whole number.

\[
\frac{9}{12} = \frac{9 \div 3}{12 \div 3} = \frac{3}{4} \quad \frac{16}{30} = \frac{16 \div 2}{30 \div 2} = \frac{8}{15}
\]

(Notice that \(\frac{3}{3} = 1 \) and \(\frac{2}{2} = 1 \))

Consider the collection of equivalent fractions

\[
\frac{5}{20}, \frac{4}{16}, \frac{3}{12}, \frac{2}{8}, \frac{1}{4}
\]

Reduced to Lowest Terms

Notice that each of the first four fractions can be reduced to the last fraction, \(\frac{1}{4} \), by dividing both the numerator and denominator by, respectively, 5, 4, 3, and 2. When a fraction is converted to the fraction that has the smallest numerator and denominator in its collection of equivalent fractions, it is said to be reduced to lowest terms. The fractions \(\frac{1}{4}, \frac{3}{5}, \frac{2}{5}, \) and \(\frac{7}{10} \) are all reduced to lowest terms.

Observe a very important property of a fraction that has been reduced to lowest terms. The only whole number that divides both the numerator and denominator without a remainder is the number 1. When 1 is the only whole number that divides two whole numbers, the two whole numbers are said to be relatively prime.

Relatively Prime

A fraction is reduced to lowest terms if its numerator and denominator are relatively prime.

4.4.3.1 Methods of Reducing Fractions to Lowest Terms

Method 1: Dividing Out Common Primes

1. Write the numerator and denominator as a product of primes.
2. Divide the numerator and denominator by each of the common prime factors. We often indicate this division by drawing a slanted line through each divided out factor. This process is also called cancelling common factors.
3. The product of the remaining factors in the numerator and the product of remaining factors of the denominator are relatively prime, and this fraction is reduced to lowest terms.
4.4.3.1.1 Sample Set B

Reduce each fraction to lowest terms.

Example 4.20
\[
\frac{6}{18} = \frac{1 \cdot 1}{2 \cdot 3 \cdot 3} = \frac{1}{3}
\]
1 and 3 are relatively prime.

Example 4.21
\[
\frac{16}{20} = \frac{1 \cdot 1 \cdot 2 \cdot 2}{2 \cdot 2 \cdot 2 \cdot 5} = \frac{4}{5}
\]
4 and 5 are relatively prime.

Example 4.22
\[
\frac{56}{104} = \frac{1 \cdot 2 \cdot 2 \cdot 2 \cdot 7}{2 \cdot 2 \cdot 2 \cdot 2 \cdot 13} = \frac{7}{13}
\]
7 and 13 are relatively prime (and also truly prime)

Example 4.23
\[
\frac{315}{336} = \frac{1 \cdot 3 \cdot 5 \cdot 7}{2 \cdot 2 \cdot 2 \cdot 3 \cdot 7} = \frac{15}{16}
\]
15 and 16 are relatively prime.

Example 4.24
\[
\frac{8}{15} = \frac{2 \cdot 2 \cdot 2}{3 \cdot 5}
\]
No common prime factors, so 8 and 15 are relatively prime.

The fraction \(\frac{8}{15}\) is reduced to lowest terms.

4.4.3.1.2 Practice Set B

Reduce each fraction to lowest terms.

Exercise 4.146
\(\frac{2}{8}\)
(Solution on p. 279.)

Exercise 4.147
\(\frac{6}{18}\)
(Solution on p. 279.)

Exercise 4.148
\(\frac{6}{15}\)
(Solution on p. 279.)

Exercise 4.149
\(\frac{21}{45}\)
(Solution on p. 279.)

Exercise 4.150
\(\frac{27}{36}\)
(Solution on p. 279.)

Exercise 4.151
\(\frac{135}{243}\)
(Solution on p. 279.)

Method 2: Dividing Out Common Factors

1. Mentally divide the numerator and the denominator by a factor that is common to each. Write the quotient above the original number.
2. Continue this process until the numerator and denominator are relatively prime.
4.4.3.1.3 Sample Set C

Reduce each fraction to lowest terms.

Example 4.25
\[
\frac{25}{30} = \frac{5}{6} \quad \text{5 divides into both 25 and 30.}
\]
\[
\frac{5}{6} \quad \text{5 and 6 are relatively prime.}
\]

Example 4.26
\[
\frac{18}{24} \quad \text{Both numbers are even so we can divide by 2.}
\]
\[
\frac{9}{12} \quad \text{Now, both 9 and 12 are divisible by 3.}
\]
\[
\frac{3}{4} \quad \text{3 and 4 are relatively prime.}
\]

Example 4.27
\[
\frac{210}{150} = \frac{7}{5} \quad \text{7 and 5 are relatively prime.}
\]

Example 4.28
\[
\frac{36}{81} = \frac{18}{45} = \frac{9}{24} = \frac{3}{8} \quad \text{3 and 8 are relatively prime.}
\]

4.4.3.1.4 Practice Set C

Reduce each fraction to lowest terms.

Exercise 4.152
\[
\frac{12}{16} \quad \text{(Solution on p. 279.)}
\]

Exercise 4.153
\[
\frac{9}{24} \quad \text{(Solution on p. 279.)}
\]

Exercise 4.154
\[
\frac{21}{84} \quad \text{(Solution on p. 279.)}
\]

Exercise 4.155
\[
\frac{48}{64} \quad \text{(Solution on p. 280.)}
\]

Exercise 4.156
\[
\frac{63}{81} \quad \text{(Solution on p. 280.)}
\]

Exercise 4.157
\[
\frac{150}{240} \quad \text{(Solution on p. 280.)}
\]
4.4.4 Raising Fractions to Higher Terms

Equally as important as reducing fractions is raising fractions to higher terms. Raising a fraction to higher terms is the process of constructing an equivalent fraction that has higher values in the numerator and denominator than the original fraction.

The fractions $\frac{3}{5}$ and $\frac{9}{15}$ are equivalent, that is, $\frac{3}{5} = \frac{9}{15}$. Notice also,

$$\frac{3 \cdot 3}{5 \cdot 3} = \frac{9}{15}$$

Notice that $\frac{3}{3} = 1$ and that $\frac{3}{5} \cdot 1 = \frac{3}{5}$. We are not changing the value of $\frac{3}{5}$.

From these observations we can suggest the following method for converting one fraction to an equivalent fraction that has higher values in the numerator and denominator. This method is called raising a fraction to higher terms.

Raising a Fraction to Higher Terms

A fraction can be raised to an equivalent fraction that has higher terms in the numerator and denominator by multiplying both the numerator and denominator by the same nonzero whole number.

The fraction $\frac{3}{4}$ can be raised to $\frac{24}{32}$ by multiplying both the numerator and denominator by 8.

$$\frac{3}{4} = \frac{3 \cdot 8}{4 \cdot 8} = \frac{24}{32}$$

Notice that $\frac{8}{8} = 1$.

Most often, we will want to convert a given fraction to an equivalent fraction with a higher specified denominator. For example, we may wish to convert $\frac{5}{8}$ to an equivalent fraction that has denominator 32, that is,

$$\frac{5}{8} = \frac{7}{32}$$

This is possible to do because we know the process. We must multiply both the numerator and denominator of $\frac{5}{8}$ by the same nonzero whole number in order to obtain an equivalent fraction.

We have some information. The denominator 8 was raised to 32 by multiplying it by some nonzero whole number. Division will give us the proper factor. Divide the original denominator into the new denominator.

$$32 \div 8 = 4$$

Now, multiply the numerator 5 by 4.

$$5 \cdot 4 = 20$$

Thus,

$$\frac{5}{8} = \frac{5 \cdot 4}{8 \cdot 4} = \frac{20}{32}$$

So,

$$\frac{5}{8} = \frac{20}{32}$$

4.4.4.1 Sample Set D

Determine the missing numerator or denominator.
Example 4.29
\[\frac{2}{3} = \frac{35}{21}. \] Divide the original denominator into the new denominator.

\[35 \div 7 = 5 \] The quotient is 5. Multiply the original numerator by 5.

\[\frac{3}{7} = \frac{3 \times 5}{7 \times 5} = \frac{15}{35} \] The missing numerator is 15.

Example 4.30
\[\frac{5}{6} = \frac{45}{7}. \] Divide the original numerator into the new numerator.

\[45 \div 5 = 9 \] The quotient is 9. Multiply the original denominator by 9.

\[\frac{5}{6} = \frac{5 \times 9}{6 \times 9} = \frac{45}{54} \] The missing denominator is 45.

4.4.4.2 Practice Set D

Determine the missing numerator or denominator.

Exercise 4.158
\[\frac{4}{5} = \frac{2}{?} \]
(Solution on p. 280.)

Exercise 4.159
\[\frac{3}{7} = \frac{2}{\text{?}} \]
(Solution on p. 280.)

Exercise 4.160
\[\frac{1}{6} = \frac{7}{\text{?}} \]
(Solution on p. 280.)

Exercise 4.161
\[\frac{3}{\text{?}} = \frac{45}{7} \]
(Solution on p. 280.)

Exercise 4.162
\[\frac{8}{15} = \frac{?}{165} \]
(Solution on p. 280.)

4.4.5 Exercises

For the following problems, determine if the pairs of fractions are equivalent.

Exercise 4.163
\[\frac{1}{2}, \frac{5}{10} \]
(Solution on p. 280.)

Exercise 4.164
\[\frac{2}{3}, \frac{8}{12} \]
(Solution on p. 280.)

Exercise 4.165
\[\frac{5}{12}, \frac{10}{24} \]
(Solution on p. 280.)

Exercise 4.166
\[\frac{1}{2}, \frac{3}{6} \]
(Solution on p. 280.)

Exercise 4.167
\[\frac{3}{5}, \frac{12}{15} \]
(Solution on p. 280.)

Exercise 4.168
\[\frac{1}{5}, \frac{7}{42} \]
(Solution on p. 280.)

Exercise 4.169
\[\frac{18}{25}, \frac{45}{75} \]
(Solution on p. 280.)

Exercise 4.170
\[\frac{5}{28}, \frac{20}{112} \]
Exercise 4.171
\[
\frac{3}{10} \cdot \frac{36}{110}
\]
(Solution on p. 280.)

Exercise 4.172
\[
\frac{6}{10} \cdot \frac{18}{32}
\]
(Solution on p. 280.)

Exercise 4.173
\[
\frac{5}{8} \cdot \frac{15}{24}
\]
(Solution on p. 280.)

Exercise 4.174
\[
\frac{10}{18} \cdot \frac{15}{24}
\]
(Solution on p. 280.)

Exercise 4.175
\[
\frac{4}{7} \cdot \frac{5}{21}
\]
(Solution on p. 280.)

Exercise 4.176
\[
\frac{5}{11} \cdot \frac{15}{21}
\]
(Solution on p. 280.)

Exercise 4.177
\[
\frac{9}{11} \cdot \frac{11}{9}
\]
(Solution on p. 280.)

For the following problems, determine the missing numerator or denominator.

Exercise 4.178
\[
\frac{1}{3} = \frac{?}{12}
\]
(Solution on p. 280.)

Exercise 4.179
\[
\frac{1}{5} = \frac{?}{30}
\]
(Solution on p. 280.)

Exercise 4.180
\[
\frac{2}{3} = \frac{?}{9}
\]
(Solution on p. 280.)

Exercise 4.181
\[
\frac{1}{5} = \frac{?}{30}
\]
(Solution on p. 280.)

Exercise 4.182
\[
\frac{2}{3} = \frac{?}{9}
\]
(Solution on p. 280.)

Exercise 4.183
\[
\frac{2}{3} = \frac{7}{15}
\]
(Solution on p. 280.)

Exercise 4.184
\[
\frac{5}{6} = \frac{7}{18}
\]
(Solution on p. 280.)

Exercise 4.185
\[
\frac{4}{5} = \frac{7}{25}
\]
(Solution on p. 280.)

Exercise 4.186
\[
\frac{1}{2} = \frac{4}{7}
\]
(Solution on p. 280.)

Exercise 4.187
\[
\frac{9}{25} = \frac{27}{?}
\]
(Solution on p. 280.)

Exercise 4.188
\[
\frac{2}{5} = \frac{18}{7}
\]
(Solution on p. 280.)

Exercise 4.189
\[
\frac{5}{3} = \frac{80}{7}
\]
(Solution on p. 280.)

Exercise 4.190
\[
\frac{1}{8} = \frac{2}{7}
\]
(Solution on p. 280.)

Exercise 4.191
\[
\frac{4}{5} = \frac{?}{100}
\]
(Solution on p. 280.)

Exercise 4.192
\[
\frac{1}{2} = \frac{20}{7}
\]
Exercise 4.193 \(\frac{3}{16} = \frac{2}{9} \)
(Solution on p. 280.)

Exercise 4.194 \(\frac{15}{16} = \frac{225}{7} \)

Exercise 4.195 \(\frac{11}{12} = \frac{2}{168} \)
(Solution on p. 280.)

Exercise 4.196 \(\frac{9}{13} = \frac{2}{285} \)

Exercise 4.197 \(\frac{32}{73} = \frac{7}{1018} \)
(Solution on p. 281.)

Exercise 4.198 \(\frac{19}{20} = \frac{1045}{7} \)

Exercise 4.199 \(\frac{37}{50} = \frac{1369}{7} \)
(Solution on p. 281.)

For the following problems, reduce, if possible, each of the fractions to lowest terms.

Exercise 4.200 \(\frac{6}{9} \)

Exercise 4.201 \(\frac{8}{10} \)
(Solution on p. 281.)

Exercise 4.202 \(\frac{5}{15} \)

Exercise 4.203 \(\frac{6}{14} \)
(Solution on p. 281.)

Exercise 4.204 \(\frac{3}{12} \)

Exercise 4.205 \(\frac{4}{14} \)
(Solution on p. 281.)

Exercise 4.206 \(\frac{1}{6} \)

Exercise 4.207 \(\frac{4}{6} \)
(Solution on p. 281.)

Exercise 4.208 \(\frac{18}{14} \)

Exercise 4.209 \(\frac{20}{8} \)
(Solution on p. 281.)

Exercise 4.210 \(\frac{2}{6} \)

Exercise 4.211 \(\frac{10}{6} \)
(Solution on p. 281.)

Exercise 4.212 \(\frac{6}{14} \)

Exercise 4.213 \(\frac{14}{6} \)
(Solution on p. 281.)

Exercise 4.214 \(\frac{10}{12} \)
Exercise 4.215 \(\frac{16}{70} \) (Solution on p. 281.)

Exercise 4.216 \(\frac{40}{60} \)

Exercise 4.217 \(\frac{20}{12} \) (Solution on p. 281.)

Exercise 4.218 \(\frac{32}{28} \)

Exercise 4.219 \(\frac{36}{16} \) (Solution on p. 281.)

Exercise 4.220 \(\frac{36}{60} \)

Exercise 4.221 \(\frac{12}{18} \) (Solution on p. 281.)

Exercise 4.222 \(\frac{18}{27} \)

Exercise 4.223 \(\frac{18}{24} \) (Solution on p. 281.)

Exercise 4.224 \(\frac{32}{36} \)

Exercise 4.225 \(\frac{11}{22} \) (Solution on p. 281.)

Exercise 4.226 \(\frac{27}{81} \)

Exercise 4.227 \(\frac{17}{51} \) (Solution on p. 281.)

Exercise 4.228 \(\frac{16}{12} \)

Exercise 4.229 \(\frac{39}{17} \) (Solution on p. 281.)

Exercise 4.230 \(\frac{44}{11} \)

Exercise 4.231 \(\frac{66}{33} \) (Solution on p. 281.)

Exercise 4.232 \(\frac{15}{1} \)

Exercise 4.233 \(\frac{15}{16} \) (Solution on p. 281.)

Exercise 4.234 \(\frac{15}{40} \)

Exercise 4.235 \(\frac{36}{105} \) (Solution on p. 281.)

Exercise 4.236 \(\frac{45}{32} \)

Exercise 4.237 \(\frac{30}{75} \) (Solution on p. 281.)
Exercise 4.238

121
132

Exercise 4.239

72
64

(Solution on p. 281.)

Exercise 4.240

30
106

Exercise 4.241

46
60

(Solution on p. 281.)

Exercise 4.242

75
15

Exercise 4.243

40
18

(Solution on p. 281.)

Exercise 4.244

108
36

Exercise 4.245

72
21

(Solution on p. 281.)

Exercise 4.246

6
51

Exercise 4.247

51
12

(Solution on p. 282.)

Exercise 4.248

8
100

Exercise 4.249

51
54

(Solution on p. 282.)

Exercise 4.250

A ream of paper contains 500 sheets. What fraction of a ream of paper is 200 sheets? Be sure to reduce.

Exercise 4.251

There are 24 hours in a day. What fraction of a day is 14 hours?

(Solution on p. 282.)

Exercise 4.252

A full box contains 80 calculators. How many calculators are in \(\frac{1}{4} \) of a box?

Exercise 4.253

There are 48 plants per flat. How many plants are there in \(\frac{1}{5} \) of a flat?

(Solution on p. 282.)

Exercise 4.254

A person making $18,000 per year must pay $3,960 in income tax. What fraction of this person’s yearly salary goes to the IRS?

For the following problems, find the mistake.

Exercise 4.255

\(\frac{3}{24} = \frac{13}{13} \cdot \frac{8}{8} = 0 \)

(Solution on p. 282.)

Exercise 4.256

\(\frac{8}{10} = \frac{12+6}{12+8} = \frac{6}{8} = \frac{3}{4} \)

Exercise 4.257

\(\frac{7}{15} = \frac{7}{7+8} = \frac{1}{8} \)

(Solution on p. 282.)

Exercise 4.258

\(\frac{6}{7} = \frac{15+1}{15+2} = \frac{1}{2} \)
Exercise 4.259
\[
\frac{5}{9} = \frac{0}{5} = 0
\]

(Solution on p. 282.)

4.4.5.1 Exercises for Review

Exercise 4.260
(Section 1.4) Round 816 to the nearest thousand.

Exercise 4.261
(Section 2.3) Perform the division: \(\frac{0}{6} \).

Exercise 4.262
(Section 3.4) Find all the factors of 24.

Exercise 4.263
(Section 3.5) Find the greatest common factor of 12 and 18.

Exercise 4.264
(Section 4.3) Convert \(\frac{15}{9} \) to a mixed number.

4.5 Multiplication of Fractions\(^5\)

4.5.1 Section Overview

- Fractions of Fractions
- Multiplication of Fractions
- Multiplication of Fractions by Dividing Out Common Factors
- Multiplication of Mixed Numbers
- Powers and Roots of Fractions

4.5.2 Fractions of Fractions

We know that a fraction represents a part of a whole quantity. For example, two fifths of one unit can be represented by

\[
\begin{array}{c}
\frac{1}{5} \\
\frac{1}{5} \\
\frac{1}{5} \\
\frac{1}{5} \\
\frac{1}{5}
\end{array}
\]

\(\frac{2}{5} \) of the whole is shaded.

A natural question is, what is a fractional part of a fractional quantity, or, what is a fraction of a fraction? For example, what is \(\frac{2}{7} \) of \(\frac{1}{7} \)?

We can suggest an answer to this question by using a picture to examine \(\frac{2}{3} \) of \(\frac{1}{7} \).

First, let’s represent \(\frac{1}{7} \):

\[
\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2}
\end{array}
\]

\(\frac{1}{2} \) of the whole is shaded.

Then divide each of the \(\frac{1}{2} \) parts into 3 equal parts.

\(^5\)This content is available online at <http://cnx.org/content/m34928/1.2/>.
Each part is \(\frac{1}{6} \) of the whole.

Now we'll take \(\frac{2}{3} \) of the \(\frac{1}{2} \) unit.

\[
\begin{array}{|c|c|}
\hline
\frac{1}{6} & \frac{1}{6} \\
\hline
\frac{1}{6} & \frac{1}{6} \\
\hline
\frac{1}{6} & \frac{1}{6} \\
\hline
\end{array}
\]

\(\frac{1}{6} \) \(\frac{1}{6} \) \(\frac{2}{3} \) of \(\frac{1}{2} \) is \(\frac{2}{6} \), which reduces to \(\frac{1}{3} \).

4.5.3 Multiplication of Fractions

Now we ask, what arithmetic operation \(+, -, \times, \div\) will produce \(\frac{2}{6} \) from \(\frac{2}{3} \) of \(\frac{1}{2} \)?

Notice that, if in the fractions \(\frac{2}{3} \) and \(\frac{1}{2} \), we multiply the numerators together and the denominators together, we get precisely \(\frac{2}{6} \).

\[
\frac{2 \times \frac{1}{2}}{3 \times 2} = \frac{2}{6}
\]

This reduces to \(\frac{1}{3} \) as before.

Using this observation, we can suggest the following:

1. The word "of" translates to the arithmetic operation "times."
2. To multiply two or more fractions, multiply the numerators together and then multiply the denominators together. Reduce if necessary.

\[
\text{numerator}_1 \cdot \text{numerator}_2 \over \text{denominator}_1 \cdot \text{denominator}_2 = \text{numerator}_1 \over \text{denominator}_1 \cdot \text{numerator}_2 \over \text{denominator}_2
\]

4.5.3.1 Sample Set A

Perform the following multiplications.

Example 4.31

\[
\frac{3}{4} \cdot \frac{1}{6} = \frac{3 \times 1}{4 \times 6} = \frac{3}{24}
\]

Now, reduce.

\[
= \frac{1}{\cancel{24}^8} = \frac{1}{8}
\]

Thus

\[
\frac{3}{4} \cdot \frac{1}{6} = \frac{1}{8}
\]

This means that \(\frac{3}{4} \) of \(\frac{1}{6} \) is \(\frac{1}{8} \), that is, \(\frac{3}{4} \) of \(\frac{1}{6} \) of a unit is \(\frac{1}{8} \) of the original unit.
Example 4.32
\[
\frac{3}{8} \cdot 4. \text{ Write 4 as a fraction by writing } \frac{4}{1} \text{.}
\]
\[
\frac{3}{8} \cdot \frac{4}{1} = \frac{3 \cdot 4}{8 \cdot 1} = \frac{12}{8} = \frac{12}{16} = \frac{3}{2}
\]
\[
\frac{3}{8} \cdot 4 = \frac{3}{2}
\]
This means that \(\frac{3}{8}\) of 4 whole units is \(\frac{3}{2}\) of one whole unit.

Example 4.33
\[
\frac{2}{5} \cdot \frac{5}{8} \cdot \frac{1}{4} = \frac{2 \cdot 5 \cdot 1}{5 \cdot 8 \cdot 4} = \frac{10}{160} = \frac{1}{16}
\]
This means that \(\frac{2}{5}\) of \(\frac{5}{8}\) of \(\frac{1}{4}\) of a whole unit is \(\frac{1}{16}\) of the original unit.

4.5.3.2 Practice Set A

Perform the following multiplications.

Exercise 4.265 \(\frac{5}{3} \cdot \frac{1}{6}\) \(\text{(Solution on p. 282.)}\)

Exercise 4.266 \(\frac{1}{4} \cdot \frac{8}{9}\) \(\text{(Solution on p. 282.)}\)

Exercise 4.267 \(\frac{4}{5} \cdot \frac{15}{16}\) \(\text{(Solution on p. 282.)}\)

Exercise 4.268 \(\left(\frac{2}{3}\right) \left(\frac{3}{2}\right)\) \(\text{(Solution on p. 282.)}\)

Exercise 4.269 \(\left(\frac{1}{4}\right) \left(\frac{6}{5}\right)\) \(\text{(Solution on p. 282.)}\)

Exercise 4.270 \(\frac{5}{6} \cdot \frac{7}{8}\) \(\text{(Solution on p. 282.)}\)

Exercise 4.271 \(\frac{2}{3} \cdot \frac{5}{8}\) \(\text{(Solution on p. 282.)}\)

Exercise 4.272 \(\left(\frac{3}{4}\right) \left(10\right)\) \(\text{(Solution on p. 282.)}\)

Exercise 4.273 \(\frac{3}{4} \cdot \frac{5}{9} \cdot \frac{6}{12}\) \(\text{(Solution on p. 282.)}\)

4.5.4 Multiplying Fractions by Dividing Out Common Factors

We have seen that to multiply two fractions together, we multiply numerators together, then denominators together, then reduce to lowest terms, if necessary. The reduction can be tedious if the numbers in the fractions are large. For example,
\[
\frac{9}{15} \cdot \frac{10}{21} = \frac{9 \cdot 10}{15 \cdot 21} = \frac{90}{315} = \frac{45}{165} = \frac{15}{55}
\]
We avoid the process of reducing if we divide out common factors before we multiply.
Divide 3 into 9 and 21, and divide 2 into 10 and 16. The product is a fraction that is reduced to lowest terms.

The Process of Multiplication by Dividing Out Common Factors
To multiply fractions by dividing out common factors, divide out factors that are common to both a numerator and a denominator. The factor being divided out can appear in any numerator and any denominator.

4.5.4.1 Sample Set B
Perform the following multiplications.

Example 4.34
\[
\frac{4}{5} \cdot \frac{5}{6} = \frac{2}{1} \cdot \frac{1}{3} = \frac{2}{3}
\]
Divide 4 and 6 by 2
Divide 5 and 5 by 5

Example 4.35
\[
\frac{8}{12} \cdot \frac{8}{10} = \frac{4}{6} \cdot \frac{4}{5} = \frac{8}{15}
\]
Divide 8 and 10 by 2.
Divide 8 and 12 by 4.

Example 4.36
\[
8 \cdot \frac{5}{12} = \frac{2}{1} \cdot \frac{5}{13} = \frac{10}{3}
\]

Example 4.37
\[
\frac{35}{18} \cdot \frac{63}{105} = \frac{1}{3} \cdot \frac{7}{5} = \frac{7}{15}
\]

Example 4.38
\[
\frac{13}{9} \cdot \frac{6}{39} \cdot \frac{1}{12} = \frac{1}{1} \cdot \frac{1}{3} \cdot \frac{1}{6} = \frac{1}{54}
\]
4.5.4.2 Practice Set B

Perform the following multiplications.

Exercise 4.274
\[\frac{3}{4} \cdot \frac{7}{8} \]
(Solution on p. 282.)

Exercise 4.275
\[\frac{25}{12} \cdot \frac{10}{45} \]
(Solution on p. 282.)

Exercise 4.276
\[\frac{40}{48} \cdot \frac{72}{90} \]
(Solution on p. 282.)

Exercise 4.277
\[\frac{7}{12} \cdot \frac{2}{49} \]
(Solution on p. 282.)

Exercise 4.278
\[\frac{12}{5} \cdot \frac{3}{8} \]
(Solution on p. 282.)

Exercise 4.279
\[\left(\frac{13}{7} \right) \left(\frac{14}{26} \right) \]
(Solution on p. 282.)

Exercise 4.280
\[\frac{16}{10} \cdot \frac{72}{44} \cdot \frac{21}{44} \]
(Solution on p. 282.)

4.5.5 Multiplication of Mixed Numbers

Multiplying Mixed Numbers
To perform a multiplication in which there are mixed numbers, it is convenient to first convert each mixed number to an improper fraction, then multiply.

4.5.5.1 Sample Set C

Perform the following multiplications. Convert improper fractions to mixed numbers.

Example 4.39
\[1\frac{1}{8} \cdot 4\frac{2}{5} \]
Convert each mixed number to an improper fraction.
\[1\frac{1}{8} = \frac{8\cdot1+1}{8} = \frac{9}{8} \]
\[4\frac{2}{3} = \frac{3\cdot4+2}{3} = \frac{14}{3} \]
\[\frac{3}{19} \cdot \frac{7}{14} = \frac{3\cdot7}{19 \cdot 14} = \frac{21}{266} = 5\frac{1}{4} \]

Example 4.40
\[16 \cdot 8\frac{1}{5} \]
Convert \(8\frac{1}{5} \) to an improper fraction.
\[8\frac{1}{5} = \frac{5\cdot8+1}{5} = \frac{41}{5} \]
\[16 \cdot \frac{41}{5} \]
There are no common factors to divide out.
\[16 \cdot \frac{41}{5} = \frac{16\cdot41}{1\cdot5} = \frac{656}{5} = 131\frac{1}{5} \]
Example 4.41

9$\frac{1}{6}$ · 12$\frac{3}{5}$

Convert to improper fractions.

$9\frac{1}{6} = \frac{6 \cdot 9 + 1}{6} = \frac{55}{6}$

$12\frac{3}{5} = \frac{5 \cdot 12 + 3}{5} = \frac{63}{5}$

\[
\frac{\frac{55}{6}}{\frac{21}{15}} = \frac{\frac{55 \cdot 15}{6 \cdot 21}}{1} = \frac{231}{2} = 115\frac{1}{2}
\]

Example 4.42

\[
\frac{11}{8} \cdot 4\frac{1}{2} \cdot 3\frac{1}{8} = \frac{11}{8} \cdot \frac{9}{2} \cdot \frac{25}{8} = \frac{11 \cdot 3 \cdot 5}{8 \cdot 1 \cdot 1} = \frac{165}{8} = 20\frac{5}{8}
\]

4.5.5.2 Practice Set C

Perform the following multiplications. Convert improper fractions to mixed numbers.

Exercise 4.281

2$\frac{3}{5}$ · 2$\frac{1}{4}$

(Solution on p. 283.)

Exercise 4.282

6$\frac{3}{4}$ · 3$\frac{1}{10}$

(Solution on p. 283.)

Exercise 4.283

7$\frac{1}{8}$ · 12

(Solution on p. 283.)

Exercise 4.284

2$\frac{4}{7}$ · 3$\frac{3}{4}$ · 3$\frac{1}{3}$

(Solution on p. 283.)

4.5.6 Powers and Roots of Fractions

4.5.6.1 Sample Set D

Find the value of each of the following.

Example 4.43

\[
\left(\frac{1}{6}\right)^2 = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}
\]

Example 4.44

\[
\sqrt{\frac{9}{100}} \text{. We're looking for a number, call it }, \text{such that when it is squared, } \frac{9}{100}, \text{is produced.}
\]

\[
(?)^2 = \frac{9}{100}
\]

We know that $3^2 = 9$ and $10^2 = 100$

We'll try $\frac{3}{10}$. Since

\[
\left(\frac{3}{10}\right)^2 = \frac{3}{10} \cdot \frac{3}{10} = \frac{9}{100} = \frac{9}{100}
\]
CHAPTER 4. INTRODUCTION TO FRACTIONS AND MULTIPLICATION
AND DIVISION OF FRACTIONS

\[\sqrt{\frac{9}{100}} = \frac{3}{10} \]

Example 4.45

\[4\frac{2}{5} \cdot \sqrt{\frac{100}{121}} \]

\[\frac{2}{\frac{122}{5}} \cdot \frac{10}{\frac{11}{1}} = \frac{2 \cdot 10}{11 \cdot 1} = \frac{20}{11} = 1 \frac{9}{11} \]

\[4\frac{2}{5} \cdot \sqrt{\frac{100}{121}} = 4 \]

4.5.6.2 Practice Set D

Find the value of each of the following.

Exercise 4.285

\(\left(\frac{1}{8} \right)^2 \)

(Solution on p. 283.)

Exercise 4.286

\(\left(\frac{3}{16} \right)^2 \)

(Solution on p. 283.)

Exercise 4.287

\(\sqrt{\frac{4}{9}} \)

(Solution on p. 283.)

Exercise 4.288

\(\sqrt{\frac{1}{4}} \)

(Solution on p. 283.)

Exercise 4.289

\(\frac{3}{8} \cdot \sqrt{\frac{1}{9}} \)

(Solution on p. 283.)

Exercise 4.290

\(9\frac{1}{2} \cdot \sqrt{\frac{81}{100}} \)

(Solution on p. 283.)

Exercise 4.291

\(2\frac{8}{13} \cdot \sqrt{\frac{169}{16}} \)

(Solution on p. 283.)

4.5.7 Exercises

For the following six problems, use the diagrams to find each of the following parts. Use multiplication to verify your result.

Exercise 4.292

\(\frac{3}{4} \) of \(\frac{1}{3} \)

(Solution on p. 283.)

Exercise 4.293

\(\frac{2}{3} \) of \(\frac{1}{5} \)
Exercise 4.294
\(\frac{2}{7} \) of \(\frac{7}{7} \)
(Solution on p. 283.)

Exercise 4.295
\(\frac{5}{6} \) of \(\frac{3}{4} \)
(Solution on p. 283.)

Exercise 4.296
\(\frac{1}{8} \) of \(\frac{1}{8} \)
(Solution on p. 283.)

Exercise 4.297
\(\frac{7}{17} \) of \(\frac{6}{7} \)

For the following problems, find each part without using a diagram.

Exercise 4.298
\(\frac{1}{2} \) of \(\frac{3}{5} \)
(Solution on p. 283.)

Exercise 4.299
\(\frac{3}{5} \) of \(\frac{6}{17} \)
(Solution on p. 283.)

Exercise 4.300
\(\frac{1}{2} \) of \(\frac{5}{9} \)
(Solution on p. 283.)

Exercise 4.301
\(\frac{3}{10} \) of \(\frac{12}{15} \)
Exercise 4.302
\(\frac{2}{3} \) of \(\frac{5}{9} \)
(Solution on p. 284.)

Exercise 4.303
\(\frac{1}{8} \) of \(\frac{3}{8} \)

Exercise 4.304
\(\frac{2}{3} \) of \(\frac{9}{10} \)
(Solution on p. 284.)

Exercise 4.305
\(\frac{18}{19} \) of \(\frac{38}{54} \)

Exercise 4.306
\(\frac{5}{6} \) of \(2 \frac{7}{9} \)
(Solution on p. 284.)

Exercise 4.307
\(\frac{3}{4} \) of \(3 \frac{3}{5} \)

Exercise 4.308
\(\frac{2}{3} \) of \(2 \frac{2}{9} \)
(Solution on p. 284.)

Exercise 4.309
\(\frac{15}{4} \) of \(4 \frac{1}{5} \)

Exercise 4.310
\(5 \frac{1}{3} \) of \(9 \frac{1}{2} \)
(Solution on p. 284.)

Exercise 4.311
\(1 \frac{13}{16} \) of \(8 \frac{3}{4} \)
(Solution on p. 284.)

Exercise 4.312
\(\frac{4}{5} \) of \(\frac{3}{4} \) of \(\frac{5}{3} \)

Exercise 4.313
\(\frac{1}{6} \) of \(\frac{12}{13} \) of \(\frac{26}{30} \)

Exercise 4.314
\(\frac{3}{4} \) of \(\frac{1}{4} \)
(Solution on p. 284.)

Exercise 4.315
\(1 \frac{3}{7} \) of \(5 \frac{1}{5} \) of \(8 \frac{1}{3} \)
(Solution on p. 284.)

Exercise 4.316
\(2 \frac{4}{7} \) of \(5 \frac{1}{2} \) of \(7 \frac{6}{7} \)
(Solution on p. 284.)

For the following problems, find the products. Be sure to reduce.

Exercise 4.317
\(\frac{4}{5} \cdot \frac{2}{3} \)
(Solution on p. 284.)

Exercise 4.318
\(\frac{1}{2} \cdot \frac{1}{2} \)

Exercise 4.319
\(\frac{2}{3} \cdot \frac{3}{8} \)

Exercise 4.320
\(\frac{2}{5} \cdot \frac{5}{8} \)
(Solution on p. 284.)

Exercise 4.321
\(\frac{2}{5} \cdot \frac{3}{9} \)

Exercise 4.322
\(\frac{5}{14} \cdot \frac{5}{15} \)
(Solution on p. 284.)

Exercise 4.323
\(\frac{2}{7} \cdot \frac{1}{4} \)
Exercise 4.324
\[
\frac{2}{11} \cdot \frac{11}{3}
\]

(Solution on p. 284.)

Exercise 4.325
\[
\frac{9}{16} \cdot \frac{20}{27}
\]

Exercise 4.326
\[
\frac{35}{36} \cdot \frac{48}{55}
\]

(Solution on p. 284.)

Exercise 4.327
\[
\frac{21}{26} \cdot \frac{15}{14}
\]

Exercise 4.328
\[
\frac{70}{68} \cdot \frac{97}{87}
\]

(Solution on p. 284.)

Exercise 4.329
\[
\frac{3}{7} \cdot \frac{14}{3} \cdot \frac{6}{2}
\]

Exercise 4.330
\[
\frac{4}{15} \cdot \frac{10}{3} \cdot \frac{27}{2}
\]

(Solution on p. 284.)

Exercise 4.331
\[
\frac{14}{15} \cdot \frac{21}{28} \cdot \frac{45}{7}
\]

Exercise 4.332
\[
\frac{2}{5} \cdot \frac{15}{4} \cdot \frac{16}{21}
\]

(Solution on p. 284.)

Exercise 4.333
\[
\frac{18}{14} \cdot \frac{21}{36} \cdot \frac{36}{7}
\]

Exercise 4.334
\[
\frac{3}{5} \cdot 20
\]

(Solution on p. 284.)

Exercise 4.335
\[
\frac{8}{5} \cdot 18
\]

Exercise 4.336
\[
\frac{10}{17} \cdot 33
\]

(Solution on p. 284.)

Exercise 4.337
\[
\frac{18}{19} \cdot 38
\]

Exercise 4.338
\[
\frac{2}{5} \cdot 10
\]

(Solution on p. 284.)

Exercise 4.339
\[
\frac{1}{5} \cdot 3
\]

Exercise 4.340
\[
5 \cdot \frac{2}{3}
\]

(Solution on p. 284.)

Exercise 4.341
\[
16 \cdot \frac{1}{4}
\]

Exercise 4.342
\[
\frac{2}{3} \cdot 12 \cdot \frac{1}{2}
\]

(Solution on p. 284.)

Exercise 4.343
\[
\frac{3}{8} \cdot 24 \cdot \frac{2}{3}
\]

Exercise 4.344
\[
\frac{2}{18} \cdot 10 \cdot \frac{2}{5}
\]

(Solution on p. 284.)

Exercise 4.345
\[
\frac{16}{15} \cdot 50 \cdot \frac{3}{10}
\]

Exercise 4.346
\[
5 \frac{1}{3} \cdot \frac{27}{32}
\]

(Solution on p. 284.)
Exercise 4.347
\[\frac{2}{7} \cdot \frac{5}{7} \]

Exercise 4.348
\[6 \frac{1}{4} \cdot 2 \frac{4}{15} \] (Solution on p. 284.)

Exercise 4.349
\[9 \frac{1}{3} \cdot \frac{9}{10} \cdot 1 \frac{1}{3} \]

Exercise 4.350
\[3 \frac{5}{9} \cdot \frac{113}{14} \cdot 10 \frac{1}{2} \] (Solution on p. 284.)

Exercise 4.351
\[20 \frac{1}{3} \cdot 8 \frac{2}{15} \cdot 16 \frac{1}{3} \]

Exercise 4.352
\[\left(\frac{2}{3} \right)^2 \]

Exercise 4.353
\[\left(\frac{5}{3} \right)^2 \]

Exercise 4.354
\[\left(\frac{2}{17} \right)^2 \] (Solution on p. 285.)

Exercise 4.355
\[\left(\frac{8}{7} \right)^2 \]

Exercise 4.356
\[\left(\frac{1}{4} \right)^2 \] (Solution on p. 285.)

Exercise 4.357
\[\left(\frac{3}{5} \right)^2 \cdot \frac{20}{3} \]

Exercise 4.358
\[\left(\frac{1}{2} \right)^2 \cdot \frac{16}{15} \] (Solution on p. 285.)

Exercise 4.359
\[\left(\frac{1}{2} \right)^2 \cdot \frac{8}{5} \]

Exercise 4.360
\[\left(\frac{1}{2} \right)^2 \cdot \left(\frac{3}{2} \right)^2 \] (Solution on p. 285.)

Exercise 4.361
\[\left(\frac{1}{3} \right)^2 \cdot \left(\frac{1}{3} \right)^2 \]

For the following problems, find each value. Reduce answers to lowest terms or convert to mixed numbers.

Exercise 4.362
\[\sqrt{\frac{2}{3}} \] (Solution on p. 285.)

Exercise 4.363
\[\sqrt{\frac{16}{25}} \]

Exercise 4.364
\[\sqrt{\frac{81}{121}} \] (Solution on p. 285.)

Exercise 4.365
\[\sqrt{\frac{36}{49}} \]

Exercise 4.366
\[\sqrt{\frac{144}{25}} \] (Solution on p. 285.)

Exercise 4.367
\[\frac{2}{3} \cdot \sqrt{\frac{9}{16}} \]
Exercise 4.368
\(\frac{3}{5} \cdot \sqrt{\frac{25}{81}} \)
(Solution on p. 285.)

Exercise 4.369
\(\left(\frac{8}{5}\right)^2 \cdot \sqrt{\frac{25}{64}} \)

Exercise 4.370
\((1\frac{1}{2})^2 \cdot \sqrt{\frac{81}{64}} \)
(Solution on p. 285.)

Exercise 4.371
\((2\frac{3}{4})^2 \cdot \sqrt{\frac{36}{64}} \cdot \sqrt{\frac{64}{81}} \)

4.5.7.1 Exercises for Review

Exercise 4.372
(Section 1.2) How many thousands in 342,810?
(Solution on p. 285.)

Exercise 4.373
(Section 1.5) Find the sum of 22, 42, and 101.

Exercise 4.374
(Section 2.5) Is 634,281 divisible by 3?
(Solution on p. 285.)

Exercise 4.375
(Section 3.4) Is the whole number 51 prime or composite?

Exercise 4.376
(Section 4.4) Reduce \(\frac{36}{150} \) to lowest terms.
(Solution on p. 285.)

4.6 Division of Fractions

4.6.1 Section Overview

- Reciprocals
- Dividing Fractions

4.6.2 Reciprocals

Reciprocals
Two numbers whose product is 1 are called reciprocals of each other.

4.6.2.1 Sample Set A

The following pairs of numbers are reciprocals.

Example 4.46
\(\frac{3}{4} \) and \(\frac{4}{3} \)
\(\frac{3}{4} \cdot \frac{4}{3} = 1 \)

\(^6\)This content is available online at <http://cnx.org/content/m34929/1.2/>.
Example 4.47
\[
\frac{7}{16} \cdot \frac{16}{7} = 1
\]

Example 4.48
\[
\frac{1}{6} \cdot \frac{6}{1} = 1
\]

Notice that we can find the reciprocal of a nonzero number in fractional form by inverting it (exchanging positions of the numerator and denominator).

4.6.2.2 Practice Set A

Find the reciprocal of each number.

Exercise 4.377 \(\frac{3}{10} \) (Solution on p. 285.)

Exercise 4.378 \(\frac{5}{7} \) (Solution on p. 285.)

Exercise 4.379 \(\frac{2}{7} \) (Solution on p. 285.)

Exercise 4.380 \(\frac{4}{3} \) (Solution on p. 285.)

Exercise 4.381 \(\frac{16}{21} \) (Solution on p. 285.)

Hint: Write this number as an improper fraction first.

Exercise 4.382 \(5 \frac{1}{4} \) (Solution on p. 285.)

Exercise 4.383 \(10 \frac{3}{16} \) (Solution on p. 285.)

4.6.3 Dividing Fractions

Our concept of division is that it indicates how many times one quantity is contained in another quantity. For example, using the diagram we can see that there are 6 one-thirds in 2.

There are 6 one-thirds in 2.

Since 2 contains six \(\frac{1}{3} \)'s we express this as
Using these observations, we can suggest the following method for dividing a number by a fraction.

Dividing One Fraction by Another Fraction

To divide a first fraction by a second, nonzero fraction, multiply the first fraction by the reciprocal of the second fraction.

Invert and Multiply

This method is commonly referred to as "invert the divisor and multiply."

4.6.3.1 Sample Set B

Perform the following divisions.

Example 4.49

\[
\frac{1}{3} \div \frac{3}{4} \quad \text{The divisor is } \frac{3}{4}. \quad \text{Its reciprocal is } \frac{4}{3}. \quad \text{Multiply } \frac{1}{3} \text{ by } \frac{4}{3}.
\]

\[
\frac{1}{3} \times \frac{4}{3} = \frac{4}{9} = \frac{4}{9}
\]

Example 4.50

\[
\frac{3}{8} \div \frac{5}{4} \quad \text{The divisor is } \frac{5}{4}. \quad \text{Its reciprocal is } \frac{4}{5}. \quad \text{Multiply } \frac{3}{8} \text{ by } \frac{4}{5}.
\]

\[
\frac{3}{8} \times \frac{4}{5} = \frac{3}{10}
\]

Example 4.51

\[
\frac{5}{6} \div \frac{5}{12} \quad \text{The divisor is } \frac{5}{12}. \quad \text{Its reciprocal is } \frac{12}{5}. \quad \text{Multiply } \frac{5}{6} \text{ by } \frac{12}{5}.
\]

\[
\frac{5}{6} \times \frac{12}{5} = \frac{2}{1} = 2
\]

Example 4.52

\[
2\frac{2}{3} \div 3\frac{1}{3} \quad \text{Convert each mixed number to an improper fraction.}
\]

\[
2\frac{2}{3} = \frac{9\cdot2+2}{9} = \frac{20}{9}
\]

\[
3\frac{1}{3} = \frac{3\cdot3+1}{3} = \frac{10}{3}
\]

\[
\frac{20}{9} \div \frac{10}{3} \quad \text{The divisor is } \frac{10}{3}. \quad \text{Its reciprocal is } \frac{3}{10}. \quad \text{Multiply } \frac{20}{9} \text{ by } \frac{3}{10}.
\]

\[
\frac{1}{3} \div \frac{1}{10} = \frac{2}{3}
\]
\[\frac{2\frac{2}{3}}{3\frac{1}{3}} = \frac{2}{5} \]

Example 4.53

\[\frac{12}{11} \div \frac{8}{1} \]

The divisor is \(\frac{8}{1} \). Its reciprocal is \(\frac{1}{8} \). Multiply \(\frac{12}{11} \) by \(\frac{1}{8} \).

\[\frac{\frac{3}{12}}{11} \cdot \frac{1}{8} = \frac{3}{11 \cdot 2} = \frac{3}{22} \]

\[\frac{12}{11} \div 8 = \frac{3}{22} \]

Example 4.54

\[\frac{7}{8} \div \frac{21}{20} \cdot \frac{3}{25} \]

The divisor is \(\frac{21}{20} \cdot \frac{3}{25} \). Its reciprocal is \(\frac{20}{21} \cdot \frac{25}{3} \).

\[\frac{\frac{17}{28}}{\frac{20}{21} \cdot \frac{3}{25}} = \frac{1 \cdot 1}{2 \cdot 1} = \frac{1}{14} \]

\[\frac{7}{8} \div \frac{21}{20} \cdot \frac{3}{25} = \frac{1}{14} \]

Example 4.55

How many \(2\frac{3}{8} \)-inch-wide packages can be placed in a box 19 inches wide?

The problem is to determine how many two and three eighths are contained in 19, that is, what is \(19 \div 2\frac{3}{8} \)?

\[2\frac{3}{8} = \frac{19}{8} \]

Convert the divisor \(2\frac{3}{8} \) to an improper fraction.

\[19 = \frac{19}{1} \]

Write the dividend 19 as \(\frac{19}{1} \).

\[\frac{19}{1} \div \frac{19}{8} \]

The divisor is \(\frac{19}{8} \). Its reciprocal is \(\frac{8}{19} \).

\[\frac{19}{1} \cdot \frac{8}{19} = \frac{19 \cdot 8}{1 \cdot 1} = \frac{8}{1} = 8 \]

Thus, 8 packages will fit into the box.

4.6.3.2 Practice Set B

Perform the following divisions.

Exercise 4.384

\[\frac{1}{2} \div \frac{2}{5} \]

(Solution on p. 285.)

Exercise 4.385

\[\frac{3}{8} \div \frac{3}{14} \]

(Solution on p. 285.)

Exercise 4.386

\[\frac{7}{15} \div \frac{14}{15} \]

(Solution on p. 285.)

Exercise 4.387

\[8 \div \frac{8}{1} \]

(Solution on p. 285.)

Exercise 4.388

\[6\frac{1}{4} \div \frac{5}{12} \]

(Solution on p. 285.)
Exercise 4.389
\[3\frac{1}{4} \div 1\frac{3}{4} \]
(Solution on p. 286.)

Exercise 4.390
\[\frac{5}{6} \div \frac{2}{3} \cdot \frac{8}{25} \]
(Solution on p. 286.)

Exercise 4.391
(Solution on p. 286.)

A container will hold 106 ounces of grape juice. How many \(6\frac{2}{5}\)-ounce glasses of grape juice can be served from this container?

Determine each of the following quotients and then write a rule for this type of division.

Exercise 4.392
\[1 \div \frac{2}{3} \]
(Solution on p. 286.)

Exercise 4.393
\[1 \div \frac{3}{8} \]
(Solution on p. 286.)

Exercise 4.394
\[1 \div \frac{3}{4} \]
(Solution on p. 286.)

Exercise 4.395
\[1 \div \frac{5}{2} \]
(Solution on p. 286.)

Exercise 4.396
When dividing 1 by a fraction, the quotient is the __________________________.

4.6.4 Exercises

For the following problems, find the reciprocal of each number.

Exercise 4.397
\[\frac{4}{5} \]
(Solution on p. 286.)

Exercise 4.398
\[\frac{8}{11} \]
(Solution on p. 286.)

Exercise 4.399
\[\frac{2}{9} \]
(Solution on p. 286.)

Exercise 4.400
\[\frac{1}{5} \]
(Solution on p. 286.)

Exercise 4.401
\[3\frac{1}{2} \]
(Solution on p. 286.)

Exercise 4.402
\[8\frac{1}{4} \]
(Solution on p. 286.)

Exercise 4.403
\[3\frac{2}{7} \]
(Solution on p. 286.)

Exercise 4.404
\[5\frac{3}{4} \]
(Solution on p. 286.)

Exercise 4.405
\[1 \]
(Solution on p. 286.)

Exercise 4.406
\[4 \]
(Solution on p. 286.)

For the following problems, find each value.

Exercise 4.407
\[\frac{3}{8} \div \frac{2}{5} \]
(Solution on p. 286.)
Exercise 4.408
\(\frac{5}{9} \div \frac{5}{9} \)

Exercise 4.409
\(\frac{9}{16} \div \frac{15}{8} \) (Solution on p. 286.)

Exercise 4.410
\(\frac{4}{9} \div \frac{6}{16} \)

Exercise 4.411
\(\frac{25}{39} \div \frac{4}{9} \) (Solution on p. 286.)

Exercise 4.412
\(\frac{15}{4} \div \frac{27}{8} \)

Exercise 4.413
\(\frac{24}{75} \div \frac{8}{15} \) (Solution on p. 286.)

Exercise 4.414
\(\frac{5}{7} \div 0 \)

Exercise 4.415
\(\frac{7}{8} \div \frac{7}{8} \) (Solution on p. 286.)

Exercise 4.416
\(0 \div \frac{3}{8} \)

Exercise 4.417
\(\frac{4}{11} \div \frac{4}{11} \) (Solution on p. 286.)

Exercise 4.418
\(\frac{2}{3} \div \frac{2}{3} \)

Exercise 4.419
\(\frac{7}{10} \div \frac{10}{7} \) (Solution on p. 286.)

Exercise 4.420
\(\frac{4}{3} \div 6 \)

Exercise 4.421
\(\frac{9}{5} \div 3 \) (Solution on p. 286.)

Exercise 4.422
\(4\frac{1}{7} \div 3\frac{1}{7} \)

Exercise 4.423
\(7\frac{1}{7} \div 8\frac{1}{3} \) (Solution on p. 286.)

Exercise 4.424
\(1\frac{1}{2} \div 1\frac{1}{2} \)

Exercise 4.425
\(3\frac{2}{5} \div 6\frac{2}{5} \) (Solution on p. 286.)

Exercise 4.426
\(5\frac{1}{7} \div 3\frac{1}{7} \)

Exercise 4.427
\(3\frac{5}{6} \div 3\frac{3}{2} \) (Solution on p. 286.)

Exercise 4.428
\(5\frac{1}{9} \div \frac{1}{18} \)

Exercise 4.429
\(8\frac{3}{4} \div \frac{2}{5} \) (Solution on p. 286.)

Exercise 4.430
\(12\frac{3}{8} \div 1\frac{1}{2} \)
Exercise 4.431
\(\frac{3}{5} \div \frac{15}{16} \)
(Solution on p. 287.)

Exercise 4.432
\(11 \frac{11}{12} \div 9 \frac{5}{8} \)
(Solution on p. 287.)

Exercise 4.433
\(2 \frac{2}{5} \div 11 \frac{2}{3} \)

Exercise 4.434
\(\frac{16}{3} \div 6 \frac{2}{3} \)
(Solution on p. 287.)

Exercise 4.435
\(4 \frac{3}{26} \div 2 \frac{6}{19} \)
(Solution on p. 287.)

Exercise 4.436
\(\frac{1}{1000} \div \frac{1}{100} \)

Exercise 4.437
\(\frac{7}{8} \div \frac{2}{16} \cdot \frac{6}{3} \)
(Solution on p. 287.)

Exercise 4.438
\(\frac{3}{16} \cdot \frac{2}{8} \cdot \frac{6}{5} \)

Exercise 4.439
\(\frac{1}{16} \div \frac{2}{25} \cdot \frac{3}{10} \)
(Solution on p. 287.)

Exercise 4.440
\(\frac{21}{30} \cdot 1 \frac{1}{4} \div \frac{7}{10} \)
(Solution on p. 287.)

Exercise 4.441
\(\frac{8}{3} \cdot \frac{26}{25} \div 4 \)
(Solution on p. 287.)

4.6.4.1 Exercises for Review

Exercise 4.442
(Section 1.2) What is the value of 5 in the number 504,216?

Exercise 4.443
(Section 2.2) Find the product of 2,010 and 160.
(Solution on p. 287.)

Exercise 4.444
(Section 2.6) Use the numbers 8 and 5 to illustrate the commutative property of multiplication.

Exercise 4.445
(Section 3.6) Find the least common multiple of 6, 16, and 72.

Exercise 4.446
(Section 4.5) Find \(\frac{8}{5} \) of \(6 \frac{3}{4} \).

4.7 Applications Involving Fractions

4.7.1 Section Overview

- Multiplication Statements
- Missing Product Statements
- Missing Factor Statements

\(^7\)This content is available online at <http://cnx.org/content/m34930/1.2/>.
4.7.2 Multiplication Statements

Statement. Multiplication Statement
A statement is a sentence that is either true or false. A mathematical statement of the form
\[\text{product} = (\text{factor 1}) \cdot (\text{factor 2}) \]
is a multiplication statement. Depending on the numbers that are used, it can be either true or false.

Omitting exactly one of the three numbers in the statement will produce exactly one of the following three problems. For convenience, we'll represent the omitted (or missing) number with the letter \(M\) (\(M\) for Missing).

1. \(M = (\text{factor 1}) \cdot (\text{factor 2})\) Missing product statement.
2. \(M \cdot (\text{factor 2}) = \text{product}\) Missing factor statement.
3. \((\text{factor 1}) \cdot M = \text{product}\) Missing factor statement.

We are interested in developing and working with methods to determine the missing number that makes the statement true. Fundamental to these methods is the ability to translate two words to mathematical symbols. The word

- *of* translates to *times*
- *is* translates to *equals*

4.7.3 Missing Products Statements

The equation \(M = 8 \cdot 4\) is a missing product statement. We can find the value of \(M\) that makes this statement true by multiplying the known factors.

Missing product statements can be used to determine the answer to a question such as, "What number is fraction 1 of fraction 2?"

4.7.3.1 Sample Set A

Find \(\frac{3}{4}\) of \(\frac{8}{9}\). We are being asked the question, "What number is \(\frac{3}{4}\) of \(\frac{8}{9}\)?" We must translate from words to mathematical symbols.

\[
\begin{align*}
\text{What number is } & \frac{3}{4} \text{ of } \frac{8}{9} \quad \text{becomes} \\
M & = \frac{3}{4} \cdot \frac{8}{9} \\
\text{Multiply.}
\end{align*}
\]

\[
M = \frac{3}{4} \cdot \frac{8}{9} = \frac{1}{2} \cdot \frac{2}{3} = \frac{2}{3}
\]

Thus, \(\frac{3}{4}\) of \(\frac{8}{9}\) is \(\frac{2}{3}\).
Thus, 18 is $\frac{3}{4}$ of 24.

4.7.3.2 Practice Set A

Exercise 4.447
Find $\frac{3}{5}$ of $\frac{16}{15}$.
(Solution on p. 287.)

Exercise 4.448
What number is $\frac{9}{10}$ of $\frac{5}{6}$?
(Solution on p. 287.)

Exercise 4.449
$\frac{11}{12}$ of $\frac{8}{27}$ is what number?

4.7.4 Missing Factor Statements

The equation $8 \cdot M = 32$ is a missing factor statement. We can find the value of M that makes this statement true by dividing (since we know that $32 \div 8 = 4$).

Finding the Missing Factor

To find the missing factor in a missing factor statement, divide the product by the known factor.

missing factor = (product) ÷ (known factor)

Missing factor statements can be used to answer such questions as

1. $\frac{3}{5}$ of what number is $\frac{9}{4}$?
2. What part of $1\frac{3}{4}$ is $1\frac{13}{14}$?

4.7.4.1 Sample Set B

$\frac{3}{8}$ of what number is $\frac{9}{4}$?

Now, using
missing factor = \(\text{(product)} \div \text{(known factor)} \)

We get

\[
M = \frac{9}{4} \div \frac{3}{8} = \frac{9}{4} \cdot \frac{8}{3} = \frac{\frac{9}{4} \cdot \frac{8}{3}}{\frac{3}{8} \cdot \frac{8}{3}} = \frac{3 \cdot 2}{1 \cdot 1} = 6
\]

Check:

\[
\frac{3}{8} \cdot 6 = \frac{9}{4}
\]

Thus, \(\frac{3}{8}\) of 6 is \(\frac{9}{4}\).

For convenience, let’s convert the mixed numbers to improper fractions.

\[
M \cdot \frac{9}{7} = \frac{27}{14}
\]

Now, using

\[
\text{missing factor} = \left(\frac{\text{product}}{\text{known factor}}\right)
\]

we get

\[
M = \frac{27}{14} \div \frac{9}{7} = \frac{27}{14} \cdot \frac{7}{9} = \frac{\frac{27}{14} \cdot \frac{7}{9}}{\frac{9}{7} \cdot \frac{7}{9}} = \frac{3 \cdot 1}{2 \cdot 1} = \frac{3}{2}
\]

Check:

\[
\frac{3}{8} \div \frac{9}{7} = \frac{27}{14}
\]

Therefore, \(\frac{3}{8}\) of 6 is \(\frac{9}{4}\).
Thus, $\frac{3}{2}$ of $1\frac{2}{7}$ is $1\frac{13}{14}$.

4.7.4.2 Practice Set B

Exercise 4.450

$\frac{3}{5}$ of what number is $\frac{9}{20}$?

Exercise 4.451

$3\frac{3}{7}$ of what number is $2\frac{2}{5}$?

Exercise 4.452

What part of $\frac{3}{5}$ is $\frac{9}{10}$?

Exercise 4.453

What part of $1\frac{3}{4}$ is $1\frac{7}{8}$?

4.7.5 Exercises

Exercise 4.454

Find $\frac{2}{7}$ of $\frac{2}{7}$.

Exercise 4.455

Find $\frac{5}{6}$ of $\frac{1}{6}$.

Exercise 4.456

Find $\frac{12}{13}$ of $\frac{13}{36}$.

Exercise 4.457

Find $\frac{1}{7}$ of $\frac{1}{7}$.

Exercise 4.458

$\frac{3}{10}$ of $\frac{15}{4}$ is what number?

Exercise 4.459

$\frac{14}{15}$ of $\frac{20}{21}$ is what number?

Exercise 4.460

$\frac{3}{4}$ of $\frac{11}{12}$ is what number?

Exercise 4.461

$\frac{1}{3}$ of 2 is what number?

Exercise 4.462

$\frac{1}{2}$ of 3 is what number?

Exercise 4.463

$\frac{1}{10}$ of $\frac{1}{10}$ is what number?

Exercise 4.464

$\frac{1}{100}$ of $\frac{1}{10}$ is what number?

Exercise 4.465

$1\frac{2}{3}$ of $2\frac{2}{7}$ is what number?

Exercise 4.466

$1\frac{7}{18}$ of $\frac{4}{18}$ is what number?

Exercise 4.467

$1\frac{1}{8}$ of $1\frac{1}{16}$ is what number?

Exercise 4.468

Find $\frac{3}{5}$ of $\frac{1}{5}$ of $\frac{9}{2}$.

(Solution on p. 287.)

(Solution on p. 287.)
Exercise 4.469
Find $\frac{5}{8}$ of $\frac{9}{20}$ of $\frac{4}{5}$.

Exercise 4.470
$\frac{5}{12}$ of what number is $\frac{5}{6}$?
(Solution on p. 287.)

Exercise 4.471
$\frac{3}{14}$ of what number is $\frac{6}{7}$?
(Solution on p. 287.)

Exercise 4.472
$\frac{10}{3}$ of what number is $\frac{2}{5}$?
(Solution on p. 287.)

Exercise 4.473
$\frac{15}{7}$ of what number is $\frac{20}{21}$?
(Solution on p. 288.)

Exercise 4.474
$\frac{8}{3}$ of what number is $1\frac{7}{5}$?
(Solution on p. 288.)

Exercise 4.475
$\frac{1}{3}$ of what number is $\frac{1}{3}$?
(Solution on p. 288.)

Exercise 4.476
$\frac{1}{6}$ of what number is $\frac{1}{6}$?
(Solution on p. 288.)

Exercise 4.477
$\frac{3}{4}$ of what number is $\frac{3}{4}$?
(Solution on p. 288.)

Exercise 4.478
$\frac{8}{11}$ of what number is $\frac{8}{11}$?
(Solution on p. 288.)

Exercise 4.479
$\frac{2}{3}$ of what number is 0?
(Solution on p. 288.)

Exercise 4.480
$\frac{2}{3}$ of what number is 1?
(Solution on p. 288.)

Exercise 4.481
$\frac{3}{7}$ of what number is 1?
(Solution on p. 288.)

Exercise 4.482
$1\frac{5}{12}$ of what number is $5\frac{1}{2}$?
(Solution on p. 288.)

Exercise 4.483
$3\frac{2}{15}$ of what number is $2\frac{8}{17}$?
(Solution on p. 288.)

Exercise 4.484
What part of $\frac{2}{3}$ is $1\frac{1}{5}$?
(Solution on p. 288.)

Exercise 4.485
What part of $\frac{9}{10}$ is $3\frac{3}{5}$?
(Solution on p. 288.)

Exercise 4.486
What part of $\frac{8}{9}$ is $3\frac{3}{5}$?
(Solution on p. 288.)

Exercise 4.487
What part of $\frac{14}{15}$ is $7\frac{2}{9}$?
(Solution on p. 288.)

Exercise 4.488
What part of 3 is $1\frac{1}{5}$?
(Solution on p. 288.)

Exercise 4.489
What part of 8 is $2\frac{2}{3}$?
(Solution on p. 288.)

Exercise 4.490
What part of 24 is 9?
(Solution on p. 288.)

Exercise 4.491
What part of 42 is 26?
Exercise 4.492
Find \(\frac{12}{15} \) of \(\frac{30}{42} \).

Exercise 4.493
\(\frac{14}{15} \) of \(\frac{12}{21} \) is what number?

Exercise 4.494
\(\frac{8}{15} \) of what number is \(2 \frac{2}{5} \)?

Exercise 4.495
\(\frac{11}{15} \) of what number is \(\frac{22}{35} \)?

Exercise 4.496
\(\frac{1}{15} \) of what number is 1?

Exercise 4.497
What part of \(\frac{23}{40} \) is \(3 \frac{9}{20} \)?

Exercise 4.498
\(\frac{4}{35} \) of \(3 \frac{9}{22} \) is what number?

4.7.5.1 Exercises for Review

Exercise 4.499
(Section 1.7) Use the numbers 2 and 7 to illustrate the commutative property of addition.

Exercise 4.500
(Section 2.3) Is 4 divisible by 0?

Exercise 4.501
(Section 3.5) Expand \(3^7 \). Do not find the actual value.

Exercise 4.502
(Section 4.3) Convert \(3 \frac{5}{12} \) to an improper fraction.

Exercise 4.503
(Section 4.4) Find the value of \(\frac{3}{8} \div \frac{9}{16} \cdot \frac{6}{5} \).

4.8 Summary of Key Concepts

4.8.1 Summary of Key Concepts

Fraction (Section 4.2)
The idea of breaking up a whole quantity into equal parts gives us the word fraction.

Fraction Bar, Denominator, Numerator (Section 4.2)
A fraction has three parts:

1. The fraction bar —
2. The nonzero whole number below the fraction bar is the denominator.
3. The whole number above the fraction bar is the numerator.

This content is available online at <http://cnx.org/content/m34931/1.2/>.
CHAPTER 4. INTRODUCTION TO FRACTIONS AND MULTIPLICATION
AND DIVISION OF FRACTIONS

Proper Fraction (Section 4.3)
Proper fractions are fractions in which the numerator is strictly less than the denominator.

\[
\frac{4}{5}
\]

is a proper fraction

Improper Fraction (Section 4.3)
Improper fractions are fractions in which the numerator is greater than or equal to the denominator.
Also, any nonzero number placed over 1 is an improper fraction.

\[
\frac{5}{4}, \frac{5}{5}, \text{ and } \frac{5}{1}
\]

are improper fractions

Mixed Number (Section 4.3)
A mixed number is a number that is the sum of a whole number and a proper fraction.

\[
1\frac{1}{4}
\]

is a mixed number

\[
(1 + \frac{1}{4})
\]

Correspondence Between Improper Fractions and Mixed Numbers (Section 4.3)
Each improper fraction corresponds to a particular mixed number, and each mixed number corresponds to a particular improper fraction.

Converting an Improper Fraction to a Mixed Number (Section 4.3)
A method, based on division, converts an improper fraction to an equivalent mixed number.

\[
\frac{5}{4}
\]

can be converted to \(1\frac{1}{4}\)

Converting a Mixed Number to an Improper Fraction (Section 4.3)
A method, based on multiplication, converts a mixed number to an equivalent improper fraction.

\[
5\frac{7}{8}
\]

can be converted to \(\frac{47}{8}\)

Equivalent Fractions (Section 4.4)
Fractions that represent the same quantity are equivalent fractions.

\[
\frac{3}{4} \text{ and } \frac{6}{8}
\]

are equivalent fractions

Test for Equivalent Fractions (Section 4.4)
If the cross products of two fractions are equal, then the two fractions are equivalent.

\[
\frac{3}{4} \times \frac{6}{8}
\]

\[
3 \cdot 8 \neq 4 \cdot 6
\]

\[
24 \neq 24
\]

Thus, \(\frac{3}{4}\) and \(\frac{6}{8}\) are equivalent.

Relatively Prime (Section 4.4)
Two whole numbers are relatively prime when 1 is the only number that divides both of them.

3 and 4 are relatively prime

Reduced to Lowest Terms (Section 4.4)
A fraction is reduced to lowest terms if its numerator and denominator are relatively prime.
The number \(\frac{3}{4} \) is reduced to lowest terms, since 3 and 4 are relatively prime.

The number \(\frac{6}{8} \) is not reduced to lowest terms since 6 and 8 are not relatively prime.

Reducing Fractions to Lowest Terms (Section 4.4)

Two methods, one based on dividing out common primes and one based on dividing out any common factors, are available for reducing a fraction to lowest terms.

Raising Fractions to Higher Terms (Section 4.4)

A fraction can be raised to higher terms by multiplying both the numerator and denominator by the same nonzero number.

\[
\frac{3}{4} = \frac{3 \cdot 2}{4 \cdot 2} = \frac{6}{8}
\]

The Word “OF” Means Multiplication (Section 4.5)

In many mathematical applications, the word "of" means multiplication.

Multiplication of Fractions (Section 4.5)

To multiply two or more fractions, multiply the numerators together and multiply the denominators together. Reduce if possible.

\[
\frac{5}{8} \cdot \frac{4}{15} = \frac{5 \cdot 4}{8 \cdot 15} = \frac{20}{120} = \frac{1}{6}
\]

Multiplying Fractions by Dividing Out Common Factors (Section 4.5)

Two or more fractions can be multiplied by first dividing out common factors and then using the rule for multiplying fractions.

\[
\frac{3}{10} \cdot \frac{2}{15} = \frac{1 \cdot 1}{2 \cdot 3} = \frac{1}{6}
\]

Multiplication of Mixed Numbers (Section 4.5)

To perform a multiplication in which there are mixed numbers, first convert each mixed number to an improper fraction, then multiply. This idea also applies to division of mixed numbers.

Reciprocals (Section 4.6)

Two numbers whose product is 1 are reciprocals.

7 and \(\frac{1}{7} \) are reciprocals

Division of Fractions (Section 4.6)

To divide one fraction by another fraction, multiply the dividend by the reciprocal of the divisor.

\[
\frac{4}{5} \div \frac{2}{15} = \frac{4}{5} \cdot \frac{15}{2}
\]

Dividing 1 by a Fraction (Section 4.6)

When dividing 1 by a fraction, the quotient is the reciprocal of the fraction.

\[
\frac{1}{2} = \frac{2}{3}
\]

Multiplication Statements (Section 4.7)

A mathematical statement of the form

\[
\text{product} = (\text{factor 1}) (\text{factor 2})
\]

is a multiplication statement.
By omitting one of the three numbers, one of three following problems result:

1. \(M = (\text{factor 1}) \cdot (\text{factor 2}) \) Missing product statement.
2. \(\text{product} = (\text{factor 1}) \cdot M \) Missing factor statement.
3. \(\text{product} = M \cdot (\text{factor 2}) \) Missing factor statement.

Missing products are determined by simply multiplying the known factors. Missing factors are determined by

missing factor = (product) ÷ (known factor)

4.9 Exercise Supplement

4.9.1 Exercise Supplement

4.9.1.1 Fractions of Whole Numbers (Section 4.2)

For Problems 1 and 2, name the suggested fraction.

Exercise 4.504

For problems 3-5, specify the numerator and denominator.

Exercise 4.506

Exercise 4.507

Exercise 4.508

For problems 6-10, write each fraction using digits.

Exercise 4.509

Three fifths

Exercise 4.510

Eight elevenths

Exercise 4.511

Sixty-one forty firsts

Exercise 4.512

Two hundred six-thousandths

Exercise 4.513

zero tenths

\(^9\)This content is available online at <http://cnx.org/content/m34932/1.2/>.
For problems 11-15, write each fraction using words.

Exercise 4.514
\[
\frac{10}{17}
\]
(Solution on p. 288.)

Exercise 4.515
\[
\frac{21}{35}
\]

Exercise 4.516
\[
\frac{606}{1431}
\]
(Solution on p. 288.)

Exercise 4.517
\[
\frac{0}{5}
\]

Exercise 4.518
\[
\frac{1}{16}
\]
(Solution on p. 288.)

For problems 16-18, state each numerator and denominator and write each fraction using digits.

Exercise 4.519
One minute is one sixtieth of an hour.

Exercise 4.520
In a box that contains forty-five electronic components, eight are known to be defective. If three components are chosen at random from the box, the probability that all three are defective is fifty-six fourteen thousand one hundred ninetieths.

Exercise 4.521
About three fifths of the students in a college algebra class received a “B” in the course.

For problems 19 and 20, shade the region corresponding to the given fraction.

Exercise 4.522
\[
\frac{1}{4}
\]
(Solution on p. 288.)

Exercise 4.523
\[
\frac{3}{7}
\]

4.9.1.2 Proper Fraction, Improper Fraction, and Mixed Numbers (Section 4.3)

For problems 21-29, convert each improper fraction to a mixed number.

Exercise 4.524
\[
\frac{11}{4}
\]
(Solution on p. 289.)

Exercise 4.525
\[
\frac{15}{2}
\]

Exercise 4.526
\[
\frac{51}{3}
\]
(Solution on p. 289.)

Exercise 4.527
\[
\frac{121}{15}
\]
Exercise 4.528
\[\frac{356}{3} \]
(Solution on p. 289.)

Exercise 4.529
\[\frac{3}{2} \]

Exercise 4.530
\[\frac{5}{4} \]
(Solution on p. 289.)

Exercise 4.531
\[\frac{20}{5} \]

Exercise 4.532
\[\frac{3}{4} \]
(Solution on p. 289.)

For problems 30-40, convert each mixed number to an improper fraction.

Exercise 4.533
\[5\frac{2}{3} \]

Exercise 4.534
\[16\frac{1}{8} \]
(Solution on p. 289.)

Exercise 4.535
\[18\frac{2}{3} \]

Exercise 4.536
\[3\frac{1}{5} \]
(Solution on p. 289.)

Exercise 4.537
\[2\frac{9}{17} \]

Exercise 4.538
\[17\frac{20}{27} \]
(Solution on p. 289.)

Exercise 4.539
\[1\frac{7}{8} \]

Exercise 4.540
\[1\frac{1}{2} \]
(Solution on p. 289.)

Exercise 4.541
\[2\frac{3}{5} \]

Exercise 4.542
\[8\frac{6}{7} \]
(Solution on p. 289.)

Exercise 4.543
\[2\frac{7}{9} \]

Exercise 4.544
\[0\frac{1}{12} \]
Why does 0\frac{1}{12} not qualify as a mixed number?

Exercise 4.545
\[8 \]
Why does 8 qualify as a mixed number?
4.9.1.3 Equivalent Fractions, Reducing Fractions to Lowest Terms, and Raising Fractions to Higher Term (Section 4.4)

For problems 43-47, determine if the pairs of fractions are equivalent.

- **Exercise 4.546**
 \[\frac{2}{5} \cdot \frac{15}{30} \]
 (Solution on p. 289.)

- **Exercise 4.547**
 \[\frac{8}{5} \cdot \frac{32}{36} \]
 (Solution on p. 289.)

- **Exercise 4.548**
 \[\frac{3}{17} \cdot \frac{24}{177} \]
 (Solution on p. 289.)

- **Exercise 4.549**
 \[\frac{\frac{3}{8}}{\frac{38}{30}} \]
 (Solution on p. 289.)

- **Exercise 4.550**
 \[\frac{\frac{106}{77}}{\frac{1}{5}} \]
 (Solution on p. 289.)

For problems 48-60, reduce, if possible, each fraction.

- **Exercise 4.551**
 \[\frac{19}{25} \]
 (Solution on p. 289.)

- **Exercise 4.552**
 \[\frac{32}{44} \]
 (Solution on p. 289.)

- **Exercise 4.553**
 \[\frac{102}{278} \]
 (Solution on p. 289.)

- **Exercise 4.554**
 \[\frac{15}{33} \]
 (Solution on p. 289.)

- **Exercise 4.555**
 \[\frac{18}{27} \]
 (Solution on p. 289.)

- **Exercise 4.556**
 \[\frac{21}{35} \]
 (Solution on p. 289.)

- **Exercise 4.557**
 \[\frac{9}{18} \]
 (Solution on p. 289.)

- **Exercise 4.558**
 \[\frac{45}{85} \]
 (Solution on p. 289.)

- **Exercise 4.559**
 \[\frac{24}{42} \]
 (Solution on p. 289.)

- **Exercise 4.560**
 \[\frac{70}{136} \]
 (Solution on p. 289.)

- **Exercise 4.561**
 \[\frac{182}{586} \]
 (Solution on p. 289.)

- **Exercise 4.562**
 \[\frac{325}{870} \]
 (Solution on p. 289.)

- **Exercise 4.563**
 \[\frac{250}{1000} \]
 (Solution on p. 289.)

For problems 61-72, determine the missing numerator or denominator.

- **Exercise 4.564**
 \[\frac{2}{7} = \frac{?}{35} \]
 (Solution on p. 289.)

- **Exercise 4.565**
 \[\frac{4}{11} = \frac{?}{65} \]
Exercise 4.566
\(\frac{1}{12} = \frac{7}{7} \)
(Solution on p. 289.)

Exercise 4.567
\(\frac{5}{7} = \frac{25}{7} \)

Exercise 4.568
\(\frac{\frac{1}{9}}{7} = \frac{32}{7} \)
(Solution on p. 289.)

Exercise 4.569
\(\frac{3}{15} = \frac{24}{2} \)

Exercise 4.570
\(\frac{\frac{1}{15}}{2} = \frac{11}{15} \)
(Solution on p. 289.)

Exercise 4.571
\(\frac{0}{5} = \frac{7}{20} \)

Exercise 4.572
\(\frac{\frac{12}{21}}{5} = \frac{90}{7} \)
(Solution on p. 290.)

Exercise 4.573
\(\frac{\frac{14}{23}}{5} = \frac{27}{253} \)

Exercise 4.574
\(\frac{\frac{15}{15}}{5} = \frac{180}{7} \)
(Solution on p. 290.)

Exercise 4.575
\(\frac{\frac{21}{22}}{5} = \frac{336}{7} \)

4.9.1.4 Multiplication and Division of Fractions (Section 4.5, Section 4.6)

For problems 73-95, perform each multiplication and division.

Exercise 4.576
\(\frac{\frac{4}{5}}{\frac{15}{10}} \)
(Solution on p. 290.)

Exercise 4.577
\(\frac{\frac{5}{7}}{\frac{3}{21}} \)

Exercise 4.578
\(\frac{\frac{1}{15}}{\frac{5}{17}} \)
(Solution on p. 290.)

Exercise 4.579
\(\frac{\frac{14}{15}}{\frac{7}{5}} \)

Exercise 4.580
\(\frac{\frac{5}{6}}{\frac{13}{22}} \cdot \frac{11}{39} \)
(Solution on p. 290.)

Exercise 4.581
\(\frac{\frac{2}{3}}{\frac{15}{5}} \)

Exercise 4.582
\(\frac{\frac{3}{2}}{\frac{15}{7}} \)
(Solution on p. 290.)

Exercise 4.583
\(\frac{\frac{4}{7}}{\frac{11}{45}} \)

Exercise 4.584
\(\frac{\frac{8}{15}}{\frac{3}{16}} \cdot \frac{5}{24} \)
(Solution on p. 290.)

Exercise 4.585
\(\frac{\frac{8}{15}}{\frac{3}{16}} \cdot \frac{9}{16} \)
Exercise 4.586
\[\frac{14}{15} \div 3 \frac{10}{21} \]
(Solution on p. 290.)

Exercise 4.587
\[18 \cdot 5 \frac{3}{4} \]

Exercise 4.588
\[3 \frac{3}{7} \cdot 2 \frac{1}{12} \]
(Solution on p. 290.)

Exercise 4.589
\[4 \frac{1}{2} \div 2 \frac{1}{4} \]

Exercise 4.590
\[6 \frac{1}{2} \div 3 \frac{1}{4} \]
(Solution on p. 290.)

Exercise 4.591
\[3 \frac{5}{18} \div 2 \frac{7}{18} \]
(Solution on p. 290.)

Exercise 4.592
\[7 \div 2 \frac{1}{3} \]

Exercise 4.593
\[17 \div 4 \frac{1}{4} \]

Exercise 4.594
\[\frac{5}{8} \div 1 \frac{1}{4} \]
(Solution on p. 290.)

Exercise 4.595
\[2 \frac{2}{3} \cdot 3 \frac{3}{4} \]

Exercise 4.596
\[20 \cdot \frac{15}{4} \]
(Solution on p. 290.)

Exercise 4.597
\[0 \div 4 \frac{1}{6} \]

Exercise 4.598
\[1 \div 6 \frac{1}{4} \cdot \frac{25}{4} \]
(Solution on p. 290.)

4.9.1.5 Applications Involving Fractions (Section 4.7)

Exercise 4.599
Find \(\frac{8}{9} \) of \(\frac{27}{7} \).

Exercise 4.600
What part of \(\frac{3}{7} \) is \(\frac{21}{16} \)?
(Solution on p. 290.)

Exercise 4.601
What part of \(3 \frac{1}{4} \) is \(1 \frac{7}{25} \)?

Exercise 4.602
Find \(6 \frac{2}{3} \) of \(\frac{9}{15} \).
(Solution on p. 290.)

Exercise 4.603
\(\frac{7}{20} \) of what number is \(\frac{14}{50} \)?

Exercise 4.604
What part of \(4 \frac{1}{10} \) is \(3 \frac{3}{4} \)?
(Solution on p. 290.)

Exercise 4.605
Find \(\frac{8}{15} \) of \(16 \frac{2}{3} \).

Exercise 4.606
\(\frac{3}{20} \) of what number is \(\frac{18}{50} \)?
(Solution on p. 290.)
CHAPTER 4. INTRODUCTION TO FRACTIONS AND MULTIPLICATION
AND DIVISION OF FRACTIONS

Exercise 4.607
Find $\frac{1}{3}$ of 0.

Exercise 4.608
Find $\frac{11}{12}$ of 1.

(Solution on p. 290.)

4.10 Proficiency Exam

4.10.1 Proficiency Exam

Exercise 4.609
(Section 4.2) Shade a portion that corresponds to the fraction $\frac{5}{8}$.

(Solution on p. 290.)

Exercise 4.610
(Section 4.2) Specify the numerator and denominator of the fraction $\frac{5}{8}$.

(Solution on p. 290.)

Exercise 4.611
(Section 4.2) Write the fraction five elevenths.

(Solution on p. 290.)

Exercise 4.612
(Section 4.2) Write, in words, $\frac{4}{5}$.

(Solution on p. 290.)

Exercise 4.613
(Section 4.3) Which of the fractions is a proper fraction? $4\frac{1}{12}$, $\frac{5}{17}$, $\frac{12}{9}$

(Solution on p. 290.)

Exercise 4.614
(Section 4.3) Convert $3\frac{4}{5}$ to an improper fraction.

(Solution on p. 291.)

Exercise 4.615
(Section 4.3) Convert $\frac{16}{7}$ to a mixed number.

(Solution on p. 291.)

Exercise 4.616
(Section 4.4) Determine if $\frac{5}{12}$ and $\frac{20}{48}$ are equivalent fractions.

(Solution on p. 291.)

For problems 9-11, reduce, if possible, each fraction to lowest terms.

Exercise 4.617
(Section 4.4) $\frac{21}{35}$

(Solution on p. 291.)

Exercise 4.618
(Section 4.4) $\frac{15}{15}$

(Solution on p. 291.)

Exercise 4.619
(Section 4.4) $\frac{104}{80}$

(Solution on p. 291.)

For problems 12 and 13, determine the missing numerator or denominator.

Exercise 4.620
(Section 4.4) $\frac{2}{3} = \frac{m}{n}$

(Solution on p. 291.)

Exercise 4.621
(Section 4.4) $\frac{4}{5} = \frac{32}{n}$

(Solution on p. 291.)

For problems 14-25, find each value.

Exercise 4.622
(Section 4.5) $\frac{15}{16} \cdot \frac{4}{25}$

(Solution on p. 291.)

10This content is available online at http://cnx.org/content/m34933/1.2/.
Exercise 4.623
(Solution on p. 291.)
(Section 4.5) \(3 \frac{3}{4} \cdot 2 \frac{2}{5} \cdot 6 \frac{3}{5}\)

Exercise 4.624
(Solution on p. 291.)
(Section 4.5) \(\sqrt{\frac{25}{36}}\)

Exercise 4.625
(Solution on p. 291.)
(Section 4.5) \(\sqrt{\frac{4}{9}} \cdot \sqrt{\frac{81}{64}}\)

Exercise 4.626
(Solution on p. 291.)
(Section 4.5) \(\frac{11}{20} \cdot \sqrt{\frac{225}{121}}\)

Exercise 4.627
(Solution on p. 291.)
(Section 4.6) \(\frac{4}{15} \div 8\)

Exercise 4.628
(Solution on p. 291.)
(Section 4.6) \(\frac{8}{15} \cdot \frac{5}{12} \div 2 \frac{8}{9}\)

Exercise 4.629
(Solution on p. 291.)
(Section 4.6) \(\left(\frac{6}{5}\right)^3 \div \sqrt{\frac{111}{25}}\)

Exercise 4.630
(Solution on p. 291.)
(Section 4.7) Find \(\frac{5}{12}\) of \(\frac{24}{25}\).

Exercise 4.631
(Solution on p. 291.)
(Section 4.7) \(\frac{2}{5}\) of what number is \(\frac{1}{16}\)?

Exercise 4.632
(Solution on p. 291.)
(Section 4.7) \(1 \frac{3}{7}\) of \(\frac{24}{25}\) is what number?

Exercise 4.633
(Solution on p. 291.)
(Section 4.7) What part of \(\frac{9}{14}\) is \(\frac{6}{7}\)?
Solutions to Exercises in Chapter 4

Solution to Exercise 4.1 (p. 215)
4, 7

Solution to Exercise 4.2 (p. 216)
5, 8

Solution to Exercise 4.3 (p. 216)
10, 15

Solution to Exercise 4.4 (p. 216)
1, 9

Solution to Exercise 4.5 (p. 216)
0, 2

Solution to Exercise 4.6 (p. 217)
\(\frac{1}{10} \)

Solution to Exercise 4.7 (p. 217)
\(\frac{11}{14} \)

Solution to Exercise 4.8 (p. 217)
\(\frac{16}{35} \)

Solution to Exercise 4.9 (p. 217)
\(\frac{800}{7000} \)

Solution to Exercise 4.10 (p. 217)
three eighths

Solution to Exercise 4.11 (p. 217)
one tenth

Solution to Exercise 4.12 (p. 217)
three two hundred fiftieths

Solution to Exercise 4.13 (p. 217)
one hundred fourteen three thousand one hundred ninetieths

Solution to Exercise 4.14 (p. 217)
\(\frac{2}{3} \)

Solution to Exercise 4.15 (p. 217)
\(\frac{1}{17} \)

Solution to Exercise 4.16 (p. 217)
5, 9, five ninths

Solution to Exercise 4.17 (p. 217)
1, 10, one tenth

Solution to Exercise 4.18 (p. 218)
umerator, 3; denominator, 4

Solution to Exercise 4.20 (p. 218)
umerator, 1; denominator, 5

Solution to Exercise 4.22 (p. 218)
umerator, 7; denominator, 7

Solution to Exercise 4.24 (p. 218)
umerator, 0; denominator, 12

Solution to Exercise 4.26 (p. 218)
umerator, 18; denominator, 1

Solution to Exercise 4.28 (p. 218)
\(\frac{4}{5} \)

Solution to Exercise 4.30 (p. 218)
\(\frac{15}{20} \)
Solution to Exercise 4.32 (p. 218)
\[\frac{91}{107} \]
Solution to Exercise 4.34 (p. 218)
\[\frac{605}{274} \]
Solution to Exercise 4.36 (p. 218)
\[\frac{92}{1000000} \]
Solution to Exercise 4.38 (p. 218)
five ninths
Solution to Exercise 4.40 (p. 219)
eight fifteenths
Solution to Exercise 4.42 (p. 219)
seventy-five one hundredths
Solution to Exercise 4.44 (p. 219)
nine hundred sixteen one thousand fourteenths
Solution to Exercise 4.46 (p. 219)
eighteen thirty-one thousand six hundred eightths
Solution to Exercise 4.48 (p. 219)
\[\frac{1}{2} \]
Solution to Exercise 4.50 (p. 219)
\[\frac{4}{7} \]
Solution to Exercise 4.52 (p. 219)
\[
\begin{array}{|c|c|c|}
\hline
\hline
\hline
\end{array}
\]

Solution to Exercise 4.54 (p. 220)
\[
\begin{array}{|c|c|c|c|c|}
\hline
\hline
\hline
\hline
\hline
\end{array}
\]

Solution to Exercise 4.56 (p. 220)
Numerator, 1; denominator, 4; one fourth
Solution to Exercise 4.58 (p. 220)
Numerator, 4; denominator, 3; four thirds
Solution to Exercise 4.60 (p. 220)
Numerator, 2; denominator, 7; two sevenths
Solution to Exercise 4.62 (p. 221)
Numerator, 1; denominator, 56; one fifty-sixth
Solution to Exercise 4.64 (p. 221)
Numerator, 125; denominator, 4; one hundred twenty-five fourths
Solution to Exercise 4.66 (p. 221)
\[3 + 11 = 11 + 3 = 14 \]
Solution to Exercise 4.68 (p. 221)
\[\frac{75}{7} \]
Solution to Exercise 4.70 (p. 221)
144
Solution to Exercise 4.71 (p. 226)
\[4\frac{1}{2} \]
Solution to Exercise 4.72 (p. 226)
\[3\frac{3}{4} \]
Solution to Exercise 4.73 (p. 226)
\[1\frac{3}{11} \]
CHAPTER 4. INTRODUCTION TO FRACTIONS AND MULTIPLICATION AND DIVISION OF FRACTIONS

Solution to Exercise 4.74 (p. 226)
\[
\frac{2}{5}
\]
Solution to Exercise 4.75 (p. 226)
\[
19\frac{2}{7}
\]
Solution to Exercise 4.76 (p. 226)
62
Solution to Exercise 4.77 (p. 226)
\[
\frac{33}{4}
\]
Solution to Exercise 4.78 (p. 226)
\[
\frac{28}{5}
\]
Solution to Exercise 4.79 (p. 226)
\[
\frac{10}{15}
\]
Solution to Exercise 4.80 (p. 226)
\[
\frac{86}{7}
\]
Solution to Exercise 4.81 (p. 228)
improper fraction
Solution to Exercise 4.83 (p. 228)
proper fraction
Solution to Exercise 4.85 (p. 228)
mixed number
Solution to Exercise 4.87 (p. 228)
improper fraction
Solution to Exercise 4.89 (p. 228)
mixed number
Solution to Exercise 4.91 (p. 228)
mixed number
Solution to Exercise 4.93 (p. 228)
proper fraction
Solution to Exercise 4.95 (p. 228)
mixed number
Solution to Exercise 4.97 (p. 229)
\[
\frac{4}{3}
\]
Solution to Exercise 4.99 (p. 229)
\[
\frac{8}{3}
\]
Solution to Exercise 4.101 (p. 229)
9
Solution to Exercise 4.103 (p. 229)
\[
13\frac{2}{15}
\] or \[
13\frac{2}{4}
\]
Solution to Exercise 4.105 (p. 229)
\[
\frac{555}{7}
\]
Solution to Exercise 4.107 (p. 229)
\[
36\frac{1}{7}
\]
Solution to Exercise 4.109 (p. 229)
\[
\frac{729}{44}
\]
Solution to Exercise 4.111 (p. 229)
\[
\frac{35}{8}
\]
Solution to Exercise 4.113 (p. 229)
\[
\frac{61}{7}
\]
Solution to Exercise 4.115 (p. 229)
\[
\frac{115}{11}
\]
Solution to Exercise 4.117 (p. 229)

Solution to Exercise 4.119 (p. 230)

Solution to Exercise 4.121 (p. 230)

Solution to Exercise 4.123 (p. 230)

Solution to Exercise 4.125 (p. 230)

Solution to Exercise 4.127 (p. 230)

... because it may be written as $\frac{5\frac{n}{n}}{n}$, where n is any positive whole number.

Solution to Exercise 4.129 (p. 230)

Solution to Exercise 4.131 (p. 230)

Solution to Exercise 4.133 (p. 230)

Solution to Exercise 4.135 (p. 230)

Solution to Exercise 4.137 (p. 231)

Solution to Exercise 4.139 (p. 231)

Solution to Exercise 4.141 (p. 232)

$6 \not\leq 6$, yes

Solution to Exercise 4.142 (p. 232)

$60 \not\leq 60$, yes

Solution to Exercise 4.143 (p. 232)

$30 \neq 24$, no

Solution to Exercise 4.144 (p. 232)

$40 \not\leq 40$, yes

Solution to Exercise 4.145 (p. 232)

$12 \not\leq 12$, yes

Solution to Exercise 4.146 (p. 234)

Solution to Exercise 4.147 (p. 234)

Solution to Exercise 4.148 (p. 234)

Solution to Exercise 4.149 (p. 234)

Solution to Exercise 4.150 (p. 234)

Solution to Exercise 4.151 (p. 234)

Solution to Exercise 4.152 (p. 235)

Solution to Exercise 4.153 (p. 235)
Solution to Exercise 4.154 (p. 235)
\[\frac{1}{4} \]
Solution to Exercise 4.155 (p. 235)
\[\frac{3}{5} \]
Solution to Exercise 4.156 (p. 235)
\[\frac{7}{5} \]
Solution to Exercise 4.157 (p. 235)
\[\frac{5}{8} \]
Solution to Exercise 4.158 (p. 237)
32
Solution to Exercise 4.159 (p. 237)
12
Solution to Exercise 4.160 (p. 237)
4
Solution to Exercise 4.161 (p. 237)
150
Solution to Exercise 4.162 (p. 237)
88
Solution to Exercise 4.163 (p. 237)
equivalent
Solution to Exercise 4.165 (p. 237)
equivalent
Solution to Exercise 4.167 (p. 237)
notequivalent
Solution to Exercise 4.169 (p. 237)
notequivalent
Solution to Exercise 4.171 (p. 238)
notequivalent
Solution to Exercise 4.173 (p. 238)
equivalent
Solution to Exercise 4.175 (p. 238)
notequivalent
Solution to Exercise 4.177 (p. 238)
notequivalent
Solution to Exercise 4.179 (p. 238)
6
Solution to Exercise 4.181 (p. 238)
12
Solution to Exercise 4.183 (p. 238)
12
Solution to Exercise 4.185 (p. 238)
20
Solution to Exercise 4.187 (p. 238)
75
Solution to Exercise 4.189 (p. 238)
48
Solution to Exercise 4.191 (p. 238)
80
Solution to Exercise 4.193 (p. 239)
18
Solution to Exercise 4.195 (p. 239)
154
Solution to Exercise 4.197 (p. 239)
1,472
Solution to Exercise 4.199 (p. 239)
1,850
Solution to Exercise 4.201 (p. 239)
4
Solution to Exercise 4.203 (p. 239)
5
Solution to Exercise 4.205 (p. 239)
2
Solution to Exercise 4.207 (p. 239)
5
Solution to Exercise 4.209 (p. 239)
3
Solution to Exercise 4.211 (p. 239)
2
Solution to Exercise 4.213 (p. 239)
3
Solution to Exercise 4.215 (p. 240)
8
Solution to Exercise 4.217 (p. 240)
5
Solution to Exercise 4.219 (p. 240)
18
Solution to Exercise 4.221 (p. 240)
2
Solution to Exercise 4.223 (p. 240)
3
Solution to Exercise 4.225 (p. 240)
1
Solution to Exercise 4.227 (p. 240)
3
Solution to Exercise 4.229 (p. 240) already reduced
Solution to Exercise 4.231 (p. 240)
2
Solution to Exercise 4.233 (p. 240) already reduced
Solution to Exercise 4.235 (p. 240)
9
Solution to Exercise 4.237 (p. 240)
3
Solution to Exercise 4.239 (p. 241)
2
Solution to Exercise 4.241 (p. 241)
23
Solution to Exercise 4.243 (p. 241)
20
Solution to Exercise 4.245 (p. 241)
\(\frac{1}{3} \)
Solution to Exercise 4.247 (p. 241)
\(\frac{17}{4} \)
Solution to Exercise 4.249 (p. 241)
\(\frac{17}{18} \)
Solution to Exercise 4.251 (p. 241)
\(\frac{7}{18} \)
Solution to Exercise 4.253 (p. 241)
16
Solution to Exercise 4.255 (p. 241)
Should be \(\frac{1}{5} \); the cancellation is division, so the numerator should be 1.
Solution to Exercise 4.257 (p. 241)
Cancel factors only, not addends; \(\frac{7}{15} \) is already reduced.
Solution to Exercise 4.259 (p. 242)
Same as Exercise 4.255; answer is \(\frac{1}{5} \) or 1.
Solution to Exercise 4.261 (p. 242)
0
Solution to Exercise 4.263 (p. 242)
6
Solution to Exercise 4.265 (p. 244)
\(\frac{1}{15} \)
Solution to Exercise 4.266 (p. 244)
\(\frac{2}{5} \)
Solution to Exercise 4.267 (p. 244)
\(\frac{5}{15} \)
Solution to Exercise 4.268 (p. 244)
\(\frac{4}{5} \)
Solution to Exercise 4.269 (p. 244)
\(\frac{14}{15} \)
Solution to Exercise 4.270 (p. 244)
\(\frac{35}{48} \)
Solution to Exercise 4.271 (p. 244)
\(\frac{10}{9} \)
Solution to Exercise 4.272 (p. 244)
\(\frac{16}{9} \)
Solution to Exercise 4.273 (p. 244)
\(\frac{3}{16} \)
Solution to Exercise 4.274 (p. 246)
\(\frac{7}{12} \)
Solution to Exercise 4.275 (p. 246)
\(\frac{25}{48} \)
Solution to Exercise 4.276 (p. 246)
\(\frac{2}{3} \)
Solution to Exercise 4.277 (p. 246)
\(\frac{2}{3} \)
Solution to Exercise 4.278 (p. 246)
\(\frac{2}{3} \)
Solution to Exercise 4.279 (p. 246)
1
Solution to Exercise 4.280 (p. 246)
\[\frac{14}{5} \]
Solution to Exercise 4.281 (p. 247)
6
Solution to Exercise 4.282 (p. 247)
\[\frac{22}{9} \]
Solution to Exercise 4.283 (p. 247)
\[\frac{851}{7} \]
Solution to Exercise 4.284 (p. 247)
30
Solution to Exercise 4.285 (p. 248)
\[\frac{1}{74} \]
Solution to Exercise 4.286 (p. 248)
\[\frac{9}{700} \]
Solution to Exercise 4.287 (p. 248)
\[\frac{23}{3} \]
Solution to Exercise 4.288 (p. 248)
\[\frac{1}{2} \]
Solution to Exercise 4.289 (p. 248)
\[\frac{2}{5} \]
Solution to Exercise 4.290 (p. 248)
\[\frac{84}{5} \]
Solution to Exercise 4.291 (p. 248)
\[\frac{81}{2} \]
Solution to Exercise 4.292 (p. 248)
\[\frac{1}{7} \]
Solution to Exercise 4.294 (p. 249)
\[\frac{7}{4} \]
Solution to Exercise 4.296 (p. 249)
\[\frac{64}{1} \]
Solution to Exercise 4.298 (p. 249)
\[\frac{2}{5} \]
Solution to Exercise 4.300 (p. 249)
\(\frac{2}{5} \)
Solution to Exercise 4.302 (p. 250)
\(\frac{1}{15} \)
Solution to Exercise 4.304 (p. 250)
\(\frac{3}{7} \)
Solution to Exercise 4.306 (p. 250)
\(\frac{2}{3} \)
Solution to Exercise 4.308 (p. 250)
\(\frac{10}{3} \) or \(3\frac{1}{3} \)
Solution to Exercise 4.310 (p. 250)
\(\frac{52}{9} \)
Solution to Exercise 4.312 (p. 250)
\(\frac{5}{3} \)
Solution to Exercise 4.314 (p. 250)
\(\frac{1}{11} \)
Solution to Exercise 4.316 (p. 250)
\(\frac{126}{7} \)
Solution to Exercise 4.318 (p. 250)
\(\frac{1}{2} \)
Solution to Exercise 4.320 (p. 250)
\(\frac{1}{3} \)
Solution to Exercise 4.322 (p. 250)
\(\frac{7}{9} \)
Solution to Exercise 4.324 (p. 251)
\(\frac{1}{1} \)
Solution to Exercise 4.326 (p. 251)
\(\frac{12}{29} \)
Solution to Exercise 4.328 (p. 251)
\(\frac{3}{5} \)
Solution to Exercise 4.330 (p. 251)
\(\frac{12}{29} \)
Solution to Exercise 4.332 (p. 251)
\(\frac{7}{21} \) or \(\frac{160}{21} \)
Solution to Exercise 4.334 (p. 251)
\(\frac{12}{21} \)
Solution to Exercise 4.336 (p. 251)
\(\frac{18}{21} \)
Solution to Exercise 4.338 (p. 251)
\(\frac{25}{49} \) or \(8\frac{1}{4} \)
Solution to Exercise 4.340 (p. 251)
\(\frac{15}{7} \) or \(\frac{17}{7} \)
Solution to Exercise 4.342 (p. 251)
\(\frac{6}{7} \)
Solution to Exercise 4.344 (p. 251)
\(\frac{10}{7} \) or \(1\frac{1}{7} \)
Solution to Exercise 4.346 (p. 251)
\(\frac{5}{9} = 4\frac{1}{9} \)
Solution to Exercise 4.348 (p. 252)
\(\frac{85}{9} = 14\frac{1}{9} \)
Solution to Exercise 4.350 (p. 252)

\[
\frac{72}{2}
\]

Solution to Exercise 4.352 (p. 252)

\[
\frac{9}{2}
\]

Solution to Exercise 4.354 (p. 252)

\[
\frac{4}{17}
\]

Solution to Exercise 4.356 (p. 252)

\[
\frac{1}{3}
\]

Solution to Exercise 4.358 (p. 252)

\[
\frac{1}{15}
\]

Solution to Exercise 4.360 (p. 252)

\[
\frac{25}{3}
\]

Solution to Exercise 4.362 (p. 252)

\[
\frac{9}{11}
\]

Solution to Exercise 4.364 (p. 252)

\[
\frac{12}{5} = \frac{24}{10}
\]

Solution to Exercise 4.366 (p. 252)

\[
\frac{1}{12}
\]

Solution to Exercise 4.368 (p. 253)

\[
\frac{2}{5}
\]

Solution to Exercise 4.370 (p. 253)

\[
\frac{7}{3}
\]

Solution to Exercise 4.372 (p. 253)

\[
2
\]

Solution to Exercise 4.374 (p. 253)

\[\text{yes}\]

Solution to Exercise 4.376 (p. 253)

\[
\frac{6}{49}
\]

Solution to Exercise 4.377 (p. 254)

\[
\frac{10}{7}
\]

Solution to Exercise 4.378 (p. 254)

\[
\frac{3}{3}
\]

Solution to Exercise 4.379 (p. 254)

\[
\frac{8}{7}
\]

Solution to Exercise 4.380 (p. 254)

\[
5
\]

Solution to Exercise 4.381 (p. 254)

\[
\frac{1}{16}
\]

Solution to Exercise 4.382 (p. 254)

\[
\frac{37}{37}
\]

Solution to Exercise 4.383 (p. 254)

\[
\frac{16}{163}
\]

Solution to Exercise 4.384 (p. 256)

\[
\frac{4}{5}
\]

Solution to Exercise 4.385 (p. 256)

\[
1
\]

Solution to Exercise 4.386 (p. 256)

\[
\frac{1}{3}
\]

Solution to Exercise 4.387 (p. 256)

\[
\frac{15}{15}
\]
Solution to Exercise 4.388 (p. 256) 15
Solution to Exercise 4.389 (p. 257) 2
Solution to Exercise 4.390 (p. 257) 2
Solution to Exercise 4.391 (p. 257) 16 glasses
Solution to Exercise 4.392 (p. 257) \(\frac{3}{2} \)
Solution to Exercise 4.393 (p. 257) \(\frac{3}{5} \)
Solution to Exercise 4.394 (p. 257) \(\frac{3}{5} \)
Solution to Exercise 4.395 (p. 257) \(\frac{2}{5} \)
Solution to Exercise 4.396 (p. 257) is the reciprocal of the fraction.
Solution to Exercise 4.397 (p. 257) \(\frac{2}{3} \) or \(1 \frac{1}{3} \)
Solution to Exercise 4.399 (p. 257) \(\frac{1}{3} \) or \(4 \frac{1}{3} \)
Solution to Exercise 4.401 (p. 257) \(\frac{1}{18} \)
Solution to Exercise 4.403 (p. 257) \(\frac{1}{7} \)
Solution to Exercise 4.405 (p. 257) 1
Solution to Exercise 4.407 (p. 257) \(\frac{5}{3} \)
Solution to Exercise 4.409 (p. 258) \(\frac{1}{18} \)
Solution to Exercise 4.411 (p. 258) \(\frac{19}{106} \) or \(1 \frac{29}{106} \)
Solution to Exercise 4.413 (p. 258) \(\frac{3}{5} \)
Solution to Exercise 4.415 (p. 258) 1
Solution to Exercise 4.417 (p. 258) 1
Solution to Exercise 4.419 (p. 258) \(\frac{49}{100} \)
Solution to Exercise 4.421 (p. 258) \(\frac{1}{12} \)
Solution to Exercise 4.423 (p. 258) \(\frac{1}{2} \)
Solution to Exercise 4.425 (p. 258) \(\frac{8}{7} \) or \(1 \frac{1}{7} \)
Solution to Exercise 4.427 (p. 258) \(\frac{28}{18} = \frac{14}{9} \) or \(1 \frac{5}{9} \)
Solution to Exercise 4.429 (p. 258)
10
Solution to Exercise 4.431 (p. 259)
\(\frac{10}{7} \) or \(3 \frac{1}{7} \)
Solution to Exercise 4.433 (p. 259)
\(\frac{4}{7} \)
Solution to Exercise 4.435 (p. 259)
\(\frac{3}{2} \) or \(1 \frac{1}{2} \)
Solution to Exercise 4.437 (p. 259)
\(\frac{4}{5} \)
Solution to Exercise 4.439 (p. 259)
3
Solution to Exercise 4.441 (p. 259)
1
Solution to Exercise 4.443 (p. 259)
321,600
Solution to Exercise 4.445 (p. 259)
144
Solution to Exercise 4.447 (p. 261)
\(\frac{2}{5} \)
Solution to Exercise 4.448 (p. 261)
\(\frac{3}{5} \)
Solution to Exercise 4.449 (p. 261)
\(\frac{1}{5} \)
Solution to Exercise 4.450 (p. 263)
\(\frac{3}{5} \)
Solution to Exercise 4.451 (p. 263)
\(\frac{16}{27} \)
Solution to Exercise 4.452 (p. 263)
\(1 \frac{1}{2} \)
Solution to Exercise 4.453 (p. 263)
\(1 \frac{1}{2} \)
Solution to Exercise 4.454 (p. 263)
\(\frac{1}{2} \)
Solution to Exercise 4.456 (p. 263)
\(\frac{1}{5} \)
Solution to Exercise 4.458 (p. 263)
\(\frac{2}{5} \) or \(1 \frac{1}{5} \)
Solution to Exercise 4.460 (p. 263)
\(\frac{1}{5} \)
Solution to Exercise 4.462 (p. 263)
\(\frac{3}{2} \)
Solution to Exercise 4.464 (p. 263)
\(\frac{1}{1000} \)
Solution to Exercise 4.466 (p. 263)
\(\frac{10}{27} \)
Solution to Exercise 4.468 (p. 263)
\(\frac{1}{2} \)
Solution to Exercise 4.470 (p. 264)
2
CHAPTER 4. INTRODUCTION TO FRACTIONS AND MULTIPLICATION

AND DIVISION OF FRACTIONS

Solution to Exercise 4.472 (p. 264)
\(\frac{1}{6} \)
Solution to Exercise 4.474 (p. 264)
\(\frac{2}{3} \)
Solution to Exercise 4.476 (p. 264)
1
Solution to Exercise 4.478 (p. 264)
1
Solution to Exercise 4.480 (p. 264)
\(\frac{3}{7} \) or \(1 \frac{2}{3} \)
Solution to Exercise 4.482 (p. 264)
3
Solution to Exercise 4.484 (p. 264)
\(\frac{3}{5} \) or \(1 \frac{2}{5} \)
Solution to Exercise 4.486 (p. 264)
\(\frac{27}{40} \)
Solution to Exercise 4.488 (p. 264)
\(\frac{1}{15} \)
Solution to Exercise 4.490 (p. 264)
\(\frac{3}{2} \)
Solution to Exercise 4.492 (p. 265)
\(\frac{9}{17} \)
Solution to Exercise 4.494 (p. 265)
\(\frac{5}{3} = 4 \frac{1}{3} \)
Solution to Exercise 4.496 (p. 265)
\(\frac{16}{17} \) or \(1 \frac{3}{17} \)
Solution to Exercise 4.498 (p. 265)
\(\frac{30}{17} \)
Solution to Exercise 4.500 (p. 265)
no
Solution to Exercise 4.502 (p. 265)
\(\frac{41}{17} \)
Solution to Exercise 4.504 (p. 268)
\(\frac{2}{5} \) or \(\frac{1}{3} \)
Solution to Exercise 4.506 (p. 268)
numerator, 4; denominator, 5
Solution to Exercise 4.508 (p. 268)
numerator, 1; denominator, 3
Solution to Exercise 4.510 (p. 268)
\(\frac{8}{17} \)
Solution to Exercise 4.512 (p. 268)
\(\frac{200}{6000} \)
Solution to Exercise 4.514 (p. 269)
ten seventeenth
Solution to Exercise 4.516 (p. 269)
six hundred six, one thousand four hundred thirty-firsts
Solution to Exercise 4.518 (p. 269)
one sixteenth
Solution to Exercise 4.520 (p. 269)
numerator, 56; denominator, 14,190
Solution to Exercise 4.522 (p. 269)

Solution to Exercise 4.524 (p. 269)
$\frac{3}{4}$

Solution to Exercise 4.526 (p. 269)
$\frac{6}{3}$

Solution to Exercise 4.528 (p. 270)
$118\frac{2}{3}$

Solution to Exercise 4.530 (p. 270)
$1\frac{1}{4}$

Solution to Exercise 4.532 (p. 270)
3

Solution to Exercise 4.534 (p. 270)
$\frac{120}{8}$

Solution to Exercise 4.536 (p. 270)
$\frac{16}{5}$

Solution to Exercise 4.538 (p. 270)
$\frac{377}{2}$

Solution to Exercise 4.540 (p. 270)
$\frac{3}{5}$

Solution to Exercise 4.542 (p. 270)
$\frac{62}{7}$

Solution to Exercise 4.544 (p. 270)
because the whole number part is zero

Solution to Exercise 4.546 (p. 271)
equivalent

Solution to Exercise 4.548 (p. 271)
not equivalent

Solution to Exercise 4.550 (p. 271)
not equivalent

Solution to Exercise 4.552 (p. 271)
$\frac{6}{17}$

Solution to Exercise 4.554 (p. 271)
$\frac{5}{17}$

Solution to Exercise 4.556 (p. 271)
$\frac{3}{5}$

Solution to Exercise 4.558 (p. 271)
$\frac{9}{17}$

Solution to Exercise 4.560 (p. 271)
$\frac{35}{65}$

Solution to Exercise 4.562 (p. 271)
$\frac{60}{102}$

Solution to Exercise 4.564 (p. 271)
$\frac{15}{6}$

Solution to Exercise 4.566 (p. 272)
6

Solution to Exercise 4.568 (p. 272)
27
CHAPTER 4. INTRODUCTION TO FRACTIONS AND MULTIPLICATION
AND DIVISION OF FRACTIONS

Solution to Exercise 4.570 (p. 272)
42
Solution to Exercise 4.572 (p. 272)
168
Solution to Exercise 4.574 (p. 272)
192
Solution to Exercise 4.576 (p. 272)
$\frac{3}{4}$
Solution to Exercise 4.578 (p. 272)
$\frac{1}{2}$
Solution to Exercise 4.580 (p. 272)
\frac{1}{8}
Solution to Exercise 4.582 (p. 272)
1
Solution to Exercise 4.584 (p. 272)
\frac{1}{16}
Solution to Exercise 4.586 (p. 273)
\frac{1}{32}
Solution to Exercise 4.588 (p. 273)
\frac{1}{50} = 7\frac{1}{7}
Solution to Exercise 4.590 (p. 273)
2
Solution to Exercise 4.592 (p. 273)
3
Solution to Exercise 4.594 (p. 273)
\frac{1}{2}
Solution to Exercise 4.596 (p. 273)
90
Solution to Exercise 4.598 (p. 273)
1
Solution to Exercise 4.600 (p. 273)
\frac{7}{3} or 3\frac{1}{3}
Solution to Exercise 4.602 (p. 273)
4
Solution to Exercise 4.604 (p. 273)
\frac{12}{16}
Solution to Exercise 4.606 (p. 273)
4
Solution to Exercise 4.608 (p. 274)
\frac{1}{2}
Solution to Exercise 4.609 (p. 274)
\frac{2}{3}
Solution to Exercise 4.610 (p. 274)
Numerator, 5; denominator, 9
Solution to Exercise 4.611 (p. 274)
\frac{2}{5}
Solution to Exercise 4.612 (p. 274)
Four fifths
Solution to Exercise 4.613 (p. 274)
- \(\frac{1}{5} \)

Solution to Exercise 4.614 (p. 274)
- \(\frac{25}{4} \)

Solution to Exercise 4.615 (p. 274)
- \(3 \frac{1}{5} \)

Solution to Exercise 4.616 (p. 274)
- yes

Solution to Exercise 4.617 (p. 274)
- \(\frac{3}{8} \)

Solution to Exercise 4.618 (p. 274)
- \(\frac{17}{17} \)

Solution to Exercise 4.619 (p. 274)
- \(\frac{13}{13} \)

Solution to Exercise 4.620 (p. 274)
- 20

Solution to Exercise 4.621 (p. 274)
- 24

Solution to Exercise 4.622 (p. 274)
- \(\frac{3}{25} \)

Solution to Exercise 4.623 (p. 275)
- 55

Solution to Exercise 4.624 (p. 275)
- 55

Solution to Exercise 4.625 (p. 275)
- \(\frac{3}{4} \)

Solution to Exercise 4.626 (p. 275)
- \(1 \frac{7}{10} \)

Solution to Exercise 4.627 (p. 275)
- \(\frac{17}{10} \)

Solution to Exercise 4.628 (p. 275)
- \(\frac{30}{23} = 1 \frac{11}{23} \)

Solution to Exercise 4.629 (p. 275)
- \(\frac{36}{25} = 1 \frac{11}{25} \)

Solution to Exercise 4.630 (p. 275)
- \(\frac{25}{3} \)

Solution to Exercise 4.631 (p. 275)
- \(\frac{1}{3} \)

Solution to Exercise 4.632 (p. 275)
- \(\frac{1}{5} = 1 \frac{2}{5} \)

Solution to Exercise 4.633 (p. 275)
- \(\frac{1}{5} \) or \(1 \frac{1}{5} \)
CHAPTER 4. INTRODUCTION TO FRACTIONS AND MULTIPLICATION AND DIVISION OF FRACTIONS
Chapter 5

Addition and Subtraction of Fractions, Comparing Fractions, and Complex Fractions

5.1 Objectives\(^1\)

After completing this chapter, you should

Addition and Subtraction of Fractions with Like Denominators (Section 5.2)
- be able to add and subtract fractions with like denominators

Addition and Subtraction of Fractions with Unlike Denominators (Section 5.3)
- be able to add and subtract fractions with unlike denominators

Addition and Subtraction of Mixed Numbers (Section 5.4)
- be able to add and subtract mixed numbers

Comparing Fractions (Section 5.5)
- understand ordering of numbers and be familiar with grouping symbols
- be able to compare two or more fractions

Complex Fractions (Section 5.6)
- be able to distinguish between simple and complex fractions
- be able to convert a complex fraction to a simple fraction

Combinations of Operations with Fractions (Section 5.7)
- gain a further understanding of the order of operations

\(^1\)This content is available online at <http://cnx.org/content/m18893/1.3/>.
5.2 Addition and Subtraction of Fractions with Like Denominators

5.2.1 Section Overview

- Addition of Fraction With Like Denominators
- Subtraction of Fractions With Like Denominators

5.2.2 Addition of Fraction With Like Denominators

Let's examine the following diagram.

\[
\begin{array}{ccccc}
\frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\
\hline
\frac{2}{5} & \frac{1}{5}
\end{array}
\]

2 one-fifths and 1 one fifth is shaded.

It is shown in the shaded regions of the diagram that

\[(2 \text{ one-fifths}) + (1 \text{ one-fifth}) = (3 \text{ one-fifths})\]

That is,

\[
\frac{2}{5} + \frac{1}{5} = \frac{3}{5}
\]

From this observation, we can suggest the following rule.

Method of Adding Fractions Having Like Denominators

To add two or more fractions that have the same denominators, add the numerators and place the resulting sum over the common denominator. Reduce, if necessary.

5.2.2.1 Sample Set A

Find the following sums.

Example 5.1

\[
\frac{3}{7} + \frac{2}{7}
\]

The denominators are the same. Add the numerators and place that sum over 7.

\[
\frac{3}{7} + \frac{2}{7} = \frac{3+2}{7} = \frac{5}{7}
\]

Example 5.2

\[
\frac{1}{8} + \frac{3}{8}
\]

The denominators are the same. Add the numerators and place the sum over 8. Reduce.

\[
\frac{1}{8} + \frac{3}{8} = \frac{1+3}{8} = \frac{4}{8} = \frac{1}{2}
\]

Example 5.3

\[
\frac{4}{9} + \frac{5}{9}
\]

The denominators are the same. Add the numerators and place the sum over 9.

\[
\frac{4}{9} + \frac{5}{9} = \frac{4+5}{9} = \frac{9}{9} = 1
\]

Example 5.4

\[
\frac{7}{8} + \frac{5}{8}
\]

The denominators are the same. Add the numerators and place the sum over 8.

\[
\frac{7}{8} + \frac{5}{8} = \frac{7+5}{8} = \frac{12}{8} = \frac{3}{2}
\]

\[\text{This content is available online at } \text{<http://cnx.org/content/m34934/1.2/>}.\]
Example 5.5
To see what happens if we mistakenly add the denominators as well as the numerators, let’s add \(\frac{1}{2} + \frac{1}{2} \).

Adding the numerators and mistakenly adding the denominators produces
\[
\frac{1}{2} + \frac{1}{2} = \frac{1+1}{2+2} = \frac{2}{4} = \frac{1}{2}
\]
This means that two \(\frac{1}{2} \)'s is the same as one \(\frac{1}{2} \). Preposterous! **We do not add denominators.**

5.2.2.2 Practice Set A
Find the following sums.

Exercise 5.1
\(\frac{1}{10} + \frac{3}{10} \)
(Solution on p. 327.)

Exercise 5.2
\(\frac{1}{4} + \frac{1}{4} \)
(Solution on p. 327.)

Exercise 5.3
\(\frac{7}{11} + \frac{1}{11} \)
(Solution on p. 327.)

Exercise 5.4
\(\frac{3}{5} + \frac{1}{5} \)
(Solution on p. 327.)

Exercise 5.5
Show why adding both the numerators and denominators is preposterous by adding \(\frac{3}{4} \) and \(\frac{3}{4} \) and examining the result.

5.2.3 Subtraction of Fractions With Like Denominators
We can picture the concept of subtraction of fractions in much the same way we pictured addition.

<table>
<thead>
<tr>
<th>(\frac{1}{5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{3}{5})</td>
<td>take away</td>
<td>(\frac{1}{5})</td>
</tr>
</tbody>
</table>

(3 one-fifths) − (1 one-fifth) = (2 one-fifths)

From this observation, we can suggest the following rule for subtracting fractions having like denominators:

Subtraction of Fractions with Like Denominators
To subtract two fractions that have like denominators, subtract the numerators and place the resulting difference over the common denominator. Reduce, if possible.

5.2.3.1 Sample Set B
Find the following differences.

Example 5.6
\(\frac{3}{5} - \frac{1}{5} \). The denominators are the same. Subtract the numerators. Place the difference over 5.
\[
\frac{3}{5} - \frac{1}{5} = \frac{3-1}{5} = \frac{2}{5}
\]
\textbf{Example 5.7}

\[
\frac{8}{6} - \frac{2}{6}.
\]
The denominators are the same. Subtract the numerators. Place the difference over 6.

\[
\frac{8}{6} - \frac{2}{6} = \frac{8-2}{6} = \frac{6}{6} = 1
\]

\textbf{Example 5.8}

\[
\frac{16}{9} - \frac{2}{9}.
\]
The denominators are the same. Subtract numerators and place the difference over 9.

\[
\frac{16}{9} - \frac{2}{9} = \frac{16-2}{9} = \frac{14}{9}
\]

\textbf{Example 5.9}

To see what happens if we \textit{mistakenly} subtract the denominators, let’s consider

\[
\frac{7}{15} - \frac{4}{15} = \frac{7-4}{15-15} = \frac{3}{0}
\]

We get division by zero, which is undefined. \textbf{We do not subtract denominators.}

\subsection{5.2.3.2 Practice Set B}

Find the following differences.

\textbf{Exercise 5.6} \hspace{1cm} (Solution on p. 327.)

\[
\frac{10}{17} - \frac{8}{17}
\]

\textbf{Exercise 5.7} \hspace{1cm} (Solution on p. 327.)

\[
\frac{5}{12} - \frac{1}{12}
\]

\textbf{Exercise 5.8} \hspace{1cm} (Solution on p. 327.)

\[
\frac{1}{2} - \frac{1}{2}
\]

\textbf{Exercise 5.9} \hspace{1cm} (Solution on p. 327.)

\[
\frac{26}{10} - \frac{14}{10}
\]

\textbf{Exercise 5.10} \hspace{1cm} (Solution on p. 327.)

Show why subtracting both the numerators and the denominators is in error by performing the subtraction \[\frac{5}{9} - \frac{2}{9}\]

\subsection{5.2.4 Exercises}

For the following problems, find the sums and differences. Be sure to reduce.

\textbf{Exercise 5.11} \hspace{1cm} (Solution on p. 327.)

\[
\frac{3}{8} + \frac{2}{8}
\]

\textbf{Exercise 5.12} \hspace{1cm} \(\text{Solution on p. 327.}\)

\[
\frac{4}{5} + \frac{3}{5}
\]

\textbf{Exercise 5.13} \hspace{1cm} (Solution on p. 327.)

\[
\frac{9}{10} + \frac{1}{10}
\]

\textbf{Exercise 5.14} \hspace{1cm} \(\text{Solution on p. 327.}\)

\[
\frac{3}{11} + \frac{3}{11}
\]

\textbf{Exercise 5.15} \hspace{1cm} (Solution on p. 327.)

\[
\frac{9}{15} + \frac{4}{15}
\]

\textbf{Exercise 5.16} \hspace{1cm} \(\text{Solution on p. 327.}\)

\[
\frac{3}{10} + \frac{2}{10}
\]
Exercise 5.17
\[
\frac{5}{12} + \frac{7}{12} = \frac{12}{12} = 1
\]
(Solution on p. 327.)

Exercise 5.18
\[
\frac{11}{16} - \frac{2}{16} = \frac{9}{16}
\]

Exercise 5.19
\[
\frac{3}{16} - \frac{3}{16} = 0
\]
(Solution on p. 327.)

Exercise 5.20
\[
\frac{15}{23} - \frac{2}{23} = \frac{13}{23}
\]

Exercise 5.21
\[
\frac{1}{6} - \frac{1}{6} = 0
\]
(Solution on p. 327.)

Exercise 5.22
\[
\frac{1}{4} + \frac{1}{4} = \frac{1}{2}
\]

Exercise 5.23
\[
\frac{3}{11} + \frac{1}{11} + \frac{5}{11} = \frac{9}{11}
\]
(Solution on p. 327.)

Exercise 5.24
\[
\frac{16}{20} + \frac{1}{20} + \frac{2}{20} = \frac{19}{20}
\]

Exercise 5.25
\[
\frac{12}{8} + \frac{2}{8} + \frac{1}{8} = \frac{15}{8}
\]
(Solution on p. 327.)

Exercise 5.26
\[
\frac{1}{15} + \frac{8}{15} + \frac{6}{15} = \frac{15}{15} = 1
\]

Exercise 5.27
\[
\frac{1}{8} + \frac{2}{8} - \frac{1}{8} = \frac{1}{4}
\]
(Solution on p. 327.)

Exercise 5.28
\[
\frac{11}{16} + \frac{9}{16} - \frac{5}{16} = \frac{15}{16}
\]

Exercise 5.29
\[
\frac{4}{20} - \frac{1}{20} + \frac{9}{20} = \frac{12}{20} = \frac{3}{5}
\]
(Solution on p. 327.)

Exercise 5.30
\[
\frac{7}{10} - \frac{3}{10} + \frac{11}{10} = \frac{15}{10} = 1.5
\]

Exercise 5.31
\[
\frac{16}{7} - \frac{1}{7} - \frac{2}{7} = \frac{13}{7}
\]
(Solution on p. 327.)

Exercise 5.32
\[
\frac{21}{35} - \frac{17}{35} + \frac{31}{35} = \frac{35}{35} = 1
\]

Exercise 5.33
\[
\frac{3}{2} + \frac{16}{2} - \frac{1}{2} = \frac{18}{2} = 9
\]
(Solution on p. 327.)

Exercise 5.34
\[
\frac{1}{18} + \frac{3}{18} + \frac{1}{18} + \frac{4}{18} - \frac{5}{18} = \frac{4}{18} = \frac{2}{9}
\]

Exercise 5.35
\[
\frac{6}{22} - \frac{2}{22} + \frac{4}{22} - \frac{1}{22} + \frac{11}{22} = \frac{12}{22} = \frac{6}{11}
\]
(Solution on p. 327.)

The following rule for addition and subtraction of two fractions is preposterous. Show why by performing the operations using the rule for the following two problems.

Preposterous Rule

To add or subtract two fractions, simply add or subtract the numerators and place this result over the sum or difference of the denominators.

Exercise 5.36
\[
\frac{3}{10} - \frac{3}{10} = 0
\]
Exercise 5.37
\(\frac{8}{15} + \frac{8}{15} \)

Exercise 5.38
Find the total length of the screw.

Exercise 5.39
Two months ago, a woman paid off \(\frac{3}{24} \) of a loan. One month ago, she paid off \(\frac{5}{24} \) of the total loan. This month she will again pay off \(\frac{5}{24} \) of the total loan. At the end of the month, how much of her total loan will she have paid off?

Exercise 5.40
Find the inside diameter of the pipe.

5.2.4.1 Exercises for Review

Exercise 5.41
(Solution on p. 327.)
(Section 1.4) Round 2,650 to the nearest hundred.

Exercise 5.42
(Solution on p. 327.)
(Section 2.6) Use the numbers 2, 4, and 8 to illustrate the associative property of addition.

Exercise 5.43
(Solution on p. 328.)
(Section 3.4) Find the prime factors of 495.

Exercise 5.44
(Solution on p. 328.)
(Section 4.5) Find the value of \(\frac{3}{4} \cdot \frac{16}{25} \cdot \frac{5}{9} \).

Exercise 5.45
(Solution on p. 328.)
(Section 4.7) \(\frac{8}{3} \) of what number is 12?

5.3 Addition and Subtraction of Fractions with Unlike Denominators

5.3.1 Section Overview

- A Basic Rule
- Addition and Subtraction of Fractions

\(^{3}\text{This content is available online at <http://cnx.org/content/m34935/1.2/>.}\)
5.3.2 A Basic Rule

There is a basic rule that must be followed when adding or subtracting fractions.

A Basic Rule

Fractions can only be added or subtracted conveniently if they have like denominators.

To see why this rule makes sense, let’s consider the problem of adding a quarter and a dime.

1 quarter + 1 dime = 35 cents

Now,

\[
\begin{align*}
1 \text{ quarter} &= \frac{25}{100} \quad \text{同分母} \\
1 \text{ dime} &= \frac{10}{100} \\
35, &= \frac{35}{100} \\
\frac{25}{100} + \frac{10}{100} &= \frac{35}{100}
\end{align*}
\]

In order to combine a quarter and a dime to produce 35¢, we convert them to quantities of the same denomination.

Same denomination → same denominator

5.3.3 Addition and Subtraction of Fractions

Least Common Multiple (LCM) and Least Common Denominator (LCD)

In Section 3.6, we examined the least common multiple (LCM) of a collection of numbers. If these numbers are used as denominators of fractions, we call the least common multiple, the least common denominator (LCD).

Method of Adding or Subtracting Fractions with Unlike Denominators

To add or subtract fractions having unlike denominators, convert each fraction to an equivalent fraction having as a denominator the least common denominator (LCD) of the original denominators.

5.3.3.1 Sample Set A

Find the following sums and differences.

Example 5.10

\[
\frac{1}{6} + \frac{3}{4}
\]

The denominators are not the same. Find the LCD of 6 and 4.

\[
\begin{align*}
6 &= 2 \cdot 3 \\
4 &= 2^2
\end{align*}
\]

The LCD = \(2^2 \cdot 3 = 4 \cdot 3 = 12\)

Write each of the original fractions as a new, equivalent fraction having the common denominator 12.

\[
\frac{1}{6} + \frac{3}{4} = \frac{12}{12} + \frac{36}{12}
\]

To find a new numerator, we divide the original denominator into the LCD. Since the original denominator is being multiplied by this quotient, we must multiply the original numerator by this quotient.
CHAPTER 5. ADDITION AND SUBTRACTION OF FRACTIONS, COMPARING FRACTIONS, AND COMPLEX FRACTIONS

Multiply 1 by 2: \(1 \cdot 2 = 2 \).

\[\frac{1}{2} + \frac{3}{4} = \frac{1 \cdot 2}{12} + \frac{3 \cdot 3}{12} \]

\[= \frac{2}{12} + \frac{9}{12} \]

\[= \frac{2+9}{12} \]

Now the denominators are the same.

\[= \frac{11}{12} \]

Add the numerators and place the sum over the common denominator.

\[\frac{1}{6} + \frac{3}{4} = \frac{1}{6} + \frac{3}{12} \]

Example 5.11
\[\frac{1}{2} + \frac{2}{3} \] The denominators are not the same. Find the LCD of 2 and 3.

\[\text{LCD} = 2 \cdot 3 = 6 \]

Write each of the original fractions as a new, equivalent fraction having the common denominator 6.

\[\frac{1}{2} + \frac{2}{3} = \frac{6}{6} + \frac{6}{6} \]

To find a new numerator, we divide the original denominator into the LCD. Since the original denominator is being multiplied by this quotient, we must multiply the original numerator by this quotient.

\[6 \div 2 = 3 \] Multiply the numerator 1 by 3.

\[6 \div 2 = 3 \] Multiply the numerator 2 by 2.

\[\frac{1}{2} + \frac{2}{3} = \frac{1 \cdot 3}{6} + \frac{2 \cdot 3}{6} \]

\[= \frac{3}{6} + \frac{4}{6} \]

\[= \frac{3+4}{6} \]

\[= \frac{7}{6} \text{ or } 1 \frac{1}{6} \]

Example 5.12
\[\frac{5}{6} - \frac{3}{12} \] The denominators are not the same. Find the LCD of 9 and 12.

\[\begin{align*}
9 & = 3 \cdot 3 = 3^2 \\
12 & = 2 \cdot 6 = 2 \cdot 2 \cdot 3 = 2^2 \cdot 3
\end{align*} \]

\[\text{LCD} = 2^2 \cdot 3^2 = 9 \cdot 4 = 36 \]
\[
\frac{5}{9} - \frac{5}{12} = \frac{5 \cdot 4}{36} - \frac{5 \cdot 3}{36} = \frac{20 - 15}{36} = \frac{5}{36}
\]

36 ÷ 9 = 4 Multiply the numerator 5 by 4.
36 ÷ 12 = 3 Multiply the numerator 5 by 3.

\[
\frac{5}{9} - \frac{5}{12} = \frac{5 \cdot 4}{36} - \frac{5 \cdot 3}{36} = \frac{20 - 15}{36} = \frac{5}{36}
\]

Example 5.13

\[
\frac{5}{6} - \frac{1}{8} + \frac{7}{16}
\]
The denominators are not the same. Find the LCD of 6, 8, and 16

\[
\begin{align*}
6 &= 2 \cdot 3 \\
8 &= 2 \cdot 2 \cdot 2 = 2^3 & \text{The LCD is } 2^4 \cdot 3 = 48 \\
16 &= 2 \cdot 8 = 2 \cdot 2 \cdot 2 = 2^4
\end{align*}
\]

\[
\frac{5}{6} - \frac{1}{8} + \frac{7}{16} = \frac{5 \cdot 8}{48} - \frac{1 \cdot 6}{48} + \frac{7 \cdot 3}{48} = \frac{40 - 6 + 21}{48} = \frac{55}{48} \text{ or } 1 \frac{7}{48}
\]

5.3.3.2 **Practice Set A**

Find the following sums and differences.

Exercise 5.46

\[
\frac{3}{4} + \frac{1}{12}
\]

(Solution on p. 328.)

Exercise 5.47

\[
\frac{1}{2} - \frac{3}{7}
\]

(Solution on p. 328.)

Exercise 5.48

\[
\frac{7}{10} - \frac{5}{8}
\]

(Solution on p. 328.)

Exercise 5.49

\[
\frac{15}{16} + \frac{1}{2} - \frac{1}{4}
\]

(Solution on p. 328.)

Exercise 5.50

\[
\frac{1}{32} - \frac{1}{38}
\]

(Solution on p. 328.)
5.3.4 Exercises

Exercise 5.51
A most basic rule of arithmetic states that two fractions may be added or subtracted conveniently only if they have ______________.

For the following problems, find the sums and differences.

Exercise 5.52
\[\frac{1}{2} + \frac{1}{5} \]

Exercise 5.53
\[\frac{3}{4} + \frac{2}{3} \]

Exercise 5.54
\[\frac{3}{4} + \frac{1}{3} \]

Exercise 5.55
\[\frac{3}{8} + \frac{3}{5} \]

Exercise 5.56
\[\frac{1}{12} + \frac{1}{3} \]

Exercise 5.57
\[\frac{6}{7} - \frac{1}{4} \]

Exercise 5.58
\[\frac{9}{10} - \frac{2}{5} \]

Exercise 5.59
\[\frac{7}{9} - \frac{1}{3} \]

Exercise 5.60
\[\frac{8}{15} - \frac{3}{10} \]

Exercise 5.61
\[\frac{8}{15} - \frac{3}{20} \]

Exercise 5.62
\[\frac{11}{12} - \frac{5}{9} \]

Exercise 5.63
\[\frac{4}{15} + \frac{5}{12} \]

Exercise 5.64
\[\frac{13}{88} - \frac{1}{4} \]

Exercise 5.65
\[\frac{1}{9} - \frac{1}{8} \]

Exercise 5.66
\[\frac{19}{30} + \frac{5}{12} \]

Exercise 5.67
\[\frac{25}{26} - \frac{7}{20} \]

Exercise 5.68
\[\frac{9}{28} - \frac{4}{45} \]

Exercise 5.69
\[\frac{22}{45} - \frac{16}{35} \]

Exercise 5.70
\[\frac{56}{63} + \frac{22}{33} \]

Exercise 5.71
\[\frac{1}{16} + \frac{3}{4} - \frac{3}{8} \]
Exercise 5.72
\[
\frac{5}{12} - \frac{1}{20} + \frac{19}{20}
\]
Exercise 5.73
\[
\frac{8}{3} - \frac{1}{4} + \frac{7}{56}
\]
Exercise 5.74
\[
\frac{11}{9} - \frac{1}{7} + \frac{16}{3}
\]
Exercise 5.75
\[
\frac{12}{5} - \frac{2}{3} + \frac{17}{10}
\]
Exercise 5.76
\[
\frac{1}{5} + \frac{13}{12} - \frac{9}{14}
\]
Exercise 5.77
\[
\frac{3}{4} - \frac{3}{22} + \frac{5}{24}
\]
Exercise 5.78
\[
\frac{25}{48} - \frac{7}{88} + \frac{5}{24}
\]
Exercise 5.79
\[
\frac{27}{40} + \frac{47}{48} - \frac{119}{126}
\]
Exercise 5.80
\[
\frac{11}{14} - \frac{5}{99} - \frac{11}{176}
\]
Exercise 5.81
\[
\frac{5}{12} + \frac{1}{18} + \frac{1}{24}
\]
Exercise 5.82
\[
\frac{5}{9} + \frac{1}{8} + \frac{7}{15}
\]
Exercise 5.83
\[
\frac{21}{25} + \frac{1}{6} + \frac{7}{15}
\]
Exercise 5.84
\[
\frac{3}{18} - \frac{1}{9} + \frac{5}{6}
\]
Exercise 5.85
\[
\frac{11}{14} - \frac{1}{56} - \frac{1}{32}
\]
Exercise 5.86
\[
\frac{21}{35} + \frac{12}{15} + \frac{15}{55}
\]
Exercise 5.87
\[
\frac{5}{51} + \frac{2}{34} + \frac{11}{68}
\]
Exercise 5.88
\[
\frac{8}{7} - \frac{16}{14} + \frac{19}{21}
\]
Exercise 5.89
\[
\frac{7}{15} + \frac{3}{10} - \frac{34}{60}
\]
Exercise 5.90
\[
\frac{14}{15} - \frac{3}{10} - \frac{6}{77} + \frac{7}{29}
\]
Exercise 5.91
\[
\frac{11}{9} - \frac{5}{12} + \frac{17}{30} + \frac{25}{18}
\]
Exercise 5.92
\[
\frac{1}{1} + \frac{22}{21} - \frac{5}{18} - \frac{1}{40}
\]
Exercise 5.93
\[
\frac{7}{26} + \frac{28}{65} - \frac{51}{104} + 0
\]
Exercise 5.94
A morning trip from San Francisco to Los Angeles took $\frac{13}{12}$ hours. The return trip took $\frac{57}{60}$ hours. How much longer did the morning trip take?

Exercise 5.95
At the beginning of the week, Starlight Publishing Company’s stock was selling for $\frac{115}{8}$ dollars per share. At the end of the week, analysts had noted that the stock had gone up $\frac{11}{4}$ dollars per share. What was the price of the stock, per share, at the end of the week?

Exercise 5.96
A recipe for fruit punch calls for $\frac{23}{3}$ cups of pineapple juice, $\frac{1}{4}$ cup of lemon juice, $\frac{15}{2}$ cups of orange juice, 2 cups of sugar, 6 cups of water, and 8 cups of carbonated non-cola soft drink. How many cups of ingredients will be in the final mixture?

Exercise 5.97
The side of a particular type of box measures $8\frac{3}{4}$ inches in length. Is it possible to place three such boxes next to each other on a shelf that is $26\frac{1}{2}$ inches in length? Why or why not?

Exercise 5.98
Four resistors, $\frac{3}{8}$ ohm, $\frac{1}{4}$ ohm, $\frac{3}{5}$ ohm, and $\frac{7}{8}$ ohm, are connected in series in an electrical circuit. What is the total resistance in the circuit due to these resistors? ("In series" implies addition.)

Exercise 5.99
A copper pipe has an inside diameter of $2\frac{4}{16}$ inches and an outside diameter of $2\frac{5}{34}$ inches. How thick is the pipe?

Exercise 5.100
The probability of an event was originally thought to be $\frac{15}{32}$. Additional information decreased the probability by $\frac{3}{14}$. What is the updated probability?

5.3.4.1 Exercises for Review

Exercise 5.101
(Solution on p. 329.) (Section 1.6) Find the difference between 867 and 418.

Exercise 5.102
(Solution on p. 329.) (Section 2.5) Is 81,147 divisible by 3?

Exercise 5.103
(Solution on p. 329.) (Section 3.6) Find the LCM of 11, 15, and 20.

Exercise 5.104
(Solution on p. 329.) (Section 4.5) Find $\frac{3}{4}$ of $4\frac{5}{8}$.

Exercise 5.105
(Solution on p. 329.) (Section 5.2) Find the value of $\frac{8}{15} - \frac{3}{15} + \frac{2}{15}$.

5.4 Addition and Subtraction of Mixed Numbers

5.4.1 Section Overview

- The Method of Converting to Improper Fractions

To add or subtract mixed numbers, convert each mixed number to an improper fraction, then add or subtract the resulting improper fractions.

This content is available online at <http://cnx.org/content/m34936/1.2/>.
5.4.1.1 Sample Set A

Find the following sums and differences.

Example 5.14

8\(\frac{3}{5}\) + 5\(\frac{1}{4}\). Convert each mixed number to an improper fraction.

\[
8\frac{3}{5} = \frac{5 \cdot 8 + 3}{5} = \frac{43}{5}
\]

\[
5\frac{1}{4} = \frac{4 \cdot 5 + 1}{4} = \frac{21}{4}
\]

Now add the improper fractions \(\frac{43}{5}\) and \(\frac{21}{4}\).

\[
\frac{43}{5} + \frac{21}{4} \quad \text{The LCD} = 20.
\]

\[
= \frac{43 \cdot 4}{20} + \frac{21 \cdot 5}{20} = \frac{172 + 105}{20} = \frac{277}{20}
\]

Convert this improper fraction to a mixed number.

\[
= 13\frac{17}{20}
\]

Thus, \(8\frac{3}{5} + 5\frac{1}{4} = 13\frac{17}{20}\).

Example 5.15

3\(\frac{1}{8}\) − \(\frac{5}{6}\). Convert the mixed number to an improper fraction.

\[
3\frac{1}{8} = \frac{3 \cdot 8 + 1}{8} = \frac{25}{8}
\]

\[
\frac{25}{8} - \frac{5}{6} \quad \text{The LCD} = 24.
\]

\[
= \frac{25 \cdot 3}{24} - \frac{5 \cdot 4}{24} = \frac{75 - 20}{24} = \frac{55}{24}
\]

Convert his improper fraction to a mixed number.

\[
= 2\frac{7}{24}
\]

Thus, \(3\frac{1}{8} - \frac{5}{6} = 2\frac{7}{24}\).

5.4.1.2 Practice Set A

Find the following sums and differences.

Exercise 5.106 \(\frac{1}{3} + \frac{3}{8}\) \hfill(Solution on p. 329.)

Exercise 5.107 \(10\frac{3}{4} - 2\frac{1}{2}\) \hfill(Solution on p. 329.)

Exercise 5.108 \(2\frac{7}{8} + 5\frac{1}{4}\) \hfill(Solution on p. 329.)

Exercise 5.109 \(\frac{8}{3} - \frac{1}{10}\) \hfill(Solution on p. 329.)

Exercise 5.110 \(16 + 2\frac{9}{16}\) \hfill(Solution on p. 329.)
5.4.2 Exercises

For the following problems, perform each indicated operation.

Exercise 5.111 \(\frac{3}{8} + \frac{4}{8} \)
(Solution on p. 329.)

Exercise 5.112 \(\frac{5}{4} + \frac{6}{4} \)

Exercise 5.113 \(10 \frac{5}{12} + 2 \frac{1}{12} \)
(Solution on p. 329.)

Exercise 5.114 \(15 \frac{1}{5} - 11 \frac{2}{5} \)

Exercise 5.115 \(9 \frac{3}{17} + 12 \frac{4}{17} \)
(Solution on p. 329.)

Exercise 5.116 \(1 \frac{1}{5} + 3 \frac{2}{5} + 8 \frac{1}{5} \)

Exercise 5.117 \(5 \frac{3}{5} + 1 \frac{1}{5} - 2 \frac{5}{8} \)
(Solution on p. 329.)

Exercise 5.118 \(\frac{3}{5} + 5 \frac{1}{5} \)

Exercise 5.119 \(\frac{2}{5} - \frac{5}{9} \)
(Solution on p. 329.)

Exercise 5.120 \(6 + 11 \frac{3}{7} \)

Exercise 5.121 \(17 - 8 \frac{3}{11} \)
(Solution on p. 329.)

Exercise 5.122 \(5 \frac{1}{3} + 2 \frac{1}{3} \)

Exercise 5.123 \(6 \frac{1}{7} - 1 \frac{3}{7} \)
(Solution on p. 329.)

Exercise 5.124 \(8 \frac{2}{7} + 4 \frac{1}{10} \)

Exercise 5.125 \(1 \frac{1}{5} + 12 \frac{3}{8} \)
(Solution on p. 329.)

Exercise 5.126 \(\frac{3}{4} + 1 \frac{1}{3} - 2 \frac{1}{7} \)

Exercise 5.127 \(4 \frac{2}{3} - 3 \frac{5}{6} + 1 \frac{2}{3} \)

Exercise 5.128 \(3 \frac{1}{7} + 4 \frac{1}{3} + 1 \frac{1}{4} \)

Exercise 5.129 \(5 \frac{3}{11} + 8 \frac{3}{10} - 5 \frac{1}{2} \)
(Solution on p. 329.)

Exercise 5.130 \(7 \frac{3}{5} + 8 \frac{2}{6} - 2 \frac{4}{3} \)
Exercise 5.131
\[19 \frac{20}{27} + 42 \frac{6}{9} - \frac{5}{11} + 12 \frac{1}{2} \]

(Solution on p. 330.)

Exercise 5.132
\[\frac{1}{16} + 4 \frac{2}{4} + 10 \frac{2}{8} - 9 \]

Exercise 5.133
\[11 - \frac{2}{9} + 10 \frac{1}{3} - \frac{2}{3} - \frac{5}{6} + 6 \frac{1}{18} \]

(Solution on p. 330.)

Exercise 5.134
\[\frac{5}{2} + 2 \frac{1}{6} + 11 \frac{1}{3} - \frac{11}{6} \]

Exercise 5.135
\[1 \frac{1}{8} + \frac{9}{4} - \frac{1}{16} - \frac{1}{32} + \frac{10}{8} \]

(Solution on p. 330.)

Exercise 5.136
\[22 \frac{3}{8} - 16 \frac{1}{7} \]

Exercise 5.137
\[15 \frac{3}{9} + 4 \frac{9}{16} \]

Exercise 5.138
\[4 \frac{17}{38} + 5 \frac{9}{160} \]

Exercise 5.139
\[6 \frac{11}{12} + \frac{3}{8} \]

(Solution on p. 330.)

Exercise 5.140
\[8 \frac{9}{16} - \frac{7}{9} \]

Exercise 5.141
\[5 \frac{7}{12} - \frac{1}{12} \]

(Solution on p. 330.)

Exercise 5.142
\[18 \frac{15}{16} - 33 \frac{3}{4} \]

(Solution on p. 330.)

Exercise 5.143
\[1 \frac{30}{117} - \frac{24}{16} \]

Exercise 5.144
\[11 \frac{11}{24} - 7 \frac{13}{18} \]

(Solution on p. 330.)

Exercise 5.145
\[5 \frac{7}{51} - 3 \frac{5}{12} + 1 \frac{47}{17} \]

Exercise 5.146
\[16 \frac{1}{48} - 16 \frac{1}{96} + \frac{1}{44} \]

Exercise 5.147
A man pours 2 \(\frac{2}{3}\) gallons of paint from a bucket into a tray. After he finishes pouring, there are 1 \(\frac{1}{4}\) gallons of paint left in his bucket. How much paint did the man pour into the tray?

HINT: Think about the wording.

Exercise 5.148
A particular computer stock opened at 37 \(\frac{3}{8}\) and closed at 38 \(\frac{1}{4}\). What was the net gain for this stock?

Exercise 5.149
A particular diet program claims that 4 \(\frac{3}{10}\) pounds can be lost the first month, 3 \(\frac{1}{4}\) pounds can be lost the second month, and 1 \(\frac{1}{2}\) pounds can be lost the third month. How many pounds does this diet program claim a person can lose over a 3-month period?

Exercise 5.150
If a person who weighs 145 \(\frac{3}{4}\) pounds goes on the diet program described in the problem above, how much would he weigh at the end of 3 months?
Exercise 5.151
If the diet program described in the problem above makes the additional claim that from the fourth month on, a person will lose $1\frac{1}{8}$ pounds a month, how much will a person who begins the program weighing $208\frac{3}{4}$ pounds weigh after 8 months?

5.5 Comparing Fractions

5.5.1 Section Overview

- Order and the Inequality Symbols
- Comparing Fractions

5.5.2 Order and the Inequality Symbols

Our number system is called an ordered number system because the numbers in the system can be placed in order from smaller to larger. This is easily seen on the number line.

On the number line, a number that appears to the right of another number is larger than that other number. For example, 5 is greater than 2 because 5 is located to the right of 2 on the number line. We may also say that 2 is less than 5.

To make the inequality phrases "greater than" and "less than" more brief, mathematicians represent them with the symbols $>$ and $<$, respectively.

Symbols for Greater Than > and Less Than <

$>$ represents the phrase "greater than."

$<$ represents the phrase "less than."

$5 > 2$ represents "5 is greater than 2."

$2 < 5$ represents "2 is less than 5."
5.5.3 Comparing Fractions

Recall that the fraction $\frac{4}{5}$ indicates that we have 4 of 5 parts of some whole quantity, and the fraction $\frac{3}{5}$ indicates that we have 3 of 5 parts. Since 4 of 5 parts is more than 3 of 5 parts, $\frac{4}{5}$ is greater than $\frac{3}{5}$; that is, $\frac{4}{5} > \frac{3}{5}$.

We have just observed that when two fractions have the same denominator, we can determine which is larger by comparing the numerators.

Comparing Fractions

If two fractions have the same denominators, the fraction with the larger numerator is the larger fraction.

Thus, to compare the sizes of two or more fractions, we need only convert each of them to equivalent fractions that have a common denominator. We then compare the numerators. It is convenient if the common denominator is the LCD. The fraction with the larger numerator is the larger fraction.

5.5.3.1 Sample Set A

Example 5.16

Compare $\frac{8}{9}$ and $\frac{14}{15}$.

Convert each fraction to an equivalent fraction with the LCD as the denominator. Find the LCD.

\[
\begin{align*}
9 &= 3^2 \quad \text{The LCD} = 3^2 \cdot 5 = 9 \cdot 5 = 45 \\
15 &= 3 \cdot 5
\end{align*}
\]

\[
\begin{align*}
\frac{8}{9} &= \frac{8 \cdot 5}{9 \cdot 5} = \frac{40}{45} \\
\frac{14}{15} &= \frac{14 \cdot 3}{15 \cdot 3} = \frac{42}{45}
\end{align*}
\]

Since $40 < 42$, $\frac{40}{45} < \frac{42}{45}$

Thus $\frac{8}{9} < \frac{14}{15}$.

Example 5.17

Write $\frac{5}{6}$, $\frac{7}{10}$, and $\frac{13}{15}$ in order from smallest to largest.

Convert each fraction to an equivalent fraction with the LCD as the denominator.

Find the LCD.

\[
\begin{align*}
6 &= 2 \cdot 3 \quad \text{The LCD} = 2 \cdot 3 \cdot 5 = 30 \\
10 &= 2 \cdot 5 \\
15 &= 3 \cdot 5
\end{align*}
\]

\[
\begin{align*}
\frac{5}{6} &= \frac{5 \cdot 5}{6 \cdot 5} = \frac{25}{30} \\
\frac{7}{10} &= \frac{7 \cdot 3}{10 \cdot 3} = \frac{21}{30} \\
\frac{13}{15} &= \frac{13 \cdot 2}{15 \cdot 2} = \frac{26}{30}
\end{align*}
\]

Since $21 < 25 < 26$, $\frac{7}{10} < \frac{5}{6} < \frac{13}{15}$.
21/30 < 25/30 < 26/30

7/10 < 5/8 < 13/15

Writing these numbers in order from smallest to largest, we get 7/10, 5/6, 13/15.

Example 5.18
Compare 8 6/7 and 6 3/4.

To compare mixed numbers that have different whole number parts, we need only compare whole number parts. Since 6 < 8,

6 3/4 < 8 6/7

Example 5.19
Compare 4 5/8 and 4 7/12

To compare mixed numbers that have the same whole number parts, we need only compare fractional parts.

\[
\begin{align*}
8 & = 2^3 \\
12 & = 2^2 \cdot 3
\end{align*}
\]

The LCD = \(2^3 \cdot 3 = 24\)

\[
\begin{align*}
\frac{5}{8} & = \frac{5 \cdot 3}{24} = \frac{15}{24} \\
\frac{7}{12} & = \frac{7 \cdot 2}{24} = \frac{14}{24}
\end{align*}
\]

Since 14 < 15,

\[
\frac{14}{24} < \frac{15}{24}
\]

\[
\frac{7}{12} < \frac{5}{8}
\]

Hence, \(\frac{7}{12} < \frac{5}{8}\)

5.5.3.2 Practice Set A

Exercise 5.157
Compare 3/4 and 4/5.
(Solution on p. 330.)

Exercise 5.158
Compare 9/17 and 13/16.
(Solution on p. 330.)

Exercise 5.159
Write \(\frac{13}{16}, \frac{17}{20}, \text{ and } \frac{33}{40}\) in order from smallest to largest.
(Solution on p. 330.)

Exercise 5.160
Compare 11 1/6 and 9 2/3.
(Solution on p. 330.)

Exercise 5.161
Compare 1 9/14 and 1 11/16.
(Solution on p. 330.)
5.5.4 Exercises

Arrange each collection of numbers in order from smallest to largest.

Exercise 5.162
\[
\frac{3}{5}, \quad \frac{5}{8}
\]
(Solution on p. 330.)

Exercise 5.163
\[
\frac{1}{5}, \quad \frac{2}{7}
\]

Exercise 5.164
\[
\frac{3}{4}, \quad \frac{5}{6}
\]
(Solution on p. 330.)

Exercise 5.165
\[
\frac{7}{9}, \quad \frac{11}{12}
\]

Exercise 5.166
\[
\frac{3}{8}, \quad \frac{2}{5}
\]
(Solution on p. 330.)

Exercise 5.167
\[
\frac{1}{2}, \quad \frac{5}{8}, \quad \frac{7}{16}
\]

Exercise 5.168
\[
\frac{1}{2}, \quad \frac{3}{8}, \quad \frac{4}{7}
\]
(Solution on p. 330.)

Exercise 5.169
\[
\frac{3}{4}, \quad \frac{2}{3}, \quad \frac{5}{6}
\]

Exercise 5.170
\[
\frac{7}{9}, \quad \frac{5}{4}
\]
(Solution on p. 330.)

Exercise 5.171
\[
\frac{7}{8}, \quad \frac{15}{16}, \quad \frac{11}{12}
\]

Exercise 5.172
\[
\frac{3}{14}, \quad \frac{2}{3}, \quad \frac{3}{4}
\]
(Solution on p. 330.)

Exercise 5.173
\[
\frac{17}{32}, \quad \frac{25}{48}, \quad \frac{13}{16}
\]

Exercise 5.174
\[
\frac{5}{7}, \quad \frac{5}{4}
\]
(Solution on p. 330.)

Exercise 5.175
\[
11\frac{3}{16}, \quad 11\frac{1}{17}
\]

Exercise 5.176
\[
9\frac{2}{3}, \quad 9\frac{2}{7}
\]
(Solution on p. 331.)

Exercise 5.177
\[
7\frac{2}{3}, \quad 8\frac{5}{6}
\]

Exercise 5.178
\[
1\frac{5}{15}, \quad 2\frac{1}{20}
\]
(Solution on p. 331.)

Exercise 5.179
\[
20\frac{15}{16}, \quad 20\frac{23}{24}
\]

Exercise 5.180
\[
2\frac{3}{9}, \quad 2\frac{7}{7}
\]
(Solution on p. 331.)

Exercise 5.181
\[
5\frac{8}{18}, \quad 5\frac{9}{20}
\]
5.5.4.1 Exercises for Review

Exercise 5.182
(Section 1.4) Round 267,006,428 to the nearest ten million.

Exercise 5.183
(Section 2.5) Is the number 82,644 divisible by 2? by 3? by 4?

Exercise 5.184
(Section 4.3) Convert $\frac{3}{7}$ to an improper fraction.

Exercise 5.185
(Section 5.3) Find the value of $\frac{5}{6} + \frac{3}{70} - \frac{2}{5}$

Exercise 5.186
(Section 5.4) Find the value of $8\frac{3}{5} + 5\frac{1}{7}$.

5.6 Complex Fractions

5.6.1 Section Overview

- Simple Fractions and Complex Fractions
- Converting Complex Fractions to Simple Fractions

5.6.2 Simple Fractions and Complex Fractions

Simple Fraction

A simple fraction is any fraction in which the numerator is any whole number and the denominator is any nonzero whole number. Some examples are the following:

\[
\frac{1}{2}, \quad \frac{4}{3}, \quad \frac{-703}{1000}
\]

Complex Fraction

A complex fraction is any fraction in which the numerator and/or the denominator is a fraction; it is a fraction of fractions. Some examples of complex fractions are the following:

\[
\frac{3}{4}, \quad \frac{1}{2}, \quad \frac{6}{7}, \quad \frac{4+\frac{3}{8}}{7-\frac{2}{9}}
\]

5.6.3 Converting Complex Fractions to Simple Fractions

The goal here is to convert a complex fraction to a simple fraction. We can do so by employing the methods of adding, subtracting, multiplying, and dividing fractions. Recall from Section 4.2 that a fraction bar serves as a grouping symbol separating the fractional quantity into two individual groups. We proceed in simplifying a complex fraction to a simple fraction by simplifying the numerator and the denominator of the complex fraction separately. We will simplify the numerator and denominator completely before removing the fraction bar by dividing. This technique is illustrated in problems 3, 4, 5, and 6 of Section 5.6.3.1 (Sample Set A).

6This content is available online at http://cnx.org/content/col11044/1.7/.
5.6.3.1 Sample Set A

Convert each of the following complex fractions to a simple fraction.

Example 5.20
\[
\frac{3 \div 8}{15} = \frac{3}{8} \div \frac{15}{16}
\]

The divisor is \(\frac{15}{16}\). Invert \(\frac{15}{16}\) and multiply.

\[
\frac{3}{8} \div \frac{15}{16} = \frac{3}{8} \times \frac{16}{15} = \frac{24}{120} = \frac{2}{5}
\]

Example 5.21
\[
\frac{4}{9} \div \frac{6}{1} = \frac{4}{9} \div 6
\]

Write 6 as \(\frac{6}{1}\) and divide.

\[
\frac{4}{9} \div 6 = \frac{23}{4} \div \frac{46}{2} = \frac{11}{42} = \frac{1}{4}
\]

Example 5.22
\[
\frac{5+\frac{1}{4}}{46} = \frac{20+\frac{1}{4}}{46} = \frac{21}{46}
\]

Write \(\frac{6}{1}\) and divide.

\[
\frac{23}{4} \div \frac{46}{2} = \frac{11}{42} = \frac{1}{4
\]

Example 5.23
\[
\frac{4+\frac{3}{2}}{5+\frac{7}{3}} = \frac{20+\frac{3}{2}}{15+\frac{7}{3}} = \frac{22}{18} = \frac{5}{3}
\]

\[
5 \div \frac{25}{24} = \frac{5}{3} \div \frac{24}{1} = \frac{13}{4} - \frac{3}{5}
\]

Example 5.24
\[
\frac{4+\frac{5}{3}}{7+\frac{3}{2}} = \frac{20+\frac{5}{3}}{14+\frac{3}{2}} = \frac{20}{12} = \frac{20}{14} = \frac{20}{14} = \frac{20}{14}
\]

Example 5.25
\[
\frac{11+\frac{4}{8}}{10+\frac{9}{4}} = \frac{110+\frac{4}{8}}{20+\frac{9}{4}} = \frac{113}{24} = \frac{113}{24} = \frac{113}{24}
\]

\[
113 \div \frac{24}{5} = \frac{113}{10} \times \frac{5}{24} = \frac{113}{224} = \frac{113}{48} = \frac{217}{24}
\]
5.6.3.2 Practice Set A

Convert each of the following complex fractions to a simple fraction.

Exercise 5.187
\[
\frac{\frac{4}{9}}{\frac{8}{15}}
\]
(Solution on p. 331.)

Exercise 5.188
\[
\frac{\frac{7}{10}}{\frac{28}{5}}
\]
(Solution on p. 331.)

Exercise 5.189
\[
\frac{\frac{5}{3} + \frac{2}{5}}{\frac{3}{4} + \frac{2}{5}}
\]
(Solution on p. 331.)

Exercise 5.190
\[
\frac{\frac{1}{6} + \frac{2}{3}}{\frac{6}{7} + \frac{1}{4}}
\]
(Solution on p. 331.)

Exercise 5.191
\[
\frac{\frac{1}{6} + \frac{2}{3}}{\frac{6}{7} + \frac{1}{4}}
\]
(Solution on p. 331.)

Exercise 5.192
\[
\frac{\frac{16}{10} - \frac{3}{10}}{\frac{11}{8} - \frac{7}{8}}
\]
(Solution on p. 331.)

5.6.4 Exercises

Simplify each fraction.

Exercise 5.193
\[
\frac{\frac{3}{5}}{\frac{9}{15}}
\]
(Solution on p. 331.)

Exercise 5.194
\[
\frac{\frac{1}{3}}{\frac{1}{9}}
\]
(Solution on p. 331.)

Exercise 5.195
\[
\frac{\frac{1}{4}}{\frac{6}{12}}
\]
(Solution on p. 331.)

Exercise 5.196
\[
\frac{\frac{8}{11}}{\frac{2}{15}}
\]
(Solution on p. 331.)

Exercise 5.197
\[
\frac{\frac{6+\frac{1}{2}}{11+\frac{3}{2}}}{\frac{2+\frac{1}{2}}{7+\frac{1}{2}}}
\]
(Solution on p. 331.)

Exercise 5.198
\[
\frac{\frac{5\frac{1}{2}}{2\frac{3}{4}}}{\frac{9\frac{1}{2}}{1\frac{3}{4}}}
\]
(Solution on p. 331.)

Exercise 5.199
\[
\frac{\frac{8\frac{1}{2}}{1\frac{3}{4}}}{\frac{1\frac{1}{2}}{9\frac{1}{2}}}
\]
(Solution on p. 331.)

Exercise 5.200
\[
\frac{\frac{1\frac{1}{2}}{4\frac{1}{2}}}{\frac{3\frac{1}{4}}{6\frac{1}{4}}}
\]
(Solution on p. 331.)

Exercise 5.201
\[
\frac{\frac{3\frac{1}{2}}{2\frac{3}{4}}}{\frac{5\frac{1}{2}}{2\frac{1}{2}}}
\]
(Solution on p. 331.)

Exercise 5.202
\[
\frac{\frac{1\frac{1}{2}}{4\frac{1}{2}}}{\frac{3\frac{1}{2}}{2\frac{1}{2}}}
\]
(Solution on p. 331.)

Exercise 5.203
\[
\frac{\frac{1\frac{1}{2}}{4\frac{1}{2}}}{\frac{3\frac{1}{2}}{2\frac{1}{2}}}
\]
(Solution on p. 331.)
Exercise 5.204
\[\frac{\frac{1}{2} + \frac{1}{3}}{\frac{1}{4}} \]
Exercise 5.205
\[\frac{\frac{3}{4} + \frac{1}{2}}{\frac{1}{3}} \]
(Solution on p. 331.)
Exercise 5.206
\[\frac{\frac{1}{5}}{\frac{1}{6}} \]
Exercise 5.207
\[\frac{\frac{2}{3}}{\frac{1}{4}} \]
(Solution on p. 331.)
Exercise 5.208
\[\frac{\frac{1}{7} + \frac{1}{8}}{\frac{1}{9}} \]
Exercise 5.209
\[\frac{\frac{1}{10} + \frac{1}{11}}{\frac{1}{12}} \]
(Solution on p. 331.)
Exercise 5.210
\[\frac{\frac{1}{13} + \frac{1}{14}}{\frac{1}{15}} \]
Exercise 5.211
\[\frac{\frac{1}{16} + \frac{1}{17}}{\frac{1}{18}} \]
(Solution on p. 331.)
Exercise 5.212
\[\frac{\frac{1}{19} + \frac{1}{20}}{\frac{1}{21}} \]
Exercise 5.213
\[\frac{\frac{1}{22} + \frac{1}{23}}{\frac{1}{24}} \]
(Solution on p. 331.)
Exercise 5.214
\[\frac{\frac{1}{25} + \frac{1}{26}}{\frac{1}{27}} \]
Exercise 5.215
\[\frac{\frac{1}{28} + \frac{1}{29}}{\frac{1}{30}} \]
(Solution on p. 331.)

5.6.4.1 Exercises for Review

Exercise 5.216
(Section 3.4) Find the prime factorization of 882.

Exercise 5.217
(Section 4.3) Convert \(\frac{62}{7} \) to a mixed number.

Exercise 5.218
(Section 4.4) Reduce \(\frac{114}{342} \) to lowest terms.

Exercise 5.219
(Section 5.4) Find the value of \(6\frac{3}{8} - 4\frac{5}{8} \)

Exercise 5.220
(Section 5.5) Arrange from smallest to largest: \(\frac{1}{2}, \frac{3}{5}, \frac{4}{7} \).
5.7 Combinations of Operations with Fractions

5.7.1 Section Overview

- The Order of Operations

5.7.2 The Order of Operations

To determine the value of a quantity such as

\[\frac{1}{2} + \frac{5}{8} \cdot \frac{2}{15} \]

where we have a combination of operations (more than one operation occurs), we must use the accepted order of operations.

The Order of Operations:

1. In the order (2), (3), (4) described below, perform all operations inside grouping symbols: (), [], (). Work from the innermost set to the outermost set.
2. Perform exponential and root operations.
3. Perform all multiplications and divisions moving left to right.
4. Perform all additions and subtractions moving left to right.

5.7.2.1 Sample Set A

Determine the value of each of the following quantities.

Example 5.26

\[\frac{1}{4} + \frac{5}{8} \cdot \frac{2}{15} \]

(a) Multiply first.

\[\frac{1}{4} + \frac{5}{8} \cdot \frac{2}{15} = \frac{1}{4} + \frac{1}{3} = \frac{1}{4} + \frac{1}{12} \]

(b) Now perform this addition. Find the LCD.

\[\frac{4}{12} = 2^2 \] \{ The LCD = \(2^2 \cdot 3 = 12\). \}

\[\frac{1}{4} + \frac{1}{12} = \frac{3}{12} + \frac{1}{12} = \frac{4}{12} = \frac{1}{3} \]

Thus, \(\frac{1}{4} + \frac{5}{8} \cdot \frac{2}{15} = \frac{1}{3} \)

Example 5.27

\[\frac{3}{5} + \frac{9}{44} \left(\frac{5}{2} - \frac{1}{4} \right) \]

(a) Operate within the parentheses first, \(\left(\frac{5}{2} - \frac{1}{4} \right) \).

\[9 = 3^2 \] \{ The LCD = \(2^2 \cdot 3^2 = 4 \cdot 9 = 36\). \}

\[4 = 2^2 \]

This content is available online at [http://cnx.org/content/m34942/1.3/].
\[
\frac{5 \cdot 4}{90} - \frac{1 \cdot 9}{36} = \frac{20}{30} - \frac{9}{30} = \frac{20 - 9}{30} = \frac{11}{36}
\]

Now we have
\[
\frac{2}{5} + \frac{3}{4} \left(\frac{11}{36} \right)
\]

(b) Perform the multiplication.
\[
\frac{2}{5} + \frac{3}{4} \left(\frac{11}{36} \right) = \frac{2}{5} + \frac{11}{4} - \frac{11}{2} = \frac{2}{5} + \frac{11}{20}
\]

(c) Now perform the addition. The LCD = 80.
\[
\frac{2}{5} + \frac{11}{20} = \frac{16}{80} + \frac{11}{80} = \frac{27}{80} + \frac{5}{80} = \frac{32}{80} = \frac{8}{20} = \frac{2}{5}
\]

Thus, \(\frac{3}{5} + \frac{11}{20} \left(\frac{2}{5} - \frac{1}{4} \right) = \frac{53}{80}\)

Example 5.28
\[
8 - \frac{15}{326} \left(2 - 1 \frac{4}{15} \right) \left(3 \frac{1}{5} + 2 \frac{1}{8} \right)
\]

(a) Work within each set of parentheses individually.
\[
2 - 1 \frac{4}{15} = \frac{2}{15} + \frac{15}{15} + \frac{14}{15} = \frac{2 - 19}{15} = \frac{11}{15}
\]

\[
3 \frac{1}{5} + 2 \frac{1}{8} = \frac{3}{5} + \frac{1}{8} + \frac{8}{5} + \frac{1}{8} = \frac{6}{5} + \frac{17}{8}
\]

(c) Now perform the subtraction.
\[
\frac{8}{5} - \frac{5}{12} = \frac{8}{5} - \frac{5}{12} = \frac{8}{5} - \frac{5}{12} = \frac{1}{12}
\]

Thus, \(8 - \frac{15}{326} \left(2 - 1 \frac{4}{15} \right) \left(3 \frac{1}{5} + 2 \frac{1}{5} \right) = \frac{1}{12}\)

Example 5.29
\[
\left(\frac{3}{4} \right)^2 \cdot \frac{8}{5} - \frac{5}{12}
\]

(a) Square \(\frac{3}{4}\).
\[
\left(\frac{3}{4} \right)^2 = \frac{3}{4} \cdot \frac{3}{4} = \frac{9}{16}
\]

Now we have
\[
\frac{9}{16} \cdot \frac{8}{5} - \frac{5}{12}
\]

(b) Perform the multiplication.
\[
\frac{1}{16} \cdot \frac{1}{15} - \frac{5}{12} = \frac{1}{16} - \frac{5}{12} = \frac{1}{16} - \frac{5}{12}
\]

(c) Now perform the subtraction.
\[
\frac{1}{2} - \frac{5}{12} = \frac{6}{12} - \frac{5}{12} = \frac{1}{12}
\]

Thus, \(\left(\frac{3}{4} \right)^2 \cdot \frac{8}{5} - \frac{5}{12} = \frac{1}{12}\)
Example 5.30
\[2\frac{7}{8} + \sqrt{\frac{25}{36}} ÷ (2\frac{1}{2} - 1\frac{1}{3}) \]

(a) Begin by operating inside the parentheses.
\[2\frac{1}{2} - 1\frac{1}{3} = \frac{5}{2} - \frac{4}{3} = \frac{15}{6} - \frac{8}{6} = \frac{7}{6} \]

(b) Now simplify the square root.
\[\sqrt{\frac{25}{36}} = \frac{5}{6} \quad \text{(since} \ (\frac{5}{6})^2 = \frac{25}{36}) \]

Now we have
\[2\frac{7}{8} + \frac{5}{6} + \frac{7}{6} \]

(c) Perform the division.
\[2\frac{7}{8} + \frac{5}{6} \cdot \frac{1}{7} = 2\frac{7}{8} + \frac{1}{2} = 2\frac{7}{8} + \frac{5}{7} \]

(d) Now perform the addition.
\[2\frac{7}{8} + \frac{5}{7} = \frac{23}{8} + \frac{5}{7} = \frac{23}{8} + \frac{5}{7} \quad \text{LCD} = 56. \]
\[= \frac{161 + 40}{56} = \frac{201}{56} \quad \text{or} \quad 3\frac{33}{56} \]

Thus, \[2\frac{7}{8} + \sqrt{\frac{25}{36}} ÷ (2\frac{1}{2} - 1\frac{1}{3}) = 3\frac{33}{56} \]

5.7.2.2 Practice Set A
Find the value of each of the following quantities.

Exercise 5.221
\[\frac{5}{16} \cdot \frac{1}{10} - \frac{1}{32} \quad \text{(Solution on p. 332.)} \]

Exercise 5.222
\[\frac{6}{7} \cdot \frac{21}{40} ÷ \frac{9}{10} + 5\frac{1}{3} \quad \text{(Solution on p. 332.)} \]

Exercise 5.223
\[\frac{8}{10} - 2(4\frac{1}{2} - 3\frac{3}{8}) \quad \text{(Solution on p. 332.)} \]

Exercise 5.224
\[\frac{17}{12} - \frac{56}{36} \left(\frac{1}{4} - \frac{2}{7} \right) \left(1 - \frac{13}{30} \right) \quad \text{(Solution on p. 332.)} \]

Exercise 5.225
\[\left(\frac{1}{10} + 1\frac{1}{2} \right) ÷ \left(1\frac{4}{5} - 1\frac{6}{25} \right) \quad \text{(Solution on p. 332.)} \]

Exercise 5.226
\[\frac{2 - \frac{7}{6}}{\frac{3}{4} + \frac{1}{3} + 1\frac{1}{4}} \quad \text{(Solution on p. 332.)} \]

Exercise 5.227
\[\left(\frac{3}{2} \right)^2 + \frac{3}{4} \cdot \frac{1}{8} \quad \text{(Solution on p. 332.)} \]

Exercise 5.228
\[\frac{2}{3} \cdot 2\frac{1}{4} - \sqrt{\frac{1}{20}} \quad \text{(Solution on p. 332.)} \]
5.7.3 Exercises

Find each value.

Exercise 5.229
\[
\frac{3}{4} - \frac{3}{5} \cdot \frac{1}{2}
\]
(Solution on p. 332.)

Exercise 5.230
\[
\frac{7}{9} - \frac{4}{5} \cdot \frac{5}{36}
\]

Exercise 5.231
\[
2 \frac{2}{7} + \frac{2}{8} \div \frac{3}{10}
\]
(Solution on p. 332.)

Exercise 5.232
\[
\frac{3}{16} \div \frac{9}{14} + \frac{12}{21} + \frac{5}{6}
\]

Exercise 5.233
\[
\frac{4}{25} \div \frac{9}{14} - \frac{7}{20} \div 2 \frac{1}{10}
\]
(Solution on p. 332.)

Exercise 5.234
\[
\frac{2}{5} \cdot \left(\frac{1}{10} + \frac{3}{30} \right)
\]

Exercise 5.235
\[
\frac{3}{7} \cdot \left(\frac{1}{10} - \frac{1}{15} \right)
\]
(Solution on p. 332.)

Exercise 5.236
\[
\frac{10}{17} \cdot \left(\frac{8}{9} - \frac{2}{3} \right) + \frac{3}{30} \cdot \left(\frac{5}{3} + \frac{1}{4} \right)
\]

Exercise 5.237
\[
\frac{2}{7} \cdot \left(\frac{9}{14} - \frac{3}{28} \right) + 5 \frac{1}{3} \cdot \left(1 \frac{1}{2} - \frac{1}{8} \right)
\]
(Solution on p. 332.)

Exercise 5.238
\[
\frac{1}{14} + \frac{2}{30}
\]

Exercise 5.239
\[
\left(\frac{1}{2} \right)^2 + \frac{1}{8}
\]
(Solution on p. 332.)

Exercise 5.240
\[
\left(\frac{3}{10} \right)^2 - \frac{3}{10}
\]

Exercise 5.241
\[
\sqrt{\frac{36}{81} + \frac{1}{3} \cdot \frac{2}{9}}
\]
(Solution on p. 332.)

Exercise 5.242
\[
\sqrt{\frac{16}{81} - 0 \frac{1}{9}}
\]

Exercise 5.243
\[
\frac{2}{3} \cdot \sqrt{\frac{9}{4} - \frac{15}{4}} \cdot \sqrt{\frac{10}{25}}
\]
(Solution on p. 332.)

Exercise 5.244
\[
\left(\frac{1}{3} \right)^2 + \sqrt{\frac{35}{10}}
\]

Exercise 5.245
\[
\left(\frac{1}{4} \right)^2 \cdot \sqrt{\frac{81}{25} + \frac{1}{36} + \frac{1}{8}}
\]
(Solution on p. 332.)

Exercise 5.246
\[
\left(\sqrt{\frac{3}{36}} \right)^2 + \frac{3}{7} \div 1 \frac{3}{4}
\]

Exercise 5.247
\[
\left(\sqrt{\frac{100}{121}} \right)^2 + \frac{21}{(11)^2}
\]
(Solution on p. 332.)

Exercise 5.248
\[
\sqrt{\frac{3}{8} + \frac{1}{64} - \frac{1}{2} \div 1 \frac{1}{3}}
\]
CHAPTER 5. ADDITION AND SUBTRACTION OF FRACTIONS, COMPARING FRACTIONS, AND COMPLEX FRACTIONS

Exercise 5.249
\[\sqrt{\frac{7}{4} \cdot \left(\frac{5}{6}\right)^2} + \frac{9}{14} \cdot 2 \frac{1}{3} \quad - \quad \sqrt{\frac{1}{81}} \]
(Solution on p. 332.)

Exercise 5.250
\[\sqrt{\frac{1}{9} \cdot \sqrt{\frac{62}{10} + 2 \frac{7}{10}}} + 7 \frac{7}{10} \]
Exercise 5.251
\[\frac{\frac{3}{4} + \frac{1}{2} \cdot \left(\frac{1}{2}\right)^3}{\frac{2}{6} + (\frac{1}{3}) \cdot (\frac{1}{4})} \]
(Solution on p. 332.)

Exercise 5.252
\[\sqrt{\frac{16}{81} + \frac{1}{4} \cdot 6} \]
Exercise 5.253
\[\sqrt{\frac{81}{256} - \frac{3}{32} \cdot 1 \frac{1}{8}} \]
(Solution on p. 332.)

5.7.3.1 Exercises for Review

Exercise 5.254
(Section 1.2) True or false: Our number system, the Hindu-Arabic number system, is a positional number system with base ten.

Exercise 5.255
(Section 2.6) The fact that 1 times any whole number = that particular whole number illustrates which property of multiplication?

Exercise 5.256
(Section 4.3) Convert \(\frac{8}{9}\) to an improper fraction.

Exercise 5.257
(Section 5.3) Find the sum. \(\frac{3}{8} + \frac{4}{5} + \frac{5}{6}\).

Exercise 5.258
(Section 5.6) Simplify \(\frac{4+\frac{1}{2}}{3-\frac{3}{8}}\).

5.8 Summary of Key Concepts

5.8.1 Summary of Key Concepts

Addition and Subtraction of Fractions with Like Denominators (Section 5.2)
To add or subtract two fractions that have the same denominators, add or subtract the numerators and place the resulting sum or difference over the common denominator. Reduce, if necessary. Do not add or subtract the denominators.

\[\frac{1}{8} + \frac{5}{8} = \frac{1+5}{8} = \frac{6}{8} = \frac{3}{4} \]

Basic Rule for Adding and Subtracting Fractions (Section 5.3)
Fractions can be added or subtracted conveniently only if they have like denominators.

Addition and Subtraction of Fractions with Unlike Denominators (Section 5.3)
To add or subtract fractions having unlike denominators, convert each fraction to an equivalent fraction having as denominator the LCD of the original denominators.

\[^8\text{This content is available online at } \langle\text{http://cnx.org/content/m34943/1.2/}\rangle.\]
Addition and Subtraction of Mixed Numbers (Section 5.4)
1. To add or subtract mixed numbers, convert each mixed number to an improper fraction, then add or subtract the fractions.

Ordered Number System (Section 5.5)
Our number system is ordered because the numbers in the system can be placed in order from smaller to larger.

Inequality Symbols (Section 5.5)
> represents the phrase "greater than."
< represents the phrase "less than."

Comparing Fractions (Section 5.5)
If two fractions have the same denominators, the fraction with the larger numerator is the larger fraction.

\[
\frac{5}{8} > \frac{3}{8}
\]

Simple Fractions (Section 5.6)
A simple fraction is any fraction in which the numerator is any whole number and the denominator is any nonzero whole number.

Complex Fractions (Section 5.6)
A complex fraction is any fraction in which the numerator and/or the denominator is a fraction.

Complex fractions can be converted to simple fractions by employing the methods of adding, subtracting, multiplying, and dividing fractions.

5.9 Exercise Supplement

5.9.1 Exercise Supplement

5.9.1.1 Addition and Subtractions of Fractions with Like and Unlike Denominators, and Addition and Subtraction of Mixed Numbers (Section 5.2, Section 5.3, Section 5.4)

For problems 1-53, perform each indicated operation and write the result in simplest form.

Exercise 5.259
\[
\frac{3}{4} + \frac{5}{8} \quad (Solution on p. 332.)
\]

Exercise 5.260
\[
\frac{9}{16} + \frac{1}{4}
\]

Exercise 5.261
\[
\frac{1}{8} + \frac{3}{8} \quad (Solution on p. 333.)
\]

Exercise 5.262
\[
\frac{5}{7} + \frac{1}{14} + \frac{5}{21}
\]

Exercise 5.263
\[
\frac{2}{9} + \frac{1}{3} + \frac{5}{7} \quad (Solution on p. 333.)
\]

Exercise 5.264
\[
\frac{2}{5} + \frac{1}{8}
\]

Exercise 5.265
\[
\frac{1}{4} + \frac{1}{3} + \frac{1}{4} \quad (Solution on p. 333.)
\]

9This content is available online at <http://cnx.org/content/m34944/1.2/>.
Exercise 5.266
\[\frac{1}{16} + \frac{1}{10} \]

Exercise 5.267
\[\frac{2}{7} + \frac{1}{3} \]
(Solution on p. 333.)

Exercise 5.268
\[\frac{2}{3} + \frac{1}{6} \]

Exercise 5.269
\[3\frac{11}{16} + \frac{3}{4} \]
(Solution on p. 333.)

Exercise 5.270
\[5\frac{1}{4} + 3\frac{1}{8} \]

Exercise 5.271
\[16\frac{2}{5} + 8\frac{1}{3} \]
(Solution on p. 333.)

Exercise 5.272
\[1\frac{1}{7} + 2\frac{2}{3} \]

Exercise 5.273
\[1\frac{3}{8} + 0 \]
(Solution on p. 333.)

Exercise 5.274
\[3\frac{1}{10} + 4 \]

Exercise 5.275
\[18\frac{3}{4} + 6 \]
(Solution on p. 333.)

Exercise 5.276
\[1\frac{1}{3} + 5\frac{1}{2} \]

Exercise 5.277
\[\frac{21}{4} + \frac{2}{3} \]
(Solution on p. 333.)

Exercise 5.278
\[\frac{15}{17} - \frac{1}{5} \]

Exercise 5.279
\[\frac{9}{17} - \frac{5}{22} \]
(Solution on p. 333.)

Exercise 5.280
\[6\frac{4}{15} - 1\frac{3}{10} \]

Exercise 5.281
\[5\frac{2}{3} + 8\frac{1}{5} - 2\frac{1}{4} \]
(Solution on p. 333.)

Exercise 5.282
\[8\frac{4}{15} - 4\frac{2}{6} - 3\frac{1}{10} \]

Exercise 5.283
\[11\frac{1}{12} + 1\frac{5}{9} - \frac{1}{10} \]
(Solution on p. 333.)

Exercise 5.284
\[7\frac{9}{11} - 5\frac{2}{6} - 1\frac{1}{4} \]

Exercise 5.285
\[16\frac{3}{5} - 8\frac{1}{6} - 3\frac{2}{15} \]
(Solution on p. 333.)

Exercise 5.286
\[4\frac{1}{5} + 0 - \frac{32}{15} \]

Exercise 5.287
\[4\frac{1}{8} + 0 - \frac{32}{8} \]
(Solution on p. 333.)

Exercise 5.288
\[8 - 2\frac{1}{3} \]
Exercise 5.289
4 − 3\frac{5}{16}
(Solution on p. 333.)

Exercise 5.290
6\frac{3}{7} + 4

Exercise 5.291
11\frac{2}{11} − 3
(Solution on p. 333.)

Exercise 5.292
21\frac{5}{8} − \frac{5}{8}

Exercise 5.293
\frac{3}{4} + \frac{5}{10} · \frac{4}{5}
(Solution on p. 333.)

Exercise 5.294
\frac{11}{12} + 15\frac{15}{16} ÷ 2\frac{1}{2}

Exercise 5.295
1\frac{6}{10} + 2\frac{2}{3} ÷ \frac{3}{5}
(Solution on p. 333.)

Exercise 5.296
\frac{8\frac{3}{5} − 1\frac{1}{14} · \frac{3}{7}}{4\frac{3}{5} − 3\frac{9}{10} − \frac{1}{5}}

Exercise 5.297
\frac{15\frac{2}{5} ÷ 50 − \frac{1}{10}}{15\frac{2}{5} ÷ 50 − \frac{1}{10}}

5.9.1.2 Complex Fractions and Combinations of Operations with Fractions (Section 5.5, Section 5.6)

Exercise 5.299
\frac{2}{5} ÷ \frac{3}{5}
(Solution on p. 333.)

Exercise 5.300
\frac{6\frac{1}{2}}{11}

Exercise 5.301
\frac{12}{1\frac{2}{7}}
(Solution on p. 333.)

Exercise 5.302
\frac{9\frac{3}{5}}{5\frac{2}{3}}

Exercise 5.303
\frac{1\frac{6}{7}}{7\frac{2}{3}}
(Solution on p. 333.)

Exercise 5.304
\frac{8\frac{1}{3}}{9\frac{5}{6}}

Exercise 5.305
\frac{9\frac{5}{6}}{6}
(Solution on p. 333.)

Exercise 5.306
\frac{3\frac{1}{2} + 2\frac{2}{3}}{2\frac{1}{2} + \frac{1}{3}}

Exercise 5.307
\frac{3\frac{2}{3} + 1\frac{1}{6}}{4\frac{1}{6}}
(Solution on p. 333.)
Exercise 5.308
\[\frac{4+1}{9-2} \]

Exercise 5.309
\[\frac{1}{9-4} \]
\[\frac{1}{2} \]

Exercise 5.310
\[\frac{1}{2} \cdot \left(\frac{1}{4} + \frac{1}{5} \right) \]
\[\frac{1}{2} \]

Exercise 5.311
\[\frac{10}{5} \cdot \left(\frac{7}{5} + 2 \right) \]
\[\frac{10}{5} \]

(Solution on p. 333.)

(Solution on p. 334.)

5.9.1.3 Comparing Fractions (Section 5.5)
For problems 54-65, place each collection in order from smallest to largest.

Exercise 5.312
\[\frac{1}{2}, \frac{3}{10} \]

Exercise 5.313
\[\frac{3}{8}, \frac{1}{5} \]
\[\frac{3}{16}, \frac{1}{8} \]

Exercise 5.314
\[\frac{5}{16}, \frac{3}{21} \]

Exercise 5.315
\[\frac{5}{10}, \frac{5}{6} \]
\[\frac{3}{5}, \frac{1}{2} \]

Exercise 5.316
\[\frac{2}{5}, \frac{1}{3}, \frac{1}{6} \]

Exercise 5.317
\[\frac{3}{8}, \frac{8}{3}, \frac{19}{8} \]

Exercise 5.318
\[\frac{3}{5}, \frac{2}{16}, \frac{7}{20} \]

Exercise 5.319
\[\frac{4}{5}, \frac{7}{5} \]

Exercise 5.320
\[\frac{8}{5}, \frac{5}{7} \]

Exercise 5.321
\[\frac{5}{13}, \frac{4}{7}, \frac{15}{10} \]

Exercise 5.322
\[\frac{7}{16}, \frac{11}{21}, \frac{5}{12} \]

Exercise 5.323
\[\frac{5}{8}, \frac{13}{16}, \frac{1}{4} \]

(Solution on p. 334.)

(Solution on p. 334.)

(Solution on p. 334.)
5.10 Proficiency Exam

5.10.1 Proficiency Exam

For problems 1-12, perform each indicated operation and write the result in simplest form.

Exercise 5.324
(Solution on p. 334.)
(Section 5.3) \(\frac{3}{16} + \frac{1}{8} \)

Exercise 5.325
(Solution on p. 334.)
(Section 5.4) \(2\frac{3}{4} + 5\frac{1}{7} \)

Exercise 5.326
(Solution on p. 334.)
(Section 5.7) \(\frac{7}{15} \cdot \frac{20}{21} + \frac{5}{9} \)

Exercise 5.327
(Solution on p. 334.)
(Section 5.2) \(\frac{3}{17} + \frac{5}{11} \)

Exercise 5.328
(Solution on p. 334.)
(Section 5.7) \(6\frac{3}{2} - 1\frac{7}{19} - (2\frac{4}{3} - 2\frac{3}{17}) \)

Exercise 5.329
(Solution on p. 334.)
(Section 5.4) \(5\frac{5}{6} - 2\frac{4}{5} \)

Exercise 5.330
(Solution on p. 334.)
(Section 5.6) \(\frac{3}{7} \cdot \frac{15}{17} \)

Exercise 5.331
(Solution on p. 334.)
(Section 5.6) \(\frac{1}{8} + \frac{3}{4} - \frac{1}{4} \)

Exercise 5.332
(Solution on p. 334.)
(Section 5.4) \(4\frac{3}{16} + 1\frac{1}{3} - 2\frac{5}{4} \)

Exercise 5.333
(Solution on p. 334.)
(Section 5.7) \(\frac{5}{18} \cdot (\frac{15}{16} - \frac{3}{8}) \)

Exercise 5.334
(Solution on p. 334.)
(Section 5.4) \(4 + 2\frac{1}{3} \)

Exercise 5.335
(Solution on p. 334.)
(Section 5.4) \(8\frac{3}{7} - 5 \)

For problems 13-15, specify the fractions that are equivalent.

Exercise 5.336
(Solution on p. 334.)
(Section 5.5) \(\frac{4}{5}, \frac{12}{15} \)

Exercise 5.337
(Solution on p. 334.)
(Section 5.5) \(\frac{5}{8}, \frac{24}{40} \)

Exercise 5.338
(Solution on p. 334.)
(Section 5.5) \(\frac{5}{12}, \frac{80}{192} \)

For problems 16-20, place each collection of fractions in order from smallest to largest.

Exercise 5.339
(Solution on p. 334.)
(Section 5.5) \(\frac{8}{5}, \frac{6}{7} \)

Exercise 5.340
(Solution on p. 334.)
(Section 5.5) \(\frac{5}{8}, \frac{7}{9} \)

Exercise 5.341
(Solution on p. 334.)
(Section 5.5) \(11\frac{5}{10}, 11\frac{5}{12} \)

This content is available online at http://cnx.org/content/m34948/1.2/.
Exercise 5.342
(Solution on p. 335.)
(Section 5.5) $\frac{2}{15}$, $\frac{3}{10}$, $\frac{1}{6}$

Exercise 5.343
(Solution on p. 335.)
(Section 5.5) $\frac{19}{32}$, $\frac{9}{16}$, $\frac{5}{8}$
Solutions to Exercises in Chapter 5

Solution to Exercise 5.1 (p. 295)

Solution to Exercise 5.2 (p. 295)

Solution to Exercise 5.3 (p. 295)

Solution to Exercise 5.4 (p. 295)

Solution to Exercise 5.5 (p. 295)

\[\frac{3}{4} + \frac{3}{4} = \frac{3+3}{4+4} = \frac{6}{8} = \frac{3}{4}, \text{ so two } \frac{3}{4} \text{'s} = \text{ one } \frac{3}{4} \text{ which is preposterous.} \]

Solution to Exercise 5.6 (p. 296)

Solution to Exercise 5.7 (p. 296)

Solution to Exercise 5.8 (p. 296)

Solution to Exercise 5.9 (p. 296)

Solution to Exercise 5.10 (p. 296)

\[\frac{9}{9} - \frac{2}{9} = \frac{9-2}{9} = \frac{7}{9}, \text{ which is undefined} \]

Solution to Exercise 5.11 (p. 296)

Solution to Exercise 5.13 (p. 296)

Solution to Exercise 5.15 (p. 296)

Solution to Exercise 5.17 (p. 297)

Solution to Exercise 5.19 (p. 297)

Solution to Exercise 5.21 (p. 297)

Solution to Exercise 5.23 (p. 297)

Solution to Exercise 5.25 (p. 297)

Solution to Exercise 5.27 (p. 297)

Solution to Exercise 5.29 (p. 297)

Solution to Exercise 5.31 (p. 297)

Solution to Exercise 5.33 (p. 297)

Solution to Exercise 5.35 (p. 297)

Solution to Exercise 5.37 (p. 298)

\[\frac{16}{37} = \frac{2}{5} \text{ (using the preposterous rule)} \]

Solution to Exercise 5.39 (p. 298)
Solution to Exercise 5.41 (p. 298)
\[\frac{2700}{3^{2} \cdot 5 \cdot 11} \]
Solution to Exercise 5.43 (p. 298)
\[\frac{2}{3} \times \frac{5}{2} \]
Solution to Exercise 5.45 (p. 298)
\[\frac{14}{5} \]
Solution to Exercise 5.46 (p. 301)
\[\frac{3}{5} \]
Solution to Exercise 5.47 (p. 301)
\[\frac{1}{14} \]
Solution to Exercise 5.48 (p. 301)
\[\frac{3}{40} \]
Solution to Exercise 5.49 (p. 301)
\[\frac{11}{16} \]
Solution to Exercise 5.50 (p. 301)
The same denominator
Solution to Exercise 5.51 (p. 302)
\[\frac{5}{8} \]
Solution to Exercise 5.53 (p. 302)
\[\frac{31}{24} \]
Solution to Exercise 5.55 (p. 302)
\[\frac{17}{28} \]
Solution to Exercise 5.57 (p. 302)
\[\frac{19}{24} \]
Solution to Exercise 5.59 (p. 302)
\[\frac{10}{55} \]
Solution to Exercise 5.61 (p. 302)
\[\frac{10}{20} \]
Solution to Exercise 5.63 (p. 302)
\[\frac{6}{81} \]
Solution to Exercise 5.65 (p. 302)
\[\frac{17}{264} \]
Solution to Exercise 5.67 (p. 302)
\[\frac{2}{65} \]
Solution to Exercise 5.69 (p. 302)
\[\frac{7}{16} \]
Solution to Exercise 5.71 (p. 302)
\[\frac{47}{72} \]
Solution to Exercise 5.73 (p. 303)
\[\frac{103}{200} \]
Solution to Exercise 5.75 (p. 303)
\[\frac{217}{294} \]
Solution to Exercise 5.77 (p. 303)
\[\frac{511}{720} \]
Solution to Exercise 5.79 (p. 303)
\[\frac{37}{72} \]
Solution to Exercise 5.81 (p. 303)
\[\frac{221}{150} \]
Solution to Exercise 5.85 (p. 303) $\frac{1}{4}\frac{6}{57}$
Solution to Exercise 5.87 (p. 303) $\frac{6}{5}$
Solution to Exercise 5.89 (p. 303) $\frac{1}{5}$
Solution to Exercise 5.91 (p. 303) $\frac{1}{607}$
Solution to Exercise 5.93 (p. 303) $\frac{1}{180}$
Solution to Exercise 5.95 (p. 304) $\frac{1}{5} \text{ or } \frac{171}{5}$
Solution to Exercise 5.97 (p. 304)
No; 3 boxes add up to $261\frac{1}{4}$, which is larger than $25\frac{1}{5}$.
Solution to Exercise 5.99 (p. 304)
No pipe at all; inside diameter is greater than outside diameter
Solution to Exercise 5.101 (p. 304) 449
Solution to Exercise 5.103 (p. 304) 660
Solution to Exercise 5.105 (p. 304) $\frac{7}{16}$
Solution to Exercise 5.106 (p. 305) $\frac{4}{7}$
Solution to Exercise 5.107 (p. 305) $\frac{8}{4}$
Solution to Exercise 5.108 (p. 305) $\frac{8}{1}$
Solution to Exercise 5.109 (p. 305) $\frac{8}{37}$
Solution to Exercise 5.110 (p. 305) $\frac{18}{17}$
Solution to Exercise 5.111 (p. 306) $\frac{7}{1}$
Solution to Exercise 5.113 (p. 306) $\frac{12}{5}$
Solution to Exercise 5.115 (p. 306) $\frac{21}{6}$
Solution to Exercise 5.117 (p. 306) $\frac{3}{8}$
Solution to Exercise 5.119 (p. 306) $\frac{1}{2}$
Solution to Exercise 5.121 (p. 306) $\frac{8}{13}$
Solution to Exercise 5.123 (p. 306) $\frac{4}{20}$
Solution to Exercise 5.125 (p. 306) $\frac{13}{27}$
Solution to Exercise 5.127 (p. 306) $\frac{2}{7}$
Solution to Exercise 5.129 (p. 306) $\frac{7}{30}$
Solution to Exercise 5.131 (p. 307) $\frac{74}{37}$
Solution to Exercise 5.133 (p. 307) $21\frac{1}{4}$
Solution to Exercise 5.135 (p. 307) $\frac{521}{82}$
Solution to Exercise 5.137 (p. 307) $20\frac{1}{2}$
Solution to Exercise 5.139 (p. 307) $7\frac{7}{12}$
Solution to Exercise 5.141 (p. 307) $5\frac{13}{19}$
Solution to Exercise 5.143 (p. 307) $1\frac{47}{127}$
Solution to Exercise 5.145 (p. 307) $3\frac{1}{4}$
Solution to Exercise 5.147 (p. 307) $2\frac{5}{8}$ gallons
Solution to Exercise 5.149 (p. 307) $8\frac{15}{76}$ pounds
Solution to Exercise 5.151 (p. 308) $194\frac{3}{16}$ pounds
Solution to Exercise 5.153 (p. 308) 2
Solution to Exercise 5.155 (p. 308) $rac{7}{7}$
Solution to Exercise 5.157 (p. 310) $\frac{3}{2} < \frac{4}{5}$
Solution to Exercise 5.158 (p. 310) $\frac{13}{16} < \frac{9}{16}$
Solution to Exercise 5.159 (p. 310) $\frac{13}{16}, \frac{33}{40}, \frac{17}{20}$
Solution to Exercise 5.160 (p. 310) $9\frac{2}{5} < 11\frac{4}{5}$
Solution to Exercise 5.161 (p. 310) $1\frac{1}{14} < 1\frac{11}{16}$
Solution to Exercise 5.162 (p. 311) $\frac{3}{5} < \frac{4}{7}$
Solution to Exercise 5.164 (p. 311) $\frac{3}{4} < \frac{5}{8}$
Solution to Exercise 5.166 (p. 311) $\frac{3}{8} < \frac{2}{5}$
Solution to Exercise 5.168 (p. 311) $\frac{1}{2} < \frac{3}{4} < \frac{3}{5}$
Solution to Exercise 5.170 (p. 311) $\frac{3}{4} < \frac{7}{8} < \frac{5}{4}$
Solution to Exercise 5.172 (p. 311) $\frac{3}{14} < \frac{3}{8} < \frac{3}{4}$
Solution to Exercise 5.174 (p. 311)
5\frac{1}{7} < 5\frac{2}{7}
Solution to Exercise 5.176 (p. 311)
9\frac{2}{3} < 9\frac{4}{5}
Solution to Exercise 5.178 (p. 311)
1\frac{9}{20} < 2\frac{1}{20}
Solution to Exercise 5.180 (p. 311)
2\frac{2}{9} < 2\frac{3}{7}
Solution to Exercise 5.182 (p. 312)
270,000,000
Solution to Exercise 5.184 (p. 312)
\frac{23}{7}
Solution to Exercise 5.186 (p. 312)
13\frac{5}{8} or \frac{109}{8}
Solution to Exercise 5.187 (p. 314)
\frac{5}{6}
Solution to Exercise 5.188 (p. 314)
\frac{1}{11}
Solution to Exercise 5.189 (p. 314)
\frac{2}{3}
Solution to Exercise 5.190 (p. 314)
\frac{10}{67}
Solution to Exercise 5.191 (p. 314)
\frac{213}{29}
Solution to Exercise 5.192 (p. 314)
\frac{1}{11}
Solution to Exercise 5.193 (p. 314)
1
Solution to Exercise 5.195 (p. 314)
\frac{5}{8}
Solution to Exercise 5.197 (p. 314)
\frac{5}{8}
Solution to Exercise 5.199 (p. 314)
\frac{52}{67}
Solution to Exercise 5.201 (p. 314)
\frac{31}{2}
Solution to Exercise 5.203 (p. 314)
\frac{8}{7}
Solution to Exercise 5.205 (p. 315)
1
Solution to Exercise 5.207 (p. 315)
\frac{1}{5}
Solution to Exercise 5.209 (p. 315)
\frac{52}{57}
Solution to Exercise 5.211 (p. 315)
\frac{16}{27}
Solution to Exercise 5.213 (p. 315)
\frac{686}{407}
Solution to Exercise 5.215 (p. 315)
\frac{1}{7}
Solution to Exercise 5.217 (p. 315)
\(\frac{8}{7} \)
Solution to Exercise 5.219 (p. 315)
\(1\frac{13}{24} \) or \(\frac{37}{24} \)
Solution to Exercise 5.221 (p. 318)
0
Solution to Exercise 5.222 (p. 318)
\(\frac{35}{4} \) or \(\frac{5}{8} \)
Solution to Exercise 5.223 (p. 318)
\(\frac{211}{50} \) or \(7\frac{1}{50} \)
Solution to Exercise 5.224 (p. 318)
\(\frac{7}{9} \)
Solution to Exercise 5.225 (p. 318)
\(2\frac{5}{7} \)
Solution to Exercise 5.226 (p. 318)
\(\frac{3}{11} \)
Solution to Exercise 5.227 (p. 318)
\(\frac{15}{26} \)
Solution to Exercise 5.228 (p. 318)
\(\frac{11}{10} \)
Solution to Exercise 5.229 (p. 319)
\(\frac{3}{4} \)
Solution to Exercise 5.231 (p. 319)
\(\frac{42}{17} \)
Solution to Exercise 5.233 (p. 319)
\(\frac{2}{15} \)
Solution to Exercise 5.235 (p. 319)
\(\frac{1}{15} \)
Solution to Exercise 5.237 (p. 319)
\(6\frac{3}{14} \)
Solution to Exercise 5.239 (p. 319)
\(\frac{3}{5} \)
Solution to Exercise 5.241 (p. 319)
\(\frac{20}{27} \)
Solution to Exercise 5.243 (p. 319)
0
Solution to Exercise 5.245 (p. 319)
\(\frac{3}{8} \)
Solution to Exercise 5.247 (p. 319)
1
Solution to Exercise 5.249 (p. 320)
\(\frac{125}{22} \)
Solution to Exercise 5.251 (p. 320)
\(\frac{252}{19} \)
Solution to Exercise 5.253 (p. 320)
\(\frac{165}{292} \)
Solution to Exercise 5.255 (p. 320)
multiplicative identity
Solution to Exercise 5.257 (p. 320)
\(\frac{241}{120} \) or \(2\frac{1}{120} \)
Solution to Exercise 5.259 (p. 321)
\[\frac{11}{2} \text{ or } 1 \frac{3}{2} \]
Solution to Exercise 5.261 (p. 321)
\[\frac{1}{2} \]
Solution to Exercise 5.263 (p. 321)
\[\frac{59}{17} = 1 \frac{12}{17} \]
Solution to Exercise 5.265 (p. 321)
\[\frac{5}{8} \]
Solution to Exercise 5.267 (p. 322)
\[\frac{13}{27} \]
Solution to Exercise 5.269 (p. 322)
\[\frac{4}{11} \]
Solution to Exercise 5.271 (p. 322)
\[\frac{8}{35} \]
Solution to Exercise 5.273 (p. 322)
\[\frac{13}{35} \]
Solution to Exercise 5.275 (p. 322)
\[24 \frac{3}{4} \]
Solution to Exercise 5.277 (p. 322)
\[\frac{71}{12} = 5 \frac{11}{12} \]
Solution to Exercise 5.279 (p. 322)
\[\frac{13}{27} \]
Solution to Exercise 5.281 (p. 322)
\[11 \frac{37}{65} \]
Solution to Exercise 5.283 (p. 322)
\[\frac{139}{140} \]
Solution to Exercise 5.285 (p. 322)
\[5 \frac{1}{17} \]
Solution to Exercise 5.287 (p. 322)
\[\frac{1}{3} \]
Solution to Exercise 5.289 (p. 323)
\[\frac{11}{15} \]
Solution to Exercise 5.291 (p. 323)
\[8 \frac{2}{11} \]
Solution to Exercise 5.293 (p. 323)
\[1 \]
Solution to Exercise 5.295 (p. 323)
\[7 \frac{1}{10} \]
Solution to Exercise 5.297 (p. 323)
\[\frac{5}{8} \]
Solution to Exercise 5.299 (p. 323)
\[6 \frac{2}{3} \]
Solution to Exercise 5.301 (p. 323)
\[\frac{4}{3} \text{ or } 1 \frac{1}{2} \]
Solution to Exercise 5.303 (p. 323)
\[\frac{15}{28} \]
Solution to Exercise 5.305 (p. 323)
\[\frac{103}{170} \text{ or } 1 \frac{55}{170} \]
Solution to Exercise 5.307 (p. 323)
\[\frac{66}{17} \text{ or } 3 \frac{9}{17} \]
Solution to Exercise 5.309 (p. 324)
\(\frac{5}{7} \)

Solution to Exercise 5.311 (p. 324)
\(\frac{25}{77} \) or \(1 \frac{71}{77} \)

Solution to Exercise 5.313 (p. 324)
\(\frac{3}{4} \)

Solution to Exercise 5.315 (p. 324)
\(\frac{3}{10} \)

Solution to Exercise 5.317 (p. 324)
\(\frac{3}{8} \)

Solution to Exercise 5.319 (p. 324)
\(\frac{3}{7} \)

Solution to Exercise 5.321 (p. 324)
\(\frac{3}{12} \)

Solution to Exercise 5.323 (p. 324)
\(\frac{5}{8} \)

Solution to Exercise 5.324 (p. 325)
\(\frac{5}{15} \)

Solution to Exercise 5.325 (p. 325)
\(\frac{7}{5} \)

Solution to Exercise 5.326 (p. 325)
1

Solution to Exercise 5.327 (p. 325)
\(\frac{8}{17} \)

Solution to Exercise 5.328 (p. 325)
8

Solution to Exercise 5.329 (p. 325)
\(\frac{13}{30} \)

Solution to Exercise 5.330 (p. 325)
\(\frac{45}{72} \) or \(\frac{15}{24} \)

Solution to Exercise 5.331 (p. 325)
\(\frac{7}{15} \)

Solution to Exercise 5.332 (p. 325)
\(\frac{3}{7} \)

Solution to Exercise 5.333 (p. 325)
\(\frac{5}{35} \)

Solution to Exercise 5.334 (p. 325)
\(\frac{6}{1} \) or \(\frac{10}{3} \)

Solution to Exercise 5.335 (p. 325)
\(\frac{3}{4} \)

Solution to Exercise 5.336 (p. 325)
equivalent

Solution to Exercise 5.337 (p. 325)
not equivalent

Solution to Exercise 5.338 (p. 325)
equivalent

Solution to Exercise 5.339 (p. 325)
\(\frac{5}{7}, \frac{8}{7} \)

Solution to Exercise 5.340 (p. 325)
\(\frac{5}{8}, \frac{7}{8} \)
Solution to Exercise 5.341 (p. 325)
11 \frac{2}{17}, 11 \frac{5}{17}

Solution to Exercise 5.342 (p. 326)
\frac{3}{15}, \frac{1}{5}, \frac{3}{13}

Solution to Exercise 5.343 (p. 326)
\frac{9}{10}, \frac{19}{32}, \frac{5}{8}
CHAPTER 5. ADDITION AND SUBTRACTION OF FRACTIONS, COMPARING FRACTIONS, AND COMPLEX FRACTIONS
Chapter 6

Decimals

6.1 Objectives

After completing this chapter, you should

Reading and Writing Decimals (Section 6.2)
- understand the meaning of digits occurring to the right of the ones position
- be familiar with the meaning of decimal fractions
- be able to read and write a decimal fraction

Converting a Decimal to a Fraction (Section 6.3)
- be able to convert an ordinary decimal and a complex decimal to a fraction

Rounding Decimals (Section 6.4)
- be able to round a decimal number to a specified position

Addition and Subtraction of Decimals (Section 6.5)
- understand the method used for adding and subtracting decimals
- be able to add and subtract decimals
- be able to use the calculator to add and subtract decimals

Multiplication of Decimals (Section 6.6)
- understand the method used for multiplying decimals
- be able to multiply decimals
- be able to simplify a multiplication of a decimal by a power of 10
- understand how to use the word "of" in multiplication

Division of Decimals (Section 6.7)
- understand the method used for dividing decimals
- be able to divide a decimal number by a nonzero whole number and by another, nonzero, decimal number
- be able to simplify a division of a decimal by a power of 10

Nonterminating Divisions (Section 6.8)

1This content is available online at <http://cnx.org/content/m18894/1.3/>.
• understand the meaning of a nonterminating division
• be able to recognize a nonterminating number by its notation

Converting a Fraction to a Decimal (Section 6.9)
• be able to convert a fraction to a decimal

Combinations of Operations with Decimals and Fractions (Section 6.10)
• be able to combine operations with decimals

6.2 Reading and Writing Decimals

6.2.1 Section Overview
• Digits to the Right of the Ones Position
• Decimal Fractions
• Reading Decimal Fractions
• Writing Decimal Fractions

6.2.2 Digits to the Right of the Ones Position

We began our study of arithmetic (Section 1.2) by noting that our number system is called a positional number system with base ten. We also noted that each position has a particular value. We observed that each position has ten times the value of the position to its right.

<table>
<thead>
<tr>
<th>Digits to the Right of the Ones Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Millions</td>
</tr>
<tr>
<td>10^6</td>
</tr>
</tbody>
</table>

This means that each position has \(\frac{1}{10} \) the value of the position to its left.

<table>
<thead>
<tr>
<th>Digits to the Right of the Ones Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Millions</td>
</tr>
<tr>
<td>1,000,000</td>
</tr>
</tbody>
</table>

Thus, a digit written to the right of the units position must have a value of \(\frac{1}{10} \) of 1. Recalling that the word "of" translates to multiplication (\(\cdot \)), we can see that the value of the first position to the right of the units digit is \(\frac{1}{10} \) of 1, or

\[
\frac{1}{10} \cdot 1 = \frac{1}{10}
\]

The value of the second position to the right of the units digit is \(\frac{1}{10} \) of \(\frac{1}{10} \), or

\[
\frac{1}{10} \cdot \frac{1}{10} = \frac{1}{10^2} = \frac{1}{100}
\]

\(^2\)This content is available online at <http://cnx.org/content/m34957/1.2/>.
The value of the third position to the right of the units digit is \(\frac{1}{10} \) of \(\frac{1}{100} \), or

\[
\frac{1}{10} \cdot \frac{1}{100} = \frac{1}{100} = \frac{1}{1000}
\]

This pattern continues.

We can now see that if we were to write digits in positions to the right of the units positions, those positions have values that are fractions. Not only do the positions have fractional values, but the fractional values are all powers of 10 (10, 10², 10³, ...).

6.2.3 Decimal Fractions

Decimal Point, Decimal

If we are to write numbers with digits appearing to the right of the units digit, we must have a way of denoting where the whole number part ends and the fractional part begins. Mathematicians denote the separation point of the units digit and the tenths digit by writing a **decimal point**. The word *decimal* comes from the Latin prefix "decil" which means ten, and we use it because we use a base ten number system. Numbers written in this form are called **decimal fractions**, or more simply, **decimals**.

![Decimal Place Value Chart]

Notice that decimal numbers have the suffix "th."

Decimal Fraction

A **decimal fraction** is a fraction in which the denominator is a power of 10.

The following numbers are examples of decimals.

1. 42.6

 The 6 is in the tenths position.

 \[42.6 = 42 \frac{6}{10}\]

2. 9.8014

 The 8 is in the tenths position.
 The 0 is in the hundredths position.
 The 1 is in the thousandths position.
 The 4 is in the ten thousandths position.

 \[9.8014 = 9 \frac{8014}{10000}\]

3. 0.93

 The 9 is in the tenths position.
 The 3 is in the hundredths position.

 \[0.93 = \frac{93}{100}\]

Note: Quite often a zero is inserted in front of a decimal point (in the units position) of a decimal fraction that has a value less than one. This zero helps keep us from overlooking the decimal point.
4. 0.7
The 7 is in the tenths position.

\[0.7 = \frac{7}{10} \]

NOTE: We can insert zeros to the right of the right-most digit in a decimal fraction without changing the value of the number.

\[\frac{7}{10} = 0.7 = 0.70 = \frac{70}{100} = \frac{7}{10} \]

6.2.4 Reading Decimal Fractions

Reading a Decimal Fraction

To read a decimal fraction,

1. Read the whole number part as usual. (If the whole number is less than 1, omit steps 1 and 2.)
2. Read the decimal point as the word "and."
3. Read the number to the right of the decimal point as if it were a whole number.
4. Say the name of the position of the last digit.

6.2.4.1 Sample Set A

Read the following numbers.

Example 6.1

6.8

\[\underline{6.8} \rightarrow \text{tenths position} \]

six and eight tenths

NOTE: Some people read this as "six point eight." This phrasing gets the message across, but technically, "six and eight tenths" is the correct phrasing.

Example 6.2

14.116

\[\underline{14.116} \rightarrow \text{thousandths position} \]

fourteen and one hundred sixteen thousandths

Example 6.3

0.0019

\[\underline{0.0019} \rightarrow \text{ten thousandths position} \]

nineteen ten thousandths

Example 6.4

81

Eighty-one

In this problem, the indication is that any whole number is a decimal fraction. Whole numbers are often called *decimal numbers.*

\[81 = 81.0 \]
6.2.4.2 Practice Set A

Read the following decimal fractions.

Exercise 6.1
12.9
(Solution on p. 402.)

Exercise 6.2
4.86
(Solution on p. 402.)

Exercise 6.3
7.00002
(Solution on p. 402.)

Exercise 6.4
0.030405
(Solution on p. 402.)

6.2.5 Writing Decimal Fractions

Writing a Decimal Fraction
To write a decimal fraction,

1. Write the whole number part.
2. Write a decimal point for the word "and."
3. Write the decimal part of the number so that the right-most digit appears in the position indicated in the word name. If necessary, insert zeros to the right of the decimal point in order that the right-most digit appears in the correct position.

6.2.5.1 Sample Set B

Write each number.

Example 6.5
Thirty-one and twelve hundredths.

The decimal position indicated is the hundredths position.

31.12

Example 6.6
Two and three hundred-thousandths.

The decimal position indicated is the hundred thousandths. We'll need to insert enough zeros to the immediate right of the decimal point in order to locate the 3 in the correct position.

2.00003

Example 6.7
Six thousand twenty-seven and one hundred four millionths.

The decimal position indicated is the millionths position. We'll need to insert enough zeros to the immediate right of the decimal point in order to locate the 4 in the correct position.

6,027.000104

Example 6.8
Seventeen hundredths.

The decimal position indicated is the hundredths position.
6.2.5.2 Practice Set B

Write each decimal fraction.

Exercise 6.5
Three hundred six and forty-nine hundredths.

Exercise 6.6
Nine and four thousandths.

Exercise 6.7
Sixty-one millionths.

6.2.6 Exercises

For the following three problems, give the decimal name of the position of the given number in each decimal fraction.

Exercise 6.8
1. 3.941
9 is in the ______ position.
4 is in the ______ position.
1 is in the ______ position.

Exercise 6.9
17.1085
1 is in the ______ position.
0 is in the ______ position.
8 is in the ______ position.
5 is in the ______ position.

Exercise 6.10
652.3561927
9 is in the ______ position.
7 is in the ______ position.

For the following 7 problems, read each decimal fraction by writing it.

Exercise 6.11
9.2

Exercise 6.12
8.1

Exercise 6.13
10.15

Exercise 6.14
55.06

Exercise 6.15
0.78

Exercise 6.16
1.904

Exercise 6.17
10.00011
For the following 10 problems, write each decimal fraction.

Exercise 6.18
Three and twenty-one hundredths.
(Solution on p. 402.)

Exercise 6.19
Fourteen and sixty-seven hundredths.
(Solution on p. 402.)

Exercise 6.20
one and eight tenths.
(Solution on p. 402.)

Exercise 6.21
sixty-one and five tenths.
(Solution on p. 402.)

Exercise 6.22
five hundred eleven and four thousandths.
(Solution on p. 402.)

Exercise 6.23
Thirty-three and twelve ten-thousandths.
(Solution on p. 402.)

Exercise 6.24
nine hundred forty-seven thousandths.
(Solution on p. 402.)

Exercise 6.25
two millionths.
(Solution on p. 402.)

Exercise 6.26
seventy-one hundred-thousandths.
(Solution on p. 402.)

Exercise 6.27
one and ten ten-millionths.
(Solution on p. 402.)

Calculator Problems
For the following 10 problems, perform each division using a calculator. Then write the resulting decimal using words.

Exercise 6.28
3 ÷ 4
(Solution on p. 402.)

Exercise 6.29
1 ÷ 8
(Solution on p. 402.)

Exercise 6.30
4 ÷ 10
(Solution on p. 402.)

Exercise 6.31
2 ÷ 5
(Solution on p. 402.)

Exercise 6.32
4 ÷ 25
(Solution on p. 402.)

Exercise 6.33
1 ÷ 50
(Solution on p. 402.)

Exercise 6.34
3 ÷ 16
(Solution on p. 402.)

Exercise 6.35
15 ÷ 8
(Solution on p. 402.)

Exercise 6.36
11 ÷ 20
(Solution on p. 402.)

Exercise 6.37
9 ÷ 40
6.2.6.1 Exercises for Review

Exercise 6.38
(Section 1.4) Round 2,614 to the nearest ten.

Exercise 6.39
(Section 2.5) Is 691,428,471 divisible by 3?

Exercise 6.40
(Section 4.4) Determine the missing numerator.

\[\frac{3}{14} = \frac{?}{56} \]

Exercise 6.41
(Section 4.7) Find \(\frac{3}{16} \) of \(\frac{32}{39} \)

Exercise 6.42
(Section 5.7) Find the value of \(\sqrt{\frac{25}{81}} + (\frac{3}{5})^2 + \frac{1}{9} \)

6.3 Converting a Decimal to a Fraction\(^3\)

6.3.1 Section Overview
- Converting an Ordinary Decimal to a Fraction
- Converting a Complex Decimal to a Fraction

6.3.2 Converting an Ordinary Decimal to a Fraction

We can convert a decimal fraction to a fraction, essentially, by saying it in words, then writing what we say. We may have to reduce that fraction.

6.3.2.1 Sample Set A

Convert each decimal fraction to a proper fraction or a mixed number.

Example 6.9

\[0.6 \]

Reading: six tenths \(\rightarrow \frac{6}{10} \).

Reduce: \(\frac{3}{5} \).

Example 6.10

\[0.903 \]

Reading: nine hundred three thousands \(\rightarrow \frac{903}{1000} \).

Example 6.11

\[18.61 \]

\(^3\)This content is available online at <http://cnx.org/content/m34958/1.2/>.\)
Reading: eighteen and sixty-one hundredths → \(18 \frac{61}{100} \).

Example 6.12

\[
\begin{array}{c}
508.0005 \\
\quad \text{ten thousands position}
\end{array}
\]

Reading: five hundred eight and five ten thousandths → \(508 \frac{5}{10,000} \).

Reduce: \(508 \frac{1}{2000} \).

6.3.2.2 Practice Set A

Convert the following decimals to fractions or mixed numbers. Be sure to reduce.

- **Exercise 6.43**
 16.84 \(\text{ (Solution on p. 402.)} \)
- **Exercise 6.44**
 0.513 \(\text{ (Solution on p. 403.)} \)
- **Exercise 6.45**
 6,646.0107 \(\text{ (Solution on p. 403.)} \)
- **Exercise 6.46**
 1.1 \(\text{ (Solution on p. 403.)} \)

6.3.3 Converting A Complex Decimal to a Fraction

Complex Decimals

Numbers such as \(0.11 \frac{2}{3} \) are called **complex decimals**. We can also convert complex decimals to fractions.

6.3.3.1 Sample Set B

Convert the following complex decimals to fractions.

- **Example 6.13**
 \(0.11 \frac{2}{3} \)

 The \(\frac{2}{3} \) appears to occur in the thousands position, but it is referring to \(\frac{2}{3} \) of a hundredth. So, we read \(0.11 \frac{2}{3} \) as "eleven and two-thirds hundredths."

 \[
 0.11 \frac{2}{3} = \frac{11 \frac{2}{3}}{100} = \frac{11 \frac{2}{3} \times 100}{100} = \frac{\frac{35}{3}}{1} \times \frac{100}{1} = \frac{\frac{35}{3}}{100} = \frac{35}{3} \cdot \frac{1}{100} = \frac{7}{60}
 \]

- **Example 6.14**
 \(4.006 \frac{1}{3} \)

 Note that \(4.006 \frac{1}{3} = 4 + .006 \frac{1}{3} \)
\[4 + .006 \frac{1}{4} = 4 + \frac{64}{1000} \]
\[= 4 + \frac{64}{1000} \]
\[= 4 + \frac{\frac{64}{4}}{\frac{1000}{40}} \]
\[= 4 + \frac{16}{10} \]
\[= 4 + \frac{1}{60} \]
\[= 4 \frac{1}{60} \]

6.3.3.2 Practice Set B

Convert each complex decimal to a fraction or mixed number. Be sure to reduce.

Exercise 6.47

0.834

(Solution on p. 403.)

Exercise 6.48

0.125

(Solution on p. 403.)

Exercise 6.49

6.005\(\frac{5}{6}\)

(Solution on p. 403.)

Exercise 6.50

18.1\(\frac{3}{17}\)

(Solution on p. 403.)

6.3.4 Exercises

For the following 20 problems, convert each decimal fraction to a proper fraction or a mixed number. Be sure to reduce.

Exercise 6.51

0.7

(Solution on p. 403.)

Exercise 6.52

0.1

(Solution on p. 403.)

Exercise 6.53

0.53

(Solution on p. 403.)

Exercise 6.54

0.71

Exercise 6.55

0.219

(Solution on p. 403.)

Exercise 6.56

0.811

(Solution on p. 403.)

Exercise 6.57

4.8

(Solution on p. 403.)

Exercise 6.58

2.6

(Solution on p. 403.)

Exercise 6.59

16.12

Exercise 6.60

25.88
Exercise 6.61
6.0005

(Solution on p. 403.)

Exercise 6.62
1.355

Exercise 6.63
16.125

(Solution on p. 403.)

Exercise 6.64
0.375

Exercise 6.65
3.04

(Solution on p. 403.)

Exercise 6.66
21.1875

Exercise 6.67
8.225

(Solution on p. 403.)

Exercise 6.68
1.0055

Exercise 6.69
9.99995

(Solution on p. 403.)

Exercise 6.70
22.110

For the following 10 problems, convert each complex decimal to a fraction.

Exercise 6.71
0.7\frac{1}{2}

(Solution on p. 403.)

Exercise 6.72
0.012\frac{1}{2}

Exercise 6.73
2.16\frac{1}{4}

(Solution on p. 403.)

Exercise 6.74
5.18\frac{3}{4}

Exercise 6.75
14.112\frac{1}{3}

(Solution on p. 403.)

Exercise 6.76
80.0011\frac{3}{7}

Exercise 6.77
1.40\frac{5}{16}

(Solution on p. 403.)

Exercise 6.78
0.8\frac{5}{3}

Exercise 6.79
1.9\frac{2}{5}

(Solution on p. 403.)

Exercise 6.80
1.7\frac{57}{89}
6.3.4.1 Exercises for Review

Exercise 6.81
(Section 3.6) Find the greatest common factor of 70, 182, and 154.
(Solution on p. 403.)

Exercise 6.82
(Section 3.6) Find the greatest common multiple of 14, 26, and 60.

Exercise 6.83
(Section 4.5) Find the value of \(\frac{3}{5} \times \frac{15}{18} ÷ \frac{5}{9} \).

Exercise 6.84
(Section 5.4) Find the value of \(\frac{5}{2} + 8 \frac{1}{12} \).

Exercise 6.85
(Section 6.2) In the decimal number 26.10742, the digit 7 is in what position?

6.4 Rounding Decimals

6.4.1 Section Overview

• Rounding Decimal Numbers

6.4.2 Rounding Decimal Numbers

We first considered the concept of rounding numbers in Section 1.4 where our concern with rounding was related to whole numbers only. With a few minor changes, we can apply the same rules of rounding to decimals.

To round a decimal to a particular position:

1. Mark the position of the round-off digit (with an arrow or check).
2. Note whether the digit to the immediate right of the marked digit is
 (a) less than 5. If so, leave the round-off digit unchanged.
 (b) 5 or greater. If so, add 1 to the round-off digit.
3. If the round-off digit is
 (a) to the right of the decimal point, eliminate all the digits to its right.
 (b) to the left of the decimal point, replace all the digits between it and the decimal point with zeros and eliminate the decimal point and all the decimal digits.

6.4.2.1 Sample Set A

Round each decimal to the specified position. (The numbers in parentheses indicate which step is being used.)

Example 6.15
Round 32.116 to the nearest hundredth.

\[32.116 \]

(1) \[\rightarrow \text{hundredths position} \]

\[32.116 \]

\[\text{hundredths position} \]
The digit immediately to the right is 6, and $6 > 5$, so we add 1 to the round-off digit: $1 + 1 = 2$.

(2a) The digit immediately to the right is 3, and $3 < 5$ so we leave the round-off digit unchanged.

(3b) The round-off digit is to the left of 0, so we replace all the digits between it and the decimal point with zeros and eliminate the decimal point and all the decimal digits.

The number 633.14216 rounded to the nearest hundred is 600.

Example 6.17
1,729.63 rounded to the nearest ten is 1,730.

Example 6.18
1.0144 rounded to the nearest tenth is 1.0.

Example 6.19
60.98 rounded to the nearest one is 61.

Sometimes we hear a phrase such as "round to three decimal places." This phrase means that the round-off digit is the third decimal digit (the digit in the thousandths position).

Example 6.20
67.129 rounded to the second decimal place is 67.13.

Example 6.21
67.129558 rounded to 3 decimal places is 67.130.

6.4.2.2 Practice Set A

Round each decimal to the specified position.

Exercise 6.86
4.816 to the nearest hundredth. (Solution on p. 404.)

Exercise 6.87
0.35928 to the nearest ten thousandths. (Solution on p. 404.)

Exercise 6.88
82.1 to the nearest one. (Solution on p. 404.)

Exercise 6.89
753.98 to the nearest hundred. (Solution on p. 404.)

Exercise 6.90
Round 43.99446 to three decimal places. (Solution on p. 404.)

Exercise 6.91
Round 105.019997 to four decimal places. (Solution on p. 404.)

Exercise 6.92
Round 99.9999 to two decimal places. (Solution on p. 404.)
6.4.3 Exercises

For the first 10 problems, complete the chart by rounding each decimal to the indicated positions.

Exercise 6.93
20.01071

<table>
<thead>
<tr>
<th>Tenth</th>
<th>Hundredth</th>
<th>Thousandth</th>
<th>Ten Thousandth</th>
</tr>
</thead>
</table>

Table 6.1

Exercise 6.94
3.52612

<table>
<thead>
<tr>
<th>Tenth</th>
<th>Hundredth</th>
<th>Thousandth</th>
<th>Ten Thousandth</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.53</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.2

Exercise 6.95
531.21878

<table>
<thead>
<tr>
<th>Tenth</th>
<th>Hundredth</th>
<th>Thousandth</th>
<th>Ten Thousandth</th>
</tr>
</thead>
</table>

Table 6.3

Exercise 6.96
36.100033

<table>
<thead>
<tr>
<th>Tenth</th>
<th>Hundredth</th>
<th>Thousandth</th>
<th>Ten Thousandth</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.4

Exercise 6.97
1.999994

<table>
<thead>
<tr>
<th>Tenth</th>
<th>Hundredth</th>
<th>Thousandth</th>
<th>Ten Thousandth</th>
</tr>
</thead>
</table>

Table 6.5

Exercise 6.98
7.4141998
<table>
<thead>
<tr>
<th>Tenth</th>
<th>Hundredth</th>
<th>Thousandth</th>
<th>Ten Thousandth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0876543</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.19191919</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00008</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00007</td>
<td></td>
</tr>
</tbody>
</table>

Table 6.6

Exercise 6.99

(Solution on p. 404.)

0.000007

Table 6.7

Exercise 6.100

0.00008

Table 6.8

Exercise 6.101

(Solution on p. 404.)

9.19191919

Table 6.9

Exercise 6.102

0.0876543

Table 6.10

Calculator Problems

For the following 5 problems, round 18.4168095 to the indicated place.

- **Exercise 6.103**

 3 decimal places.

- **Exercise 6.104**

 1 decimal place.

- **Exercise 6.105**

 5 decimal places.

(Solution on p. 405.)
Exercise 6.106
6 decimal places.

Exercise 6.107
2 decimal places.

Calculator Problems
For the following problems, perform each division using a calculator.

Exercise 6.108
4 ÷ 3 and round to 2 decimal places.

Exercise 6.109
1 ÷ 8 and round to 1 decimal place.

Exercise 6.110
1 ÷ 27 and round to 6 decimal places.

Exercise 6.111
51 ÷ 61 and round to 5 decimal places.

Exercise 6.112
3 ÷ 16 and round to 3 decimal places.

Exercise 6.113
16 ÷ 3 and round to 3 decimal places.

Exercise 6.114
26 ÷ 7 and round to 5 decimal places.

6.4.3.1 Exercises for Review

Exercise 6.115
(Section 1.2) What is the value of 2 in the number 421,916,017?

Exercise 6.116
(Section 2.4) Perform the division: 378 ÷ 29.

Exercise 6.117
(Section 3.2) Find the value of 4^4.

Exercise 6.118
(Section 4.3) Convert \(\frac{1}{4} \) to a mixed number.

Exercise 6.119
(Section 6.3) Convert 3.16 to a mixed number fraction.

6.5 Addition and Subtraction of Decimals

6.5.1 Section Overview

- The Logic Behind the Method
- The Method of Adding and Subtracting Decimals
- Calculators

^5This content is available online at [http://cnx.org/content/m34960/1.5/].
6.5.2 The Logic Behind the Method

Consider the sum of 4.37 and 3.22. Changing each decimal to a fraction, we have

\[
\frac{437}{100} + \frac{322}{100}
\]

Performing the addition, we get

\[
4.37 + 3.22 = \frac{437}{100} + \frac{322}{100} = \frac{437 + 322}{100} = \frac{759}{100} = 7.59
\]

Thus, \(4.37 + 3.22 = 7.59\).

6.5.3 The Method of Adding and Subtracting Decimals

When writing the previous addition, we could have written the numbers in columns.

\[
\begin{array}{c}
4.37 \\
+3.22 \\
\hline
7.59
\end{array}
\]

This agrees with our previous result. From this observation, we can suggest a method for adding and subtracting decimal numbers.

Method of Adding and Subtracting Decimals

To add or subtract decimals:

1. Align the numbers vertically so that the decimal points line up under each other and the corresponding decimal positions are in the same column.
2. Add or subtract the numbers as if they were whole numbers.
3. Place a decimal point in the resulting sum or difference directly under the other decimal points.

6.5.3.1 Sample Set A

Find the following sums and differences.

Example 6.22

\[
9.813 + 2.140
\]

The decimal points are aligned in the same column.

\[
\begin{array}{c}
9.813 \\
+2.140 \\
\hline
11.953
\end{array}
\]

Example 6.23

\[
841.0056 + 47.016 + 19.058
\]
To insure that the columns align properly, we can write a 0 in the position at the end of the numbers 47.016 and 19.058 without changing their values.

\[
\begin{array}{c}
11 \\
841.0056 \\
47.0160 \\
+19.0580 \\
907.0796
\end{array}
\]

Example 6.24

\[1.314 - 0.58\]

\[
\begin{array}{c}
-0.58 \\
\hline
12 \\
0.734
\end{array}
\]

Write a 0 in the thousandths position.

Example 6.25

\[16.01 - 7.053\]

\[
\begin{array}{c}
-7.053 \\
\hline
15.91010 \\
16.01000 \\
-7.053 \\
8.957
\end{array}
\]

Write a 0 in the thousandths position.

Example 6.26

Find the sum of 6.88106 and 3.5219 and round it to three decimal places.

\[
\begin{array}{c}
+3.5219 \\
\hline
11 \\
6.88106 \\
+3.52190 \\
10.40296
\end{array}
\]

Write a 0 in the ten thousandths position.

We need to round the sum to the thousandths position. Since the digit in the position immediately to the right is 9, and 9>5, we get

\[10.403\]

Example 6.27

Wendy has $643.12 in her checking account. She writes a check for $16.92. How much is her new account balance?
To find the new account balance, we need to find the difference between 643.12 and 16.92. We will subtract 16.92 from 643.12.

\[
\begin{array}{c}
31211 \\
643.12 \\
- 16.92 \\
\hline
626.20 \\
\end{array}
\]

After writing a check for $16.92, Wendy now has a balance of $626.20 in her checking account.

6.5.3.2 Practice Set A

Find the following sums and differences.

Exercise 6.120
\[3.187 + 2.992\]
(Solution on p. 405.)

Exercise 6.121
\[14.987 - 5.341\]
(Solution on p. 405.)

Exercise 6.122
\[0.5261 + 1.0783\]
(Solution on p. 405.)

Exercise 6.123
\[1.06 - 1.0535\]
(Solution on p. 405.)

Exercise 6.124
\[16,521.07 + 9,256.15\]
(Solution on p. 405.)

Exercise 6.125
Find the sum of 11.6128 and 14.07353, and round it to two decimal places.

6.5.4 Calculators

The calculator can be useful for finding sums and differences of decimal numbers. However, calculators with an eight-digit display cannot be used when working with decimal numbers that contain more than eight digits, or when the sum results in more than eight digits. In practice, an eight-place decimal will seldom be encountered. There are some inexpensive calculators that can handle 13 decimal places.

6.5.4.1 Sample Set B

Use a calculator to find each sum or difference.

Example 6.28
\[42.0638 + 126.551\]

<table>
<thead>
<tr>
<th>Type</th>
<th>Display Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.0638</td>
<td>42.0638</td>
</tr>
<tr>
<td>+</td>
<td>42.0638</td>
</tr>
<tr>
<td>126.551</td>
<td>126.551</td>
</tr>
<tr>
<td>=</td>
<td>168.6148</td>
</tr>
</tbody>
</table>

Table 6.11
The sum is 168.6148.

Example 6.29
Find the difference between 305.0627 and 14.29667.

<table>
<thead>
<tr>
<th>Type</th>
<th>Display Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>305.0627</td>
<td>305.0627</td>
</tr>
<tr>
<td>Press</td>
<td>—</td>
</tr>
<tr>
<td>14.29667</td>
<td>14.29667</td>
</tr>
<tr>
<td>Press</td>
<td>=</td>
</tr>
<tr>
<td></td>
<td>290.76603</td>
</tr>
</tbody>
</table>

Table 6.12

The difference is 290.76603

Example 6.30
51.07 + 3,891.001786

Since 3,891.001786 contains more than eight digits, we will be unable to use an eight-digit display calculator to perform this addition. We can, however, find the sum by hand.

\[
\begin{align*}
51.070000 \\
3891.001786 \\
3942.071786
\end{align*}
\]

The sum is 3,942.071786.

6.5.4.2 Practice Set B

Use a calculator to perform each operation.

Exercise 6.126
4.286 + 8.97

Exercise 6.127
452.0092 − 392.558

Exercise 6.128
Find the sum of 0.095 and 0.001862

Exercise 6.129
Find the difference between 0.5 and 0.025

Exercise 6.130
Find the sum of 2,776.00019 and 2,009.00012.

(Solution on p. 405.)
6.5.5 Exercises

For the following 15 problems, perform each addition or subtraction. Use a calculator to check each result.

Exercise 6.131
1.84 + 7.11

Exercise 6.132
15.015 − 6.527

Exercise 6.133
11.842 + 28.004

Exercise 6.134
3.16 − 2.52

Exercise 6.135
3.55267 + 8.19664

Exercise 6.136
0.9162 − 0.0872

Exercise 6.137
65.512 − 8.3005

Exercise 6.138
761.0808 − 53.198

Exercise 6.139
4.305 + 2.119 − 3.817

Exercise 6.140
19.1161 + 27.8014 + 39.3161

Exercise 6.141
0.41276 − 0.0018 − 0.00011

Exercise 6.142
2.181 + 6.05 + 1.167 + 8.101

Exercise 6.143
1.0031 + 6.013106 + 0.00018 + 0.0092 + 2.11

Exercise 6.144
27 + 42 + 9.16 − 0.1761 + 81.6

Exercise 6.145
10.28 + 11.111 + 0.86 + 5.1

For the following 10 problems, solve as directed. A calculator may be useful.

Exercise 6.146
Add 6.1121 and 4.916 and round to 2 decimal places.

Exercise 6.147
Add 21.66418 and 18.00184 and round to 4 decimal places.

Exercise 6.148
Subtract 5.2121 from 9.6341 and round to 1 decimal place.

Exercise 6.149
Subtract 0.918 from 12.006 and round to 2 decimal places.

Exercise 6.150
Subtract 7.01884 from the sum of 13.11848 and 2.108 and round to 4 decimal places.
CHAPTER 6. DECIMALS

Exercise 6.151
(Solution on p. 406.)
A checking account has a balance of $42.51. A check is written for $19.28. What is the new balance?

Exercise 6.152
A checking account has a balance of $82.97. One check is written for $6.49 and another for $39.95. What is the new balance?

Exercise 6.153
(Solution on p. 406.)
A person buys $4.29 worth of hamburger and pays for it with a $10 bill. How much change does this person get?

Exercise 6.154
A man buys $6.43 worth of stationary and pays for it with a $20 bill. After receiving his change, he realizes he forgot to buy a pen. If the total price of the pen is $2.12, and he buys it, how much of the $20 bill is left?

Exercise 6.155
(Solution on p. 406.)
A woman starts recording a movie on her video cassette recorder with the tape counter set at 21.93. The movie runs 847.44 tape counter units. What is the final tape counter reading?

6.5.5.1 Exercises for Review

Exercise 6.156
(Section 1.6) Find the difference between 11,206 and 10,884.

Exercise 6.157
(Section 2.2) Find the product, $820 \cdot 10,000$.

Exercise 6.158
(Section 3.3) Find the value of $\sqrt{121} - \sqrt{25} + 8^2 + 16 \div 2^2$.

Exercise 6.159
(Section 4.6) Find the value of $8 \frac{1}{3} \cdot \frac{36}{10} \div 2 \frac{2}{5}$.

Exercise 6.160
(Section 6.4) Round 1.08196 to the nearest hundredth.

6.6 Multiplication of Decimals

6.6.1 Section Overview

- The Logic Behind the Method
- The Method of Multiplying Decimals
- Calculators
- Multiplying Decimals By Powers of 10
- Multiplication in Terms of “Of”

6 This content is available online at <http://cnx.org/content/m34963/1.2/>.
6.6.2 The Logic Behind the Method

Consider the product of 3.2 and 1.46. Changing each decimal to a fraction, we have

\[
(3.2) (1.46) = \frac{3}{10} \cdot \frac{146}{100}
\]

\[
= \frac{3 \cdot 146}{10 \cdot 100}
\]

\[
= \frac{4672}{1000}
\]

\[
= \text{four and six hundred seventy-two thousandths}
\]

\[
= 4.672
\]

Thus, \((3.2)(1.46) = 4.672\).

Notice that the factor

3.2 has 1 decimal place,
1.46 has 2 decimal places,
and the product
4.672 has 3 decimal places.

Using this observation, we can suggest that the sum of the number of decimal places in the factors equals the number of decimal places in the product.

\[
\begin{array}{c}
1 \\
\times 3.2 \\
\hline
292 \\
438 \\
\hline
4.672
\end{array}
\]

6.6.3 The Method of Multiplying Decimals

Method of Multiplying Decimals
To multiply decimals,

1. Multiply the numbers as if they were whole numbers.
2. Find the sum of the number of decimal places in the factors.
3. The number of decimal places in the product is the sum found in step 2.

6.6.3.1 Sample Set A

Find the following products.

Example 6.31

\[
6.5 \cdot 4.3
\]

\[
\begin{array}{c}
6.5\leftarrow 1 \text{ decimal place} \\
\times 4.3\leftarrow 1 \text{ decimal place} \\
\hline
195 \\
260 \\
\hline
27.95\leftarrow 2 \text{ decimal places}
\end{array}
\]
Thus, $6.5 \cdot 4.3 = 27.95$.

Example 6.32

23.4 \cdot 1.96

\[
\begin{array}{c}
23.4 \quad \text{1 decimal place} \\
1.96 \quad \text{2 decimal places} \\
\hline
1404 \\
2106 \\
234 \\
\hline
45.864 \quad \text{3 decimal places}
\end{array}
\]

Thus, $23.4 \cdot 1.96 = 45.864$.

Thus, $23.4 \cdot 1.96 = 45.864$.

Example 6.33

Find the product of 0.251 and 0.00113 and round to three decimal places.

\[
\begin{array}{c}
0.251 \quad \text{3 decimal places} \\
0.00113 \quad \text{5 decimal places} \\
\hline
753 \\
251 \\
\hline
0.00028363
\end{array}
\]

We need to add three zeros to get 8 decimal places.

Now, rounding to three decimal places, we get

$0.251 \cdot 0.00113 = 0.000$ to three decimal places.

6.6.3.2 Practice Set A

Find the following products.

Exercise 6.161

$5.3 \cdot 8.6$
(Solution on p. 406.)

Exercise 6.162

$2.12 \cdot 4.9$
(Solution on p. 406.)

Exercise 6.163

$1.054 \cdot 0.16$
(Solution on p. 406.)

Exercise 6.164

$0.0031 \cdot 0.002$
(Solution on p. 406.)

Exercise 6.165

Find the product of 2.33 and 4.01 and round to one decimal place.

Exercise 6.166

$10 \cdot 5.394$
(Solution on p. 406.)

Exercise 6.167

$100 \cdot 5.394$
(Solution on p. 406.)

Exercise 6.168

$1000 \cdot 5.394$
(Solution on p. 406.)

Exercise 6.169

$10,000 \cdot 5.394$
(Solution on p. 406.)
6.6.4 Calculators

Calculators can be used to find products of decimal numbers. However, a calculator that has only an eight-digit display may not be able to handle numbers or products that result in more than eight digits. But there are plenty of inexpensive (\$50 - \$75) calculators with more than eight-digit displays.

6.6.4.1 Sample Set B

Find the following products, if possible, using a calculator.

Example 6.34

\[2.58 \times 8.61\]

<table>
<thead>
<tr>
<th>Type</th>
<th>Display Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.58</td>
<td>2.58</td>
</tr>
<tr>
<td>Press</td>
<td>(\times)</td>
</tr>
<tr>
<td>8.61</td>
<td>8.61</td>
</tr>
<tr>
<td>Press</td>
<td>=</td>
</tr>
</tbody>
</table>

Table 6.13

The product is 22.2138.

Example 6.35

\[0.006 \times 0.0042\]

<table>
<thead>
<tr>
<th>Type</th>
<th>Display Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>.006</td>
<td>.006</td>
</tr>
<tr>
<td>Press</td>
<td>(\times)</td>
</tr>
<tr>
<td>.0042</td>
<td>0.0042</td>
</tr>
<tr>
<td>Press</td>
<td>=</td>
</tr>
</tbody>
</table>

Table 6.14

We know that there will be seven decimal places in the product (since \(3 + 4 = 7\)). Since the display shows 7 decimal places, we can assume the product is correct. Thus, the product is 0.0000252.

Example 6.36

\[0.0026 \times 0.11976\]

Since we expect \(4 + 5 = 9\) decimal places in the product, we know that an eight-digit display calculator will not be able to provide us with the exact value. To obtain the exact value, we must use "hand technology." Suppose, however, that we agree to round off this product to three decimal places. We then need only four decimal places on the display.

<table>
<thead>
<tr>
<th>Type</th>
<th>Display Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>.0026</td>
<td>.0026</td>
</tr>
<tr>
<td>Press</td>
<td>(\times)</td>
</tr>
<tr>
<td>.11976</td>
<td>0.11976</td>
</tr>
<tr>
<td>Press</td>
<td>=</td>
</tr>
</tbody>
</table>

Table 6.15
CHAPTER 6. DECIMALS

Table 6.15

Rounding 0.0003114 to three decimal places we get 0.000. Thus, \(0.0026 \cdot 0.11976 = 0.000 \) to three decimal places.

6.6.4.2 Practice Set B

Use a calculator to find each product. If the calculator will not provide the exact product, round the result to four decimal places.

Exercise 6.170
\(5.126 \cdot 4.08 \)
(Solution on p. 406.)

Exercise 6.171
\(0.00165 \cdot 0.04 \)
(Solution on p. 406.)

Exercise 6.172
\(0.5598 \cdot 0.4281 \)
(Solution on p. 406.)

Exercise 6.173
\(0.000002 \cdot 0.06 \)
(Solution on p. 406.)

6.6.5 Multiplying Decimals by Powers of 10

There is an interesting feature of multiplying decimals by powers of 10. Consider the following multiplications.

Table 6.16

<table>
<thead>
<tr>
<th>Multiplication</th>
<th>Number of Zeros in the Power of 10</th>
<th>Number of Positions the Decimal Point Has Been Moved to the Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10 \cdot 8.315274) = 83.15274</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(100 \cdot 8.315274) = 831.5274</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(1,000 \cdot 8.315274) = 8,315.274</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>(10,000 \cdot 8.315274) = 83,152.74</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Multiplying a Decimal by a Power of 10

To multiply a decimal by a power of 10, move the decimal place to the right of its current position as many places as there are zeros in the power of 10. Add zeros if necessary.

6.6.5.1 Sample Set C

Find the following products.

Example 6.37
\(100 \cdot 34.876 \). Since there are 2 zeros in 100, move the decimal point in 34.876 two places to the right.

\[
100 \cdot 34.876 = \underline{3487.6} \\
= 3,487.6
\]
Example 6.38
1,000 · 4.8058. Since there are 3 zeros in 1,000, move the decimal point in 4.8058 three places to the right.

\[1,000 \cdot 4.8058 = 4805.8\]
\[= 4,805.8\]

Example 6.39
10,000 · 56.82. Since there are 4 zeros in 10,000, move the decimal point in 56.82 four places to the right. We will have to add two zeros in order to obtain the four places.

\[10,000 \cdot 56.82 = 568\,200\]
\[= 568,200\]

Since there is no fractional part, we can drop the decimal point.

Example 6.40
\[(1,000,000)(2.57) = 2,570,000\]
\[= 2,570,000\]

Example 6.41
\[(1,000)(0.0000029) = 0.000,029\]
\[= 0.0029\]

6.6.5.2 Practice Set C

Find the following products.

Exercise 6.174
100 · 4.27
(Solution on p. 407.)

Exercise 6.175
10,000 · 16.52187
(Solution on p. 407.)

Exercise 6.176
\[(10)(0.0188)\]
(Solution on p. 407.)

Exercise 6.177
\[(10,000,000,000)(52.7)\]
(Solution on p. 407.)

6.6.6 Multiplication in Terms of “Of”

Recalling that the word "of" translates to the arithmetic operation of multiplication, let’s observe the following multiplications.
6.6.6.1 Sample Set D

Example 6.42
Find 4.1 of 3.8.

Translating "of" to "\times", we get

\[
\begin{array}{c}
4.1 \\
\times 3.8 \\
\hline
328 \\
123 \\
\hline
15.58
\end{array}
\]

Thus, 4.1 of 3.8 is 15.58.

Example 6.43
Find 0.95 of the sum of 2.6 and 0.8.

We first find the sum of 2.6 and 0.8.

\[
\begin{array}{c}
2.6 \\
+ 0.8 \\
\hline
3.4
\end{array}
\]

Now find 0.95 of 3.4

\[
\begin{array}{c}
3.4 \\
\times 0.95 \\
\hline
170 \\
306 \\
\hline
3.230
\end{array}
\]

Thus, 0.95 of \((2.6 + 0.8)\) is 3.230.

6.6.6.2 Practice Set D

Exercise 6.178
Find 2.8 of 6.4.
(Solution on p. 407.)

Exercise 6.179
Find 0.1 of 1.3.
(Solution on p. 407.)

Exercise 6.180
Find 1.01 of 3.6.
(Solution on p. 407.)

Exercise 6.181
Find 0.004 of 0.0009.
(Solution on p. 407.)

Exercise 6.182
Find 0.83 of 12.
(Solution on p. 407.)

Exercise 6.183
Find 1.1 of the sum of 8.6 and 4.2.
(Solution on p. 407.)
6.6.7 Exercises

For the following 30 problems, find each product and check each result with a calculator.

Exercise 6.184

\[3.4 \cdot 9.2 \]

(Solution on p. 407.)

Exercise 6.185

\[4.5 \cdot 6.1 \]

Exercise 6.186

\[8.0 \cdot 5.9 \]

(Solution on p. 407.)

Exercise 6.187

\[6.1 \cdot 7 \]

Exercise 6.188

\[(0.1) (1.52) \]

(Solution on p. 407.)

Exercise 6.189

\[(1.99) (0.05) \]

Exercise 6.190

\[(12.52) (0.37) \]

(Solution on p. 407.)

Exercise 6.191

\[(5.116) (1.21) \]

Exercise 6.192

\[(31.82) (0.1) \]

(Solution on p. 407.)

Exercise 6.193

\[(16.527) (9.16) \]

Exercise 6.194

\[0.0021 \cdot 0.013 \]

(Solution on p. 407.)

Exercise 6.195

\[1.0037 \cdot 1.00037 \]

Exercise 6.196

\[(1.6) (1.6) \]

(Solution on p. 407.)

Exercise 6.197

\[(4.2) (4.2) \]

Exercise 6.198

\[0.9 \cdot 0.9 \]

(Solution on p. 407.)

Exercise 6.199

\[1.11 \cdot 1.11 \]

Exercise 6.200

\[6.815 \cdot 4.3 \]

(Solution on p. 407.)

Exercise 6.201

\[9.0168 \cdot 1.2 \]

Exercise 6.202

\[(3.5162) (0.000003) \]

(Solution on p. 407.)

Exercise 6.203

\[(0.000001) (0.01) \]
Exercise 6.204
(10) (4.96)
(Solution on p. 407.)

Exercise 6.205
(10) (36.17)
(Solution on p. 407.)

Exercise 6.206
10 · 421.8842

Exercise 6.207
10 · 8.0107
(Solution on p. 407.)

Exercise 6.208
100 · 0.19621

Exercise 6.209
100 · 0.779

Exercise 6.210
1000 · 3.96168
(Solution on p. 407.)

Exercise 6.211
1000 · 42.7125571

Exercise 6.212
1000 · 25.01
(Solution on p. 407.)

Exercise 6.213
100,000 · 9.923

Exercise 6.214
(4.6) (6.17)
(Solution on p. 408.)

<table>
<thead>
<tr>
<th>Actual product</th>
<th>Tenths</th>
<th>Hundreds</th>
<th>Thousandths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.17

Exercise 6.215
(8.09) (7.1)

<table>
<thead>
<tr>
<th>Actual product</th>
<th>Tenths</th>
<th>Hundreds</th>
<th>Thousandths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.18

Exercise 6.216
(11.1106) (12.08)
(Solution on p. 408.)

<table>
<thead>
<tr>
<th>Actual product</th>
<th>Tenths</th>
<th>Hundreds</th>
<th>Thousandths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.19

Exercise 6.217
0.0083 · 1.090001
Table 6.20

<table>
<thead>
<tr>
<th>Actual product</th>
<th>Tenths</th>
<th>Hundreds</th>
<th>Thousandths</th>
</tr>
</thead>
</table>

Table 6.21

For the following 15 problems, perform the indicated operations

Exercise 6.218
(Solution on p. 408.)
7 · 26.518

Exercise 6.219
(Solution on p. 408.)
Find 5.2 of 3.7.

Exercise 6.220
(Solution on p. 408.)
Find 12.03 of 10.1.

Exercise 6.221
(Solution on p. 408.)
Find 16 of 1.04.

Exercise 6.222
(Solution on p. 408.)
Find 12 of 0.1.

Exercise 6.223
(Solution on p. 408.)
Find 0.09 of 0.003.

Exercise 6.224
(Solution on p. 408.)
Find 1.02 of 0.9801.

Exercise 6.225
(Solution on p. 408.)
Find 0.01 of the sum of 3.6 and 12.18.

Exercise 6.226
(Solution on p. 408.)
Find 0.2 of the sum of 0.194 and 1.07.

Exercise 6.227
(Solution on p. 408.)
Find the difference of 6.1 of 2.7 and 2.7 of 4.03.

Exercise 6.228
(Solution on p. 408.)
Find the difference of 0.071 of 42 and 0.003 of 9.2.

Exercise 6.229
(Solution on p. 408.)
If a person earns $8.55 an hour, how much does he earn in twenty-five hundredths of an hour?

Exercise 6.230
(Solution on p. 408.)
A man buys 14 items at $1.16 each. What is the total cost?

Exercise 6.231
(Solution on p. 408.)
In the problem above, how much is the total cost if 0.065 sales tax is added?

Exercise 6.232
(Solution on p. 408.)
A river rafting trip is supposed to last for 10 days and each day 6 miles is to be rafted. On the third day a person falls out of the raft after only \(\frac{2}{3} \) of that day’s mileage. If this person gets discouraged and quits, what fraction of the entire trip did he complete?
CHAPTER 6. DECIMALS

Exercise 6.233
A woman starts the day with $42.28. She buys one item for $8.95 and another for $6.68. She then buys another item for sixty-two-hundredths of the remaining amount. How much money does she have left?

Calculator Problems
For the following 10 problems, use a calculator to determine each product. If the calculator will not provide the exact product, round the results to five decimal places.

Exercise 6.234
0.019 · 0.321 (Solution on p. 408.)
Exercise 6.235
0.261 · 1.96
Exercise 6.236
4.826 · 4.827 (Solution on p. 408.)
Exercise 6.237
(9.46)^2
Exercise 6.238
(0.012)^2 (Solution on p. 408.)
Exercise 6.239
0.00037 · 0.0065
Exercise 6.240
0.002 · 0.0009 (Solution on p. 408.)
Exercise 6.241
0.1286 · 0.7699
Exercise 6.242
0.01 · 0.00000471 (Solution on p. 408.)
Exercise 6.243
0.00198709 · 0.03

6.6.7.1 Exercises for Review

Exercise 6.244
(Section 2.3) Find the value, if it exists, of $0 \div 15.$ (Solution on p. 408.)
Exercise 6.245
(Section 3.5) Find the greatest common factor of 210, 231, and 337.
Exercise 6.246
(Section 4.4) Reduce $\frac{280}{216}$ to lowest terms. (Solution on p. 409.)
Exercise 6.247
(Section 6.2) Write "fourteen and one hundred twenty-one ten-thousandths, using digits."
Exercise 6.248
(Section 6.5) Subtract 6.882 from 8.661 and round the result to two decimal places. (Solution on p. 409.)
6.7 Division of Decimals

6.7.1 Section Overview

- The Logic Behind the Method
- A Method of Dividing a Decimal By a Nonzero Whole Number
- A Method of Dividing a Decimal by a Nonzero Decimal
- Dividing Decimals by Powers of 10

6.7.2 The Logic Behind the Method

As we have done with addition, subtraction, and multiplication of decimals, we will study a method of division of decimals by converting them to fractions, then we will make a general rule.

We will proceed by using this example: Divide 196.8 by 6.

\[
\begin{array}{c}
32 \\
6 \overline{)196.8} \\
18 \\
16 \\
12 \\
4
\end{array}
\]

We have, up to this point, divided 196.8 by 6 and have gotten a quotient of 32 with a remainder of 4. If we follow our intuition and bring down the .8, we have the division 4.8 ÷ 6.

\[
4.8 \div 6 = 4\frac{8}{10} \div 6 \\
= \frac{48}{10} \div \frac{6}{1} \\
= \frac{48}{10} \cdot \frac{10}{6} \\
= \frac{8}{10}
\]

Thus, \(4.8 \div 6 = 0.8\).

Now, our intuition and experience with division direct us to place the .8 immediately to the right of 32.

\[
\begin{array}{c}
32.8 \\
6 \overline{)196.8} \\
18 \\
16 \\
12 \\
4.8 \\
4.8 \\
0
\end{array}
\]

From these observations, we suggest the following method of division.

\(\text{Notice that the decimal points appear in the same column.}\)

\(\text{7This content is available online at } \langle\text{http://cnx.org/content/m34968/1.2/}\rangle.\)
6.7.3 A Method of Dividing a Decimal by a Nonzero Whole Number

Method of Dividing a Decimal by a Nonzero Whole Number
To divide a decimal by a nonzero whole number:

1. Write a decimal point above the division line and directly over the decimal point of the dividend.
2. Proceed to divide as if both numbers were whole numbers.
3. If, in the quotient, the first nonzero digit occurs to the right of the decimal point, but not in the tenths position, place a zero in each position between the decimal point and the first nonzero digit of the quotient.

6.7.3.1 Sample Set A
Find the decimal representations of the following quotients.

Example 6.44
114.1 \div 7 = 7

\[
\begin{array}{c|c|c}
& 16.3 \\
\hline
7 & 114 & 1 \\
\hline
7 & 44 & \\
\hline
42 & 2.1 & \\
\hline
2.1 & 0 & \\
\hline
0 & & \\
\end{array}
\]

Thus, \(114.1 \div 7 = 16.3\).

Check: If \(114.1 \div 7 = 16.3\), then \(7 \times 16.3\) should equal 114.1.

\[
\begin{array}{c|c|c}
4 & 2 & \\
\hline
16.3 & 7 & \\
\hline
114 & 1 & \\
\hline & & \\
\end{array}
\]

True.

Example 6.45
0.02068 \div 4

\[
\begin{array}{c|c|c}
0.00517 & \\
\hline
4 & 0.02068 & \\
\hline
20 & 6 & \\
\hline
4 & 28 & \\
\hline
28 & 0 & \\
\hline
0 & & \\
\end{array}
\]

Place zeros in the tenths and hundredths positions. (See Step 3.)

Thus, \(0.02068 \div 4 = 0.00517\).
6.7.3.2 Practice Set A

Find the following quotients.

Exercise 6.249
184.5 ÷ 3
(Solution on p. 409.)

Exercise 6.250
16.956 ÷ 9
(Solution on p. 409.)

Exercise 6.251
0.2964 ÷ 4
(Solution on p. 409.)

Exercise 6.252
0.000496 ÷ 8
(Solution on p. 409.)

6.7.4 A Method of Dividing a Decimal By a Nonzero Decimal

Now that we can divide decimals by nonzero whole numbers, we are in a position to divide decimals by a nonzero decimal. We will do so by converting a division by a decimal into a division by a whole number, a process with which we are already familiar. We’ll illustrate the method using this example: Divide 4.32 by 1.8.

Let’s look at this problem as $4 \frac{32}{100} ÷ 1 \frac{8}{10}$.

$$4 \frac{32}{100} ÷ 1 \frac{8}{10} = \frac{432}{100} \div \frac{18}{10}$$

$$= \frac{432}{100} \times \frac{10}{18}$$

The divisor is $18 \frac{10}{10}$. We can convert $18 \frac{10}{10}$ into a whole number if we multiply it by 10.

$$18 \frac{10}{10} \cdot 10 = \frac{18}{10} \cdot 10 = 18$$

But, we know from our experience with fractions, that if we multiply the denominator of a fraction by a nonzero whole number, we must multiply the numerator by that same nonzero whole number. Thus, when converting $18 \frac{10}{10}$ to a whole number by multiplying it by 10, we must also multiply the numerator $\frac{432}{100}$ by 10.

$$\frac{432}{100} \cdot 10 = \frac{432}{100} \times \frac{10}{1} = \frac{432 \cdot 10}{10} = \frac{432}{10}$$

$$= 43 \frac{2}{10}$$

$$= 43.2$$

We have converted the division $4.32 ÷ 1.8$ into the division $43.2 ÷ 18$, that is,

$1.8 \overline{)4.32} \rightarrow 18 \overline{)43.2}$

Notice what has occurred.

$$1.8 \overline{)4.32} \rightarrow 18 \overline{)43.2}$$

If we "move" the decimal point of the divisor one digit to the right, we must also "move" the decimal point of the dividend one place to the right. The word "move" actually indicates the process of multiplication by a power of 10.
Method of Dividing a Decimal by a Decimal Number

To divide a decimal by a nonzero decimal,

1. Convert the divisor to a whole number by moving the decimal point to the position immediately to the right of the divisor’s last digit.
2. Move the decimal point of the dividend to the right the same number of digits it was moved in the divisor.
3. Set the decimal point in the quotient by placing a decimal point directly above the newly located decimal point in the dividend.
4. Divide as usual.

6.7.4.1 Sample Set B

Find the following quotients.

Example 6.46
\[32.66 \div 7.1 \]

\[
\begin{array}{c}
7.1)32.66 \\
4.6 \\
\hline
284 \\
42.6 \\
\hline
0
\end{array}
\]

The divisor has one decimal place.
Move the decimal point of both the divisor and the dividend 1 place to the right.
Set the decimal point.
Divide as usual.

Thus, \(32.66 \div 7.1 = 4.6 \).

Check: \(32.66 \div 7.1 = 4.6 \) if \(4.6 \times 7.1 = 32.66 \)

\[
\begin{array}{c}
4.6 \\
\times 7.1 \\
\hline
46 \\
322
\end{array}
\]

32.66 True.

Example 6.47
\[1.0773 \div 0.513 \]

\[
\begin{array}{c}
.513)1.0773 \\
.513 \\
\hline
513 \\
513 \\
\hline
0
\end{array}
\]

The divisor has 3 decimal places.
Move the decimal point of both the divisor and the dividend 3 places to the right.
Set the decimal place and divide.

Thus, \(1.0773 \div 0.513 = 2.1\).

Checking by multiplying 2.1 and 0.513 will convince us that we have obtained the correct result.
(Try it.)

Example 6.48
\[12 \div 0.00032\]

\[0.00032 \overline{)12.00000}\]

The divisor has 5 decimal places.
Move the decimal point of both the divisor and the dividend 5 places to the right. We will need to add 5 zeros to 12.
Set the decimal place and divide.

\[0.00032 \overline{)12.00000}\]

This is now the same as the division of whole numbers.

\[
\begin{array}{c|cccc}
375000 & 32)1200000 \\
96 & 96 \\
240 & 224 \\
224 & 160 \\
160 & 000 \\
\end{array}
\]

Checking assures us that \(12 \div 0.00032 = 37,500\).

6.7.4.2 Practice Set B

Find the decimal representation of each quotient.

- **Exercise 6.253**
 \[9.176 \div 3.1\]
 (Solution on p. 409.)

- **Exercise 6.254**
 \[5.0838 \div 1.11\]
 (Solution on p. 409.)

- **Exercise 6.255**
 \[16 \div 0.0004\]
 (Solution on p. 409.)

- **Exercise 6.256**
 \[8,162.41 \div 10\]
 (Solution on p. 409.)

- **Exercise 6.257**
 \[8,162.41 \div 100\]
 (Solution on p. 409.)

- **Exercise 6.258**
 \[8,162.41 \div 1,000\]
 (Solution on p. 409.)
Exercise 6.259
8,162.41 ÷ 10,000

6.7.5 Calculators

Calculators can be useful for finding quotients of decimal numbers. As we have seen with the other calculator operations, we can sometimes expect only approximate results. We are alerted to approximate results when the calculator display is filled with digits. We know it is possible that the operation may produce more digits than the calculator has the ability to show. For example, the multiplication

\[0.12345 \times 0.4567\]

produces \(5 + 4 = 9\) decimal places. An eight-digit display calculator only has the ability to show eight digits, and an approximation results. The way to recognize a possible approximation is illustrated in problem 3 of the next sample set.

6.7.5.1 Sample Set C

Find each quotient using a calculator. If the result is an approximation, round to five decimal places.

Example 6.49

\[12.596 \div 4.7\]

<table>
<thead>
<tr>
<th>Type</th>
<th>Display Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 12.596</td>
<td>12.596</td>
</tr>
<tr>
<td>Press ÷</td>
<td>12.596</td>
</tr>
<tr>
<td>Type 4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>Press =</td>
<td>2.68</td>
</tr>
</tbody>
</table>

Table 6.22

Since the display is not filled, we expect this to be an accurate result.

Example 6.50

\[0.5696376 \div 0.00123\]

<table>
<thead>
<tr>
<th>Type</th>
<th>Display Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type .5696376</td>
<td>0.5696376</td>
</tr>
<tr>
<td>Press ÷</td>
<td>0.5696376</td>
</tr>
<tr>
<td>Type .00123</td>
<td>0.00123</td>
</tr>
<tr>
<td>Press =</td>
<td>463.12</td>
</tr>
</tbody>
</table>

Table 6.23

Since the display is not filled, we expect this result to be accurate.

Example 6.51

\[0.8215199 \div 4.113\]
There are EIGHT DIGITS — DISPLAY FILLED! BE AWARE OF POSSIBLE APPROXIMATIONS.

We can check for a possible approximation in the following way. Since the division $4 \div 12$ can be checked by multiplying 4 and 3, we can check our division by performing the multiplication

$$4.113 \times 0.1997373$$

with one decimal place and 7 decimal places.

This multiplication produces $3 + 7 = 10$ decimal digits. But our suspected quotient contains only 8 decimal digits. We conclude that the answer is an approximation. Then, rounding to five decimal places, we get 0.19974.

6.7.5.2 Practice Set C

Find each quotient using a calculator. If the result is an approximation, round to four decimal places.

- **Exercise 6.260**
 $42.49778 \div 14.261$
 (Solution on p. 409.)

- **Exercise 6.261**
 $0.001455 \div 0.291$
 (Solution on p. 409.)

- **Exercise 6.262**
 $7.459085 \div 2.1192$
 (Solution on p. 409.)

6.7.6 Dividing Decimals By Powers of 10

In problems 4 and 5 of Section 6.7.4.2 (Practice Set B), we found the decimal representations of $8,162.41 \div 10$ and $8,162.41 \div 100$. Let’s look at each of these again and then, from these observations, make a general statement regarding division of a decimal number by a power of 10.
Thus, $8,162.41 \div 10 = 816.241$.

Notice that the divisor 10 is composed of one 0 and that the quotient 816.241 can be obtained from the dividend $8,162.41$ by moving the decimal point one place to the left.

Thus, $8,162.41 \div 100 = 81.6241$.

Notice that the divisor 100 is composed of two 0's and that the quotient 81.6241 can be obtained from the dividend by moving the decimal point two places to the left.

Using these observations, we can suggest the following method for dividing decimal numbers by powers of 10.
Dividing a Decimal Fraction by a Power of 10
To divide a decimal fraction by a power of 10, move the decimal point of the decimal fraction to the left as many places as there are zeros in the power of 10. Add zeros if necessary.

6.7.6.1 Sample Set D
Find each quotient.

Example 6.52
9,248.6 ÷ 100
Since there are 2 zeros in this power of 10, we move the decimal point 2 places to the left.

\[92.486 \div 100 = 0.92486 \]

Example 6.53
3.28 ÷ 10,000
Since there are 4 zeros in this power of 10, we move the decimal point 4 places to the left. To do so, we need to add three zeros.

\[0003.28 \div 10,000 = 0.000328 \]

6.7.6.2 Practice Set D
Find the decimal representation of each quotient.

Exercise 6.263
182.5 ÷ 10
(Solution on p. 409.)

Exercise 6.264
182.5 ÷ 100
(Solution on p. 409.)

Exercise 6.265
182.5 ÷ 1,000
(Solution on p. 409.)

Exercise 6.266
182.5 ÷ 10,000
(Solution on p. 409.)

Exercise 6.267
646.18 ÷ 100
(Solution on p. 409.)

Exercise 6.268
21.926 ÷ 1,000
(Solution on p. 409.)

6.7.7 Exercises
For the following 30 problems, find the decimal representation of each quotient. Use a calculator to check each result.

Exercise 6.269
4.8 ÷ 3
(Solution on p. 409.)

Exercise 6.270
16.8 ÷ 8
(Solution on p. 409.)

Exercise 6.271
18.5 ÷ 5
(Solution on p. 409.)
Exercise 6.272
12.33 ÷ 3

Exercise 6.273
54.36 ÷ 9

(Solution on p. 409.)

Exercise 6.274
73.56 ÷ 12

Exercise 6.275
159.46 ÷ 17

(Solution on p. 410.)

Exercise 6.276
12.16 ÷ 64

Exercise 6.277
37.26 ÷ 81

(Solution on p. 410.)

Exercise 6.278
439.35 ÷ 435

Exercise 6.279
36.98 ÷ 4.3

(Solution on p. 410.)

Exercise 6.280
46.41 ÷ 9.1

Exercise 6.281
3.6 ÷ 1.5

(Solution on p. 410.)

Exercise 6.282
0.68 ÷ 1.7

Exercise 6.283
50.301 ÷ 8.1

(Solution on p. 410.)

Exercise 6.284
2.832 ÷ 0.4

Exercise 6.285
4.7524 ÷ 2.18

(Solution on p. 410.)

Exercise 6.286
16.2409 ÷ 4.03

Exercise 6.287
1.002001 ÷ 1.001

(Solution on p. 410.)

Exercise 6.288
25.050025 ÷ 5.005

Exercise 6.289
12.4 ÷ 3.1

(Solution on p. 410.)

Exercise 6.290
0.48 ÷ 0.08

Exercise 6.291
30.24 ÷ 2.16

(Solution on p. 410.)

Exercise 6.292
48.87 ÷ 0.87

Exercise 6.293
12.321 ÷ 0.111

(Solution on p. 410.)

Exercise 6.294
64,351.006 ÷ 10
Exercise 6.295
64,351.006 ÷ 100

(Solution on p. 410.)

Exercise 6.296
64,351.006 ÷ 1,000

Exercise 6.297
64,351.006 ÷ 1,000,000

(Solution on p. 410.)

Exercise 6.298
0.43 ÷ 100

For the following 5 problems, find each quotient. Round to the specified position. A calculator may be used.

Exercise 6.299
11.2944 ÷ 6.24

(Solution on p. 410.)

<table>
<thead>
<tr>
<th>Actual Quotient</th>
<th>Tenths</th>
<th>Hundredths</th>
<th>Thousandths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.25

Exercise 6.300
45.32931 ÷ 9.01

<table>
<thead>
<tr>
<th>Actual Quotient</th>
<th>Tenths</th>
<th>Hundredths</th>
<th>Thousandths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.26

Exercise 6.301
3.18186 ÷ 0.66

(Solution on p. 410.)

<table>
<thead>
<tr>
<th>Actual Quotient</th>
<th>Tenths</th>
<th>Hundredths</th>
<th>Thousandths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.27

Exercise 6.302
4.3636 ÷ 4

<table>
<thead>
<tr>
<th>Actual Quotient</th>
<th>Tenths</th>
<th>Hundredths</th>
<th>Thousandths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.28

Exercise 6.303
0.00006318 ÷ 0.018

(Solution on p. 410.)

<table>
<thead>
<tr>
<th>Actual Quotient</th>
<th>Tenths</th>
<th>Hundredths</th>
<th>Thousandths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For the following 9 problems, find each solution.

Exercise 6.304
Divide the product of 7.4 and 4.1 by 2.6.

Exercise 6.305 *(Solution on p. 411.)*
Divide the product of 11.01 and 0.003 by 2.56 and round to two decimal places.

Exercise 6.306
Divide the difference of the products of 2.1 and 9.3, and 4.6 and 0.8 by 0.07 and round to one decimal place.

Exercise 6.307 *(Solution on p. 411.)*
A ring costing $567.08 is to be paid off in equal monthly payments of $46.84. In how many months will the ring be paid off?

Exercise 6.308
Six cans of cola cost $2.58. What is the price of one can?

Exercise 6.309 *(Solution on p. 411.)*
A family traveled 538.56 miles in their car in one day on their vacation. If their car used 19.8 gallons of gas, how many miles per gallon did it get?

Exercise 6.310
Three college students decide to rent an apartment together. The rent is $812.50 per month. How much must each person contribute toward the rent?

Exercise 6.311 *(Solution on p. 411.)*
A woman notices that on slow speed her video cassette recorder runs through 296.80 tape units in 10 minutes and at fast speed through 1098.16 tape units. How many times faster is fast speed than slow speed?

Exercise 6.312
A class of 34 first semester business law students pay a total of $1,354.90, disregarding sales tax, for their law textbooks. What is the cost of each book?

Calculator Problems
For the following problems, use calculator to find the quotients. If the result is approximate (see Sample Set C Example 6.51) round the result to three decimal places.

Exercise 6.313 *(Solution on p. 411.)*
\[3.8994 \div 2.01 \]

Exercise 6.314
\[0.067444 \div 0.052 \]

Exercise 6.315 *(Solution on p. 411.)*
\[14,115.628 \div 484.74 \]

Exercise 6.316
\[219,709.36 \div 9941.6 \]

Exercise 6.317 *(Solution on p. 411.)*
\[0.0852092 \div 0.49271 \]

Exercise 6.318
\[2.4858225 \div 1.11611 \]

Exercise 6.319 *(Solution on p. 411.)*
\[0.123432 \div 0.1111 \]

Exercise 6.320
\[2.102838 \div 1.0305 \]
6.7.7.1 Exercises for Review

Exercise 6.321
(Section 4.3) Convert $4\frac{7}{8}$ to an improper fraction.

Exercise 6.322
(Section 4.7) $\frac{2}{7}$ of what number is $\frac{4}{5}$?

Exercise 6.323
(Section 5.3) Find the sum. $\frac{4}{10} + \frac{7}{10} + \frac{3}{5}$.

Exercise 6.324
(Section 6.4) Round 0.01628 to the nearest ten-thousandths.

Exercise 6.325
(Section 6.6) Find the product $(2.06)(1.39)$

(Solution on p. 411.)

6.8 Nonterminating Divisions

6.8.1 Section Overview
- Nonterminating Divisions
- Denoting Nonterminating Quotients

6.8.2 Nonterminating Divisions

Let’s consider two divisions:

1. $9.8 \div 3.5$
2. $4 \div 3$

Terminating Divisions
Previously, we have considered divisions like example 1, which is an example of a terminating division. A terminating division is a division in which the quotient terminates after several divisions (the remainder is zero).

$$\begin{array}{r}
\vline & 2.8 \\
3.5 & \overline{9.80} \\
\vline & 70 \\
\vline & 280 \\
\vline & 280 \\
\vline & 0 \\
\end{array}$$

Exact Divisions
The quotient in this problem terminates in the tenths position. Terminating divisions are also called exact divisions.

Nonterminating Division
The division in example 2 is an example of a nonterminating division. A non-terminating division is a division that, regardless of how far we carry it out, always has a remainder.

\(^{8}\text{This content is available online at <http://cnx.org/content/m34969/1.2/>.}\)
We can see that the pattern in the brace is repeated endlessly. Such a decimal quotient is called a repeating decimal.

6.8.3 Denoting Nonterminating Quotients

We use three dots at the end of a number to indicate that a pattern repeats itself endlessly.

\[4 \div 3 = 1.333 \ldots \]

Another way, aside from using three dots, of denoting an endlessly repeating pattern is to write a bar (\(\bar{\cdot} \)) above the repeating sequence of digits.

\[4 \div 3 = 1.\overline{3} \]

The bar indicates the repeated pattern of 3.

Repeating patterns in a division can be discovered in two ways:

1. As the division process progresses, should the remainder ever be the same as the dividend, it can be concluded that the division is nonterminating and that the pattern in the quotient repeats. This fact is illustrated in Example 6.54 of Section 6.8.3.1 (Sample Set A).
2. As the division process progresses, should the "product, difference" pattern ever repeat two consecutive times, it can be concluded that the division is nonterminating and that the pattern in the quotient repeats. This fact is illustrated in Example 6.55 and 4 of Section 6.8.3.1 (Sample Set A).

6.8.3.1 Sample Set A

Carry out each division until the repeating pattern can be determined.

Example 6.54

\[100 \div 27 \]
When the remainder is identical to the dividend, the division is nonterminating. This implies that the pattern in the quotient repeats.

\[100 \div 27 = 3.70370370 \ldots \] The repeating block is 703.

\[100 \div 27 = 3.703 \]

Example 6.55

\[1 \div 9 \]

\[\begin{array}{c}
9 \overline{1.000} \\
9 \\
10 \\
9 \\
1 \end{array} \]

We see that this “product, difference” pattern repeats. We can conclude that the division is nonterminating and that the quotient repeats.

\[1 \div 9 = 0.111 \ldots \] The repeating block is 1.

\[1 \div 9 = 0.\overline{1} \]

Example 6.56

Divide 2 by 11 and round to 3 decimal places.

Since we wish to round the quotient to three decimal places, we’ll carry out the division so that the quotient has four decimal places.
The number .1818 rounded to three decimal places is .182. Thus, correct to three decimal places,

\[2 \div 11 = 0.182 \]

Example 6.57
Divide 1 by 6.

\[
\begin{array}{c|c}
6 & 1.000 \\
6 & 6 \\
6 & 40 \\
6 & 36 \\
6 & 40 \\
6 & 36 \\
6 & 4 \\
\end{array}
\]

We see that this “product, difference” pattern repeats. We can conclude that the division is non-terminating and that the quotient repeats at the 6.

\[1 \div 6 = 0.1\overline{6} \]

6.8.3.2 Practice Set A

Carry out the following divisions until the repeating pattern can be determined.

Exercise 6.326
1 \div 3

Exercise 6.327
5 \div 6

Exercise 6.328
11 \div 9

Exercise 6.329
17 \div 9

Exercise 6.330
Divide 7 by 6 and round to 2 decimal places.

Exercise 6.331
Divide 400 by 11 and round to 4 decimal places.
6.8.4 Exercises

For the following 20 problems, carry out each division until the repeating pattern is determined. If a repeating pattern is not apparent, round the quotient to three decimal places.

Exercise 6.332
4 ÷ 9
(Solution on p. 411.)

Exercise 6.333
8 ÷ 11

Exercise 6.334
4 ÷ 25
(Solution on p. 411.)

Exercise 6.335
5 ÷ 6

Exercise 6.336
1 ÷ 7
(Solution on p. 411.)

Exercise 6.337
3 ÷ 1.1

Exercise 6.338
20 ÷ 1.9
(Solution on p. 411.)

Exercise 6.339
10 ÷ 2.7

Exercise 6.340
1.11 ÷ 9.9
(Solution on p. 411.)

Exercise 6.341
8.08 ÷ 3.1

Exercise 6.342
51 ÷ 8.2
(Solution on p. 411.)

Exercise 6.343
0.213 ÷ 0.31

Exercise 6.344
0.009 ÷ 1.1
(Solution on p. 411.)

Exercise 6.345
6.03 ÷ 1.9
(Solution on p. 411.)

Exercise 6.346
0.518 ÷ 0.62

Exercise 6.347
1.55 ÷ 0.27
(Solution on p. 411.)

Exercise 6.348
0.333 ÷ 0.999

Exercise 6.349
0.444 ÷ 0.999

Exercise 6.350
0.555 ÷ 0.27
(Solution on p. 412.)

Exercise 6.351
3.8 ÷ 0.99

Calculator Problems

For the following 10 problems, use a calculator to perform each division.
Exercise 6.352
7 ÷ 9

(Solution on p. 412.)

Exercise 6.353
8 ÷ 11

(Solution on p. 412.)

Exercise 6.354
14 ÷ 27

(Solution on p. 412.)

Exercise 6.355
1 ÷ 44

(Solution on p. 412.)

Exercise 6.356
2 ÷ 44

(Solution on p. 412.)

Exercise 6.357
0.7 ÷ 0.9 (Compare this with Exercise 6.352.)

(Solution on p. 412.)

Exercise 6.358
80 ÷ 110 (Compare this with Exercise 6.353.)

(Solution on p. 412.)

Exercise 6.359
0.0707 ÷ 0.7070

(Solution on p. 412.)

Exercise 6.360
0.1414 ÷ 0.2020

(Solution on p. 412.)

Exercise 6.361
1 ÷ 0.9999999

(Solution on p. 412.)

6.8.4.1 Exercise for Review

Exercise 6.362
(Section 1.2) In the number 411,105, how many ten thousands are there?

(Solution on p. 412.)

Exercise 6.363
(Section 2.3) Find the quotient, if it exists. 17 ÷ 0.

(Solution on p. 412.)

Exercise 6.364
(Section 3.6) Find the least common multiple of 45, 63, and 98.

(Solution on p. 412.)

Exercise 6.365
(Section 6.5) Subtract 8.01629 from 9.00187 and round the result to three decimal places.

(Solution on p. 412.)

Exercise 6.366
(Section 6.7) Find the quotient. 104.06 ÷ 12.1.

(Solution on p. 412.)

6.9 Converting a Fraction to a Decimal

Now that we have studied and practiced dividing with decimals, we are also able to convert a fraction to a decimal. To do so we need only recall that a fraction bar can also be a division symbol. Thus, \(\frac{3}{4} \) not only means "3 objects out of 4," but can also mean "3 divided by 4."

\(^9\)This content is available online at <http://cnx.org/content/m34970/1.2/>.
6.9.1 Sample Set A

Convert the following fractions to decimals. If the division is nonterminating, round to two decimal places.

Example 6.58
\[\frac{\cancel{3}}{4} \] Divide 3 by 4.

\[
\begin{array}{r}
.75 \\
\hline
4\left)3.00 \\
28 \\
20 \\
20 \\
0 \\
\end{array}
\]

Thus, \(\frac{\cancel{3}}{4} = 0.75 \).

Example 6.59
\[\frac{\cancel{1}}{5} \] Divide 1 by 5.

\[
\begin{array}{r}
.2 \\
\hline
5\left)1.0 \\
1.0 \\
0 \\
\end{array}
\]

Thus, \(\frac{\cancel{1}}{5} = 0.2 \).

Example 6.60
\[\frac{\cancel{5}}{6} \] Divide 5 by 6.

\[
\begin{array}{r}
.833 \\
\hline
6\left)5.000 \\
48 \\
20 \\
18 \\
20 \\
\end{array}
\]

This recurring remainder indicates that the division is nonterminating.

\(\frac{\cancel{5}}{6} = 0.833 \ldots \) We are to round to two decimal places.

Thus, \(\frac{\cancel{5}}{6} = 0.83 \) to two decimal places.

Example 6.61
\[5\frac{1}{8} \] Note that \(5\frac{1}{8} = 5 + \frac{1}{8} \).

Convert \(\frac{1}{8} \) to a decimal.
.125
8) 1.000
 8
 20
 16
 40
 40
 0

\(\frac{1}{8} = .125 \)

Thus, \(5 \frac{1}{8} = 5 + \frac{1}{8} = 5 + .125 = 5.125 \).

Example 6.62

This is a complex decimal.

Note that the 6 is in the hundredths position.

The number 0.16 \(\frac{1}{4} \) is read as "sixteen and one-fourth hundredths."

\[0.16 \frac{1}{4} = \frac{16}{100} = \frac{16 + 1}{400} = \frac{65}{100} \times \frac{1}{4} = \frac{13}{40} = \frac{13}{80} \]

Now, convert \(\frac{13}{80} \) to a decimal.

.1625
80) 13.0000
 8 0
 5 00
 4 80
 200
 160
 400
 400
 0

Thus, \(0.16 \frac{1}{4} = 0.1625 \).

6.9.2 Practice Set A

Convert the following fractions and complex decimals to decimals (in which no proper fractions appear). If the division is nonterminating, round to two decimal places.

Exercise 6.367

(Solution on p. 412.)
Exercise 6.368
\[
\frac{1}{25}
\]
(Solution on p. 412.)

Exercise 6.369
\[
\frac{1}{6}
\]
(Solution on p. 412.)

Exercise 6.370
\[
\frac{15}{16}
\]
(Solution on p. 412.)

Exercise 6.371
\[
0.9\frac{1}{2}
\]
(Solution on p. 412.)

Exercise 6.372
\[
8.012\frac{3}{8}
\]
(Solution on p. 412.)

\[6.9.3 \text{ Exercises}\]

For the following 30 problems, convert each fraction or complex decimal number to a decimal (in which no proper fractions appear).

Exercise 6.373
\[
\frac{1}{2}
\]
(Solution on p. 412.)

Exercise 6.374
\[
\frac{4}{5}
\]
(Solution on p. 412.)

Exercise 6.375
\[
\frac{7}{8}
\]
(Solution on p. 412.)

Exercise 6.376
\[
\frac{5}{8}
\]
(Solution on p. 412.)

Exercise 6.377
\[
\frac{3}{5}
\]
(Solution on p. 412.)

Exercise 6.378
\[
\frac{2}{5}
\]
(Solution on p. 412.)

Exercise 6.379
\[
\frac{1}{25}
\]
(Solution on p. 412.)

Exercise 6.380
\[
\frac{3}{25}
\]
(Solution on p. 412.)

Exercise 6.381
\[
\frac{1}{20}
\]
(Solution on p. 412.)

Exercise 6.382
\[
\frac{1}{15}
\]
(Solution on p. 412.)

Exercise 6.383
\[
\frac{1}{50}
\]
(Solution on p. 412.)

Exercise 6.384
\[
\frac{1}{75}
\]
(Solution on p. 412.)

Exercise 6.385
\[
\frac{1}{3}
\]
(Solution on p. 412.)

Exercise 6.386
\[
\frac{5}{6}
\]
(Solution on p. 412.)

Exercise 6.387
\[
\frac{3}{16}
\]
(Solution on p. 412.)
For the following 18 problems, convert each fraction to a decimal. Round to five decimal places.

Exercise 6.403 \(\frac{1}{9} \) (Solution on p. 413.)

Exercise 6.404 \(\frac{2}{9} \)

Exercise 6.405 \(\frac{3}{9} \) (Solution on p. 413.)

Exercise 6.406 \(\frac{4}{9} \)

Exercise 6.407 \(\frac{5}{9} \) (Solution on p. 413.)

Exercise 6.408 \(\frac{6}{9} \)

Exercise 6.409 \(\frac{7}{9} \) (Solution on p. 413.)
Exercise 6.410
\[\frac{8}{9} \]

Exercise 6.411
\[\frac{1}{11} \]
(Solution on p. 413.)

Exercise 6.412
\[\frac{2}{11} \]

Exercise 6.413
\[\frac{3}{11} \]
(Solution on p. 413.)

Exercise 6.414
\[\frac{4}{11} \]

Exercise 6.415
\[\frac{5}{11} \]
(Solution on p. 413.)

Exercise 6.416
\[\frac{6}{11} \]

Exercise 6.417
\[\frac{7}{11} \]
(Solution on p. 413.)

Exercise 6.418
\[\frac{8}{11} \]

Exercise 6.419
\[\frac{9}{11} \]
(Solution on p. 413.)

Exercise 6.420
\[\frac{10}{11} \]

Calculator Problems
For the following problems, use a calculator to convert each fraction to a decimal. If no repeating pattern seems to exist, round to four decimal places.

Exercise 6.421
\[\frac{16}{126} \]
(Solution on p. 413.)

Exercise 6.422
\[\frac{85}{311} \]

Exercise 6.423
\[\frac{192}{197} \]
(Solution on p. 413.)

Exercise 6.424
\[\frac{1}{149} \]

Exercise 6.425
\[\frac{4}{27,016} \]
(Solution on p. 413.)

Exercise 6.426
\[\frac{81,426}{106,001} \]

Exercise 6.427
\[\frac{16,501}{426} \]
(Solution on p. 413.)
6.9.3.1 Exercises for Review

Exercise 6.428
(Section 1.4) Round 2,105,106 to the nearest hundred thousand.

Exercise 6.429
(Section 4.7) \(\frac{3}{5} \) of what number is \(\frac{3}{2} \)?

Exercise 6.430
(Section 5.5) Arrange \(\frac{9}{10} \), \(\frac{5}{8} \), and \(\frac{7}{12} \) in increasing order.

Exercise 6.431
(Section 6.3) Convert the complex decimal \(3.6 \frac{5}{4} \) to a fraction.

Exercise 6.432
(Section 6.8) Find the quotient. \(30 \div 1.1 \).

6.10 Combinations of Operations with Decimals and Fractions10

Having considered operations with decimals and fractions, we now consider operations that involve both decimals and fractions.

6.10.1 Sample Set A

Perform the following operations.

Example 6.63
0.38 \(\cdot \frac{1}{4} \). Convert both numbers to decimals or both numbers to fractions. We’ll convert to decimals.

\[
\begin{array}{c}
.25 \\
4 \div 1.00 \\
-8 \\
20 \\
-20 \\
0
\end{array}
\]

To convert \(\frac{1}{4} \) to a decimal, divide 1 by 4.

Now multiply 0.38 and .25.

\[
\begin{array}{c}
\frac{1}{4} \\
\times .38 \\
190 \\
76 \\
.0950
\end{array}
\]

Thus, \(0.38 \cdot \frac{1}{4} = 0.095 \).

10 This content is available online at <http://cnx.org/content/m34971/1.2/>.
In the problems that follow, the conversions from fraction to decimal, or decimal to fraction, and some of the additions, subtraction, multiplications, and divisions will be left to you.

Example 6.64

1.85 + \(\frac{3}{8} \cdot 4.1 \) Convert \(\frac{3}{8} \) to a decimal.

1.85 + 0.375 \(\cdot \) 4.1 Multiply before adding.

1.85 + 1.5375 Now add.

3.3875

Example 6.65

\(\frac{5}{13} \left(\frac{4}{5} - 0.28 \right) \) Convert 0.28 to a fraction.

\[
\frac{5}{13} \left(\frac{4}{5} - \frac{28}{100} \right) = \frac{5}{13} \left(\frac{4}{5} - \frac{7}{25} \right) \\
= \frac{5}{13} \left(\frac{20}{25} - \frac{7}{25} \right) \\
= \frac{1}{13} \cdot \frac{13}{5} \\
= \frac{1}{5}
\]

Example 6.66

\[
\frac{0.125}{1 \frac{3}{4}} + 1 \frac{1}{16} - 0.1211 = \frac{125}{1000} + \frac{1}{16} - 0.1211 \\
= \frac{125}{1000} + \frac{1}{16} - 0.1211 \\
= \frac{1}{8} \cdot \frac{3}{4} + \frac{1}{16} - 0.1211 \\
= \frac{3}{32} + \frac{1}{16} - 0.1211 \\
= \frac{3}{32} + \frac{2}{32} - 0.1211 = \frac{5}{32} - 0.1211 \\
= 0.15625 - 0.1211 \\
= 0.03515 \quad \text{Convert this to fraction form} \\
= \frac{3515}{100,000} \\
= \frac{703}{20,000}
\]

6.10.2 Practice Set A

Perform the following operations.

Exercise 6.433

\(\frac{3}{5} + 1.6 \)
(Solution on p. 413.)

Exercise 6.434

\(8.91 + \frac{4}{5} \cdot 1.6 \)
(Solution on p. 413.)

Exercise 6.435

\(1 \frac{1}{16} (6.12 + \frac{7}{25}) \)
(Solution on p. 413.)

Exercise 6.436

\(\frac{0.156}{1 \frac{1}{16}} - 0.05 \)
(Solution on p. 413.)
6.10.3 Exercises

Exercise 6.437
\[\frac{3}{10} + 0.7 \]
(Solution on p. 413.)

Exercise 6.438
\[\frac{1}{5} + 0.1 \]

Exercise 6.439
\[\frac{5}{8} - 0.513 \]
(Solution on p. 414.)

Exercise 6.440
\[0.418 - \frac{67}{250} \]
(Solution on p. 414.)

Exercise 6.441
\[0.22 \cdot \frac{1}{4} \]

Exercise 6.442
\[\frac{3}{5} \cdot 8.4 \]
(Solution on p. 414.)

Exercise 6.443
\[\frac{1}{75} \cdot 3.19 \]

Exercise 6.444
\[\frac{3}{25} \div 0.05 \]
(Solution on p. 414.)

Exercise 6.445
\[\frac{7}{30} \div 0.25 \]

Exercise 6.446
\[1 \frac{1}{15} \div 0.9 \cdot 0.12 \]

Exercise 6.447
\[9.26 + \frac{1}{2} \cdot 0.81 \]
(Solution on p. 414.)

Exercise 6.448
\[0.588 + \frac{1}{30} \cdot 0.24 \]

Exercise 6.449
\[\frac{1}{70} + 3.62 \cdot \frac{3}{5} \]
(Solution on p. 414.)

Exercise 6.450
\[7 + 0.15 \div \frac{3}{20} \]

Exercise 6.451
\[\frac{15}{16} \cdot (\frac{7}{10} - 0.5) \]

Exercise 6.452
\[0.2 \cdot (\frac{7}{20} + 1.1143) \]
(Solution on p. 414.)

Exercise 6.453
\[\frac{3}{4} \cdot (0.875 + \frac{1}{6}) \]
(Solution on p. 414.)

Exercise 6.454
\[5.198 - 0.26 \cdot (\frac{14}{250} + 0.119) \]

Exercise 6.455
\[0.5 \frac{1}{3} + (0.3)^2 \]
(Solution on p. 414.)

Exercise 6.456
\[(1.4)^2 - 1.6 \frac{1}{2} \]

Exercise 6.457
\[(\frac{2}{9})^2 - 0.000625 + (1.1)^2 \]
(Solution on p. 414.)

Exercise 6.458
\[(0.6)^2 \cdot \left(\frac{1}{20} - \frac{1}{25}\right) \]
Exercise 6.459
\[(\frac{1}{2})^2 - 0.125 \]
(Solution on p. 414.)

Exercise 6.460
\[\frac{0.75}{12} + \frac{5}{12} \]

Exercise 6.461
\[\left(\frac{0.375}{2\pi} - \frac{1}{3\pi} \right) \]
(Solution on p. 414.)

Exercise 6.462
\[8\frac{1}{3} \cdot \left(\frac{1\frac{1}{2}}{2\pi} + \frac{9}{2\pi} \right) \]

Exercise 6.463
\[\frac{0.35}{0.35} \]
(Solution on p. 414.)

Exercise 6.464
\[\left(\sqrt{\frac{3}{4}} - 5 \right) \cdot 0.125 \]

6.10.3.1 Exercises for Review

Exercise 6.465
(Section 2.5) Is 21,480 divisible by 3?
(Solution on p. 414.)

Exercise 6.466
(Section 3.2) Expand 144. Do not find the actual value.

Exercise 6.467
(Section 3.3) Find the prime factorization of 15,400.
(Solution on p. 414.)

Exercise 6.468
(Section 6.3) Convert 8.016 to a fraction.

Exercise 6.469
(Section 6.9) Find the quotient. 16 ÷ 27.
(Solution on p. 414.)

6.11 Summary of Key Concepts

6.11.1 Summary of Key Concepts

Decimal Point (Section 6.2)
A decimal point is a point that separates the units digit from the tenths digit.

Decimal or Decimal Fraction (Section 6.2)
A decimal fraction is a fraction whose denominator is a power of ten.

Converting a Decimal to a Fraction (Section 6.3)
Decimals can be converted to fractions by saying the decimal number in words, then writing what was said.

Rounding Decimals (Section 6.4)
Decimals are rounded in much the same way whole numbers are rounded.

Addition and Subtraction of Decimals (Section 6.5)
To add or subtract decimals,

11This content is available online at <http://cnx.org/content/m34972/1.2/>.
1. Align the numbers vertically so that the decimal points line up under each other and the corresponding decimal positions are in the same column.
2. Add or subtract the numbers as if they were whole numbers.
3. Place a decimal point in the resulting sum directly under the other decimal points.

Multiplication of Decimals (Section 6.6)

To multiply two decimals,

1. Multiply the numbers as if they were whole numbers.
2. Find the sum of the number of decimal places in the factors.
3. The number of decimal places in the product is the number found in step 2.

Multiplying Decimals by Powers of 10 (Section 6.6)

To multiply a decimal by a power of 10, move the decimal point to the right as many places as there are zeros in the power of ten. Add zeros if necessary.

Division of a Decimal by a Decimal (Section 6.7)

To divide a decimal by a nonzero decimal,

1. Convert the divisor to a whole number by moving the decimal point until it appears to the right of the divisor’s last digit.
2. Move the decimal point of the dividend to the right the same number of digits it was moved in the divisor.
3. Proceed to divide.
4. Locate the decimal in the answer by bringing it straight up from the dividend.

Dividing Decimals by Powers of 10 (Section 6.7)

To divide a decimal by a power of 10, move the decimal point to the left as many places as there are zeros in the power of ten. Add zeros if necessary.

Terminating Divisions (Section 6.8)

A terminating division is a division in which the quotient terminates after several divisions. Terminating divisions are also called exact divisions.

Nonterminating Divisions (Section 6.8)

A nonterminating division is a division that, regardless of how far it is carried out, always has a remainder. Nonterminating divisions are also called nonexact divisions.

Converting Fractions to Decimals (Section 6.9)

A fraction can be converted to a decimal by dividing the numerator by the denominator.

6.12 Exercise Supplement

6.12.1 Exercise Supplement

6.12.1.1 Reading and Writing Decimals (Section 6.2)

Exercise 6.470 *(Solution on p. 414.)*

The decimal digit that appears two places to the right of the decimal point is in the position.

Exercise 6.471

The decimal digit that appears four places to the right of the decimal point is in the position.

¹²This content is available online at <http://cnx.org/content/m34978/1.2/>.
For problems 3-8, read each decimal by writing it in words.

Exercise 6.472
7.2
(Solution on p. 414.)

Exercise 6.473
8.105

Exercise 6.474
16.52
(Solution on p. 414.)

Exercise 6.475
5.9271

Exercise 6.476
0.005
(Solution on p. 414.)

Exercise 6.477
4.01701

For problems 9-13, write each decimal using digits.

Exercise 6.478
Nine and twelve-hundredths.
(Solution on p. 414.)

Exercise 6.479
Two and one hundred seventy-seven thousandths.

Exercise 6.480
Fifty-six and thirty-five ten-thousandths.
(Solution on p. 414.)

Exercise 6.481
Four tenths.

Exercise 6.482
Four thousand eighty-one millionths.
(Solution on p. 414.)

6.12.1.2 Converting a Decimal to a Fraction (Section 6.3)

For problem 14-20, convert each decimal to a proper fraction or a mixed number.

Exercise 6.483
1.07

Exercise 6.484
58.63
(Solution on p. 414.)

Exercise 6.485
0.05

Exercise 6.486
0.14\(\frac{2}{5}\)
(Solution on p. 414.)

Exercise 6.487
1.09\(\frac{1}{5}\)

Exercise 6.488
4.01\(\frac{1}{27}\)
(Solution on p. 415.)

Exercise 6.489
9.11\(\frac{1}{9}\)
6.12.1.3 Rounding Decimals (Section 6.4)

For problems 21-25, round each decimal to the specified position.

Exercise 6.490
4.087 to the nearest hundredth. (Solution on p. 415.)

Exercise 6.491
4.087 to the nearest tenth.

Exercise 6.492
16.5218 to the nearest one. (Solution on p. 415.)

Exercise 6.493
817.42 to the nearest ten.

Exercise 6.494
0.9811602 to the nearest one. (Solution on p. 415.)

6.12.1.4 Addition, Subtraction, Multiplication and Division of Decimals, and Nonterminating Divisions (Section 6.5, Section 6.6, Section 6.7, Section 6.8)

For problem 26-45, perform each operation and simplify.

Exercise 6.495
7.10 + 2.98

Exercise 6.496
14.007 − 5.061 (Solution on p. 415.)

Exercise 6.497
1.2 · 8.6

Exercise 6.498
41.8 · 0.19 (Solution on p. 415.)

Exercise 6.499
57.51 ÷ 2.7

Exercise 6.500
0.54003 ÷ 18.001 (Solution on p. 415.)

Exercise 6.501
32,051.3585 ÷ 23,006.9999

Exercise 6.502
100 · 1,816.001 (Solution on p. 415.)

Exercise 6.503
1,000 · 1,816.001

Exercise 6.504
10,000 · 0.14 (Solution on p. 415.)

Exercise 6.505
0.135888 ÷ 16.986

Exercise 6.506
150.79 ÷ 100 (Solution on p. 415.)

Exercise 6.507
4.119 ÷ 10,000

Exercise 6.508
42.7 ÷ 18 (Solution on p. 415.)
Exercise 6.509
6.9 ÷ 12

Exercise 6.510
0.014 ÷ 47.6. Round to three decimal places.

(Solution on p. 415.)

Exercise 6.511
8.8 ÷ 19. Round to one decimal place.

Exercise 6.512
1.1 ÷ 9

(Solution on p. 415.)

Exercise 6.513
1.1 ÷ 9.9

Exercise 6.514
30 ÷ 11.1

(Solution on p. 415.)

6.12.1.5 Converting a Fraction to a Decimal (Section 6.9)

For problems 46-55, convert each fraction to a decimal.

Exercise 6.515
\(\frac{3}{8} \)

Exercise 6.516
\(\frac{45}{100} \)

(Solution on p. 415.)

Exercise 6.517
\(\frac{82}{1000} \)

Exercise 6.518
9\(\frac{1}{2} \)

(Solution on p. 415.)

Exercise 6.519
8\(\frac{2}{15} \)

Exercise 6.520
1.3\(\frac{1}{7} \)

(Solution on p. 415.)

Exercise 6.521
25.6\(\frac{2}{3} \)

Exercise 6.522
125.125\(\frac{1}{8} \)

(Solution on p. 415.)

Exercise 6.523
9.11\(\frac{1}{9} \)

Exercise 6.524
0.0\(\frac{2}{5} \)

(Solution on p. 415.)
6.12.1.6 Combinations of Operations with Decimals and Fractions (Section 6.10)

For problems 56-62, perform each operation.

Exercise 6.525
\[\frac{5}{8} \cdot 0.25 \]

Exercise 6.526
\[\frac{3}{16} \cdot 1.36 \]

Exercise 6.527
\[\frac{6}{5} \cdot \left(\frac{1}{2} + 1.75 \right) \]

Exercise 6.528
\[\frac{7}{2} \cdot \left(\frac{5}{4} + 0.30 \right) \]

Exercise 6.529
\[19.375 \div (4.375 - \frac{1}{16}) \]

Exercise 6.530
\[\frac{15}{64} \cdot (2.5 + 3\frac{1}{4}) \]

Exercise 6.531
\[\frac{4\frac{13}{16}}{5.026} \div (5\frac{7}{14} + 3\frac{5}{21}) \]

6.13 Proficiency Exam

6.13.1 Proficiency Exam

Exercise 6.532
(Solution on p. 415.)

(Section 6.2) The decimal digit that appears three places to the right of the decimal point is in the ______ position.

Exercise 6.533
(Solution on p. 415.)

(Section 6.2) Write, using words, 15.036.

Exercise 6.534
(Solution on p. 415.)

(Section 6.2) Write eighty-one and twelve hundredths using digits. 81.12

Exercise 6.535
(Solution on p. 416.)

(Section 6.2) Write three thousand seventeen millionths using digits.

Exercise 6.536
(Solution on p. 416.)

(Section 6.3) Convert 0.78 to a fraction. Reduce.

Exercise 6.537
(Solution on p. 416.)

(Section 6.3) Convert 0.875 to a fraction. Reduce.

Exercise 6.538
(Solution on p. 416.)

(Section 6.4) Round 4.8063 to the nearest tenth.

Exercise 6.539
(Solution on p. 416.)

(Section 6.4) Round 187.51 to the nearest hundred.

Exercise 6.540
(Solution on p. 416.)

(Section 6.4) Round 0.0652 to the nearest hundredth.

For problems 10-20, perform each operation.

Exercise 6.541
(Solution on p. 416.)

(Section 6.5) 15.026 + 5.971

[^13]: This content is available online at <http://cnx.org/content/m34979/1.2/>.
Exercise 6.542
(Section 6.5) 72.15 – 26.385
(Solution on p. 416.)

Exercise 6.543
(Section 6.6) 16.2 · 4.8
(Solution on p. 416.)

Exercise 6.544
(Section 6.6) 10,000 · 0.016
(Solution on p. 416.)

Exercise 6.545
(Section 6.7) 44.64 ÷ 18.6
(Solution on p. 416.)

Exercise 6.546
(Section 6.7) 0.21387 ÷ 0.19
(Solution on p. 416.)

Exercise 6.547
(Section 6.8) 0.27 – \frac{3}{11}
(Solution on p. 416.)

Exercise 6.548
(Section 6.9) Convert 6\frac{2}{11} to a decimal.
(Solution on p. 416.)

Exercise 6.549
(Section 6.9) Convert 0.5\frac{9}{16} to a decimal.
(Solution on p. 416.)

Exercise 6.550
(Section 6.10) 3\frac{1}{8} + 2.325
(Solution on p. 416.)

Exercise 6.551
(Section 6.10) \frac{3}{8} \times 0.5625
(Solution on p. 416.)
Solutions to Exercises in Chapter 6

Solution to Exercise 6.1 (p. 341)
twelve and nine tenths

Solution to Exercise 6.2 (p. 341)
four and eighty-six hundredths

Solution to Exercise 6.3 (p. 341)
seven and two hundred thousandths

Solution to Exercise 6.4 (p. 341)
three hundred thousand four hundred five millionths

Solution to Exercise 6.5 (p. 342)
306.49

Solution to Exercise 6.6 (p. 342)
9.004

Solution to Exercise 6.7 (p. 342)
0.00061

Solution to Exercise 6.8 (p. 342)
Tenths; hundredths, thousandths

Solution to Exercise 6.10 (p. 342)
Hundred thousandths; ten millionths

Solution to Exercise 6.12 (p. 342)
eight and one tenth

Solution to Exercise 6.14 (p. 342)
fifty-five and six hundredths

Solution to Exercise 6.16 (p. 342)
one and nine hundred forty thousandths

Solution to Exercise 6.18 (p. 343)
3.20

Solution to Exercise 6.20 (p. 343)
1.8

Solution to Exercise 6.22 (p. 343)
511.004

Solution to Exercise 6.24 (p. 343)
0.947

Solution to Exercise 6.26 (p. 343)
0.00071

Solution to Exercise 6.28 (p. 343)
seventy-five hundredths

Solution to Exercise 6.30 (p. 343)
four tenths

Solution to Exercise 6.32 (p. 343)
sixteen hundredths

Solution to Exercise 6.34 (p. 343)
one thousand eight hundred seventy-five ten thousandths

Solution to Exercise 6.36 (p. 343)
fifty-five hundredths

Solution to Exercise 6.38 (p. 344)
2610

Solution to Exercise 6.40 (p. 344)
12

Solution to Exercise 6.42 (p. 344)
$\frac{10}{7}$ or $1\frac{1}{7}$
Solution to Exercise 6.43 (p. 345)
16\frac{31}{20}

Solution to Exercise 6.44 (p. 345)
\frac{613}{1000}

Solution to Exercise 6.45 (p. 345)
6,646\frac{107}{10,000}

Solution to Exercise 6.46 (p. 345)
1,\frac{1}{10}

Solution to Exercise 6.47 (p. 346)
7,\frac{7}{8}

Solution to Exercise 6.48 (p. 346)
31,\frac{250}{200}

Solution to Exercise 6.49 (p. 346)
6,\frac{7}{1200}

Solution to Exercise 6.50 (p. 346)
18,\frac{2}{17}

Solution to Exercise 6.51 (p. 346)
7,\sqrt{17}

Solution to Exercise 6.53 (p. 346)
53,\frac{100}{100}

Solution to Exercise 6.55 (p. 346)
219,\frac{19000}{10,000}

Solution to Exercise 6.57 (p. 346)
4,\frac{4}{5}

Solution to Exercise 6.59 (p. 346)
16,\frac{3}{25}

Solution to Exercise 6.61 (p. 347)
6,\frac{1}{2000}

Solution to Exercise 6.63 (p. 347)
16,\frac{5}{2}

Solution to Exercise 6.65 (p. 347)
3,\frac{1}{25}

Solution to Exercise 6.67 (p. 347)
8,\frac{9}{25}

Solution to Exercise 6.69 (p. 347)
9,\frac{19999}{20000}

Solution to Exercise 6.71 (p. 347)
3,\frac{3}{2}

Solution to Exercise 6.73 (p. 347)
2,\frac{10}{25}

Solution to Exercise 6.75 (p. 347)
14,\frac{357}{1000}

Solution to Exercise 6.77 (p. 347)
1,\frac{129}{320}

Solution to Exercise 6.79 (p. 347)
2,\frac{1}{35}

Solution to Exercise 6.81 (p. 348)
14

Solution to Exercise 6.83 (p. 348)
9,\frac{10}{10}
Solution to Exercise 6.85 (p. 348)

- thousandths

Solution to Exercise 6.86 (p. 349)

- 4.82

Solution to Exercise 6.87 (p. 349)

- 0.3593

Solution to Exercise 6.88 (p. 349)

- 82

Solution to Exercise 6.89 (p. 349)

- 800

Solution to Exercise 6.90 (p. 349)

- 43.994

Solution to Exercise 6.91 (p. 349)

- 105.0300

Solution to Exercise 6.92 (p. 349)

- 100.00

Solution to Exercise 6.93 (p. 350)

Solution to Exercise 6.95 (p. 350)

Solution to Exercise 6.97 (p. 350)

Solution to Exercise 6.99 (p. 351)

Solution to Exercise 6.101 (p. 351)
<table>
<thead>
<tr>
<th>Tenth</th>
<th>Hundredth</th>
<th>Thousandth</th>
<th>Ten Thousandth</th>
</tr>
</thead>
</table>

Table 6.34

Solution to Exercise 6.103 (p. 351)
18.417

Solution to Exercise 6.105 (p. 351)
18.41681

Solution to Exercise 6.107 (p. 352)
18.42

Solution to Exercise 6.109 (p. 352)
0.1

Solution to Exercise 6.111 (p. 352)
0.83607

Solution to Exercise 6.113 (p. 352)
5.333

Solution to Exercise 6.115 (p. 352)
Ten million

Solution to Exercise 6.117 (p. 352)
256

Solution to Exercise 6.119 (p. 352)
$3\frac{4}{25}$

Solution to Exercise 6.120 (p. 355)
6.179

Solution to Exercise 6.121 (p. 355)
9.646

Solution to Exercise 6.122 (p. 355)
1.6044

Solution to Exercise 6.123 (p. 355)
0.0065

Solution to Exercise 6.124 (p. 355)
25,777.22

Solution to Exercise 6.125 (p. 355)
25.69

Solution to Exercise 6.126 (p. 356)
13.256

Solution to Exercise 6.127 (p. 356)
59.4512

Solution to Exercise 6.128 (p. 356)
0.006862

Solution to Exercise 6.129 (p. 356)
0.475

Solution to Exercise 6.130 (p. 356)
Since each number contains more than eight digits, using some calculators may not be helpful. Adding these
by “hand technology,” we get 4,785.00031

Solution to Exercise 6.131 (p. 357)
8.95

Solution to Exercise 6.133 (p. 357)
39.846
Solution to Exercise 6.135 (p. 357) 11.74931
Solution to Exercise 6.137 (p. 357) 57.2115
Solution to Exercise 6.139 (p. 357) 2.607
Solution to Exercise 6.141 (p. 357) 0.41085
Solution to Exercise 6.143 (p. 357) 9.13586
Solution to Exercise 6.145 (p. 357) 27.351
Solution to Exercise 6.147 (p. 357) 39.6660
Solution to Exercise 6.149 (p. 357) 11.09
Solution to Exercise 6.151 (p. 358) $23.23
Solution to Exercise 6.153 (p. 358) $5.71
Solution to Exercise 6.155 (p. 358) 869.37
Solution to Exercise 6.157 (p. 358) 8,200,000
Solution to Exercise 6.159 (p. 358) \(\frac{20}{7} = \frac{2}{7} \) or \(2 \frac{2}{7} \)
Solution to Exercise 6.161 (p. 360) 45.58
Solution to Exercise 6.162 (p. 360) 10.388
Solution to Exercise 6.163 (p. 360) 0.16864
Solution to Exercise 6.164 (p. 360) 0.00000062
Solution to Exercise 6.165 (p. 360) 9.3
Solution to Exercise 6.166 (p. 360) 53.94
Solution to Exercise 6.167 (p. 360) 539.4
Solution to Exercise 6.168 (p. 360) 5,304
Solution to Exercise 6.169 (p. 360) 59,340
Solution to Exercise 6.170 (p. 362) 20.91408
Solution to Exercise 6.171 (p. 362) 0.000066
Solution to Exercise 6.172 (p. 362) 0.2397
Solution to Exercise 6.173 (p. 362) 0.0000
Solution to Exercise 6.174 (p. 363) 427
Solution to Exercise 6.175 (p. 363) 165,218.7
Solution to Exercise 6.176 (p. 363) 0.188
Solution to Exercise 6.177 (p. 363) 527,000,000,000
Solution to Exercise 6.178 (p. 364) 17.92
Solution to Exercise 6.179 (p. 364) 0.13
Solution to Exercise 6.180 (p. 364) 3.636
Solution to Exercise 6.181 (p. 364) 0.0000036
Solution to Exercise 6.182 (p. 364) 9.96
Solution to Exercise 6.183 (p. 364) 14.08
Solution to Exercise 6.184 (p. 365) 31.28
Solution to Exercise 6.186 (p. 365) 47.20
Solution to Exercise 6.188 (p. 365) 0.152
Solution to Exercise 6.190 (p. 365) 4.6324
Solution to Exercise 6.192 (p. 365) 3.182
Solution to Exercise 6.194 (p. 365) 0.0000273
Solution to Exercise 6.196 (p. 365) 2.56
Solution to Exercise 6.198 (p. 365) 0.81
Solution to Exercise 6.200 (p. 365) 29.3045
Solution to Exercise 6.202 (p. 365) 0.00000015486
Solution to Exercise 6.204 (p. 366) 49.6
Solution to Exercise 6.206 (p. 366) 4,218.842
Solution to Exercise 6.208 (p. 366) 19.621
Solution to Exercise 6.210 (p. 366) 3,506.168
Solution to Exercise 6.212 (p. 366)
25,010

Solution to Exercise 6.214 (p. 366)

<table>
<thead>
<tr>
<th>Actual product</th>
<th>Tenths</th>
<th>Hundreds</th>
<th>Thousandths</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.382</td>
<td>28.4</td>
<td>28.3</td>
<td>28.382</td>
</tr>
</tbody>
</table>

Table 6.35

Solution to Exercise 6.216 (p. 366)

<table>
<thead>
<tr>
<th>Actual product</th>
<th>Tenths</th>
<th>Hundreds</th>
<th>Thousandths</th>
</tr>
</thead>
<tbody>
<tr>
<td>134.216048</td>
<td>134.2</td>
<td>134.22</td>
<td>134.216</td>
</tr>
</tbody>
</table>

Table 6.36

Solution to Exercise 6.218 (p. 367)

<table>
<thead>
<tr>
<th>Actual product</th>
<th>Tenths</th>
<th>Hundreds</th>
<th>Thousandths</th>
</tr>
</thead>
<tbody>
<tr>
<td>185.626</td>
<td>185.6</td>
<td>185.63</td>
<td>185.626</td>
</tr>
</tbody>
</table>

Table 6.37

Solution to Exercise 6.220 (p. 367)
121.503

Solution to Exercise 6.222 (p. 367)
1.2

Solution to Exercise 6.224 (p. 367)
0.999702

Solution to Exercise 6.226 (p. 367)
0.2528

Solution to Exercise 6.228 (p. 367)
2.9544

Solution to Exercise 6.230 (p. 367)
$16.24

Solution to Exercise 6.232 (p. 367)
0.24

Solution to Exercise 6.234 (p. 368)
0.006099

Solution to Exercise 6.236 (p. 368)
23.295102

Solution to Exercise 6.238 (p. 368)
0.000144

Solution to Exercise 6.240 (p. 368)
0.0000018

Solution to Exercise 6.242 (p. 368)
0.000000471
Solution to Exercise 6.244 (p. 368)
0
Solution to Exercise 6.246 (p. 368)
10
Solution to Exercise 6.248 (p. 368)
1.78
Solution to Exercise 6.249 (p. 371)
61.5
Solution to Exercise 6.250 (p. 371)
1.884
Solution to Exercise 6.251 (p. 371)
0.0741
Solution to Exercise 6.252 (p. 371)
0.000062
Solution to Exercise 6.253 (p. 373)
2.96
Solution to Exercise 6.254 (p. 373)
4.58
Solution to Exercise 6.255 (p. 373)
40,000
Solution to Exercise 6.256 (p. 373)
816.241
Solution to Exercise 6.257 (p. 373)
81.6241
Solution to Exercise 6.258 (p. 373)
816241
Solution to Exercise 6.259 (p. 374)
0.816241
Solution to Exercise 6.260 (p. 375)
2.98
Solution to Exercise 6.261 (p. 375)
0.005
Solution to Exercise 6.262 (p. 375)
3.5197645 is an approximate result. Rounding to four decimal places, we get 3.5198
Solution to Exercise 6.263 (p. 377)
18.25
Solution to Exercise 6.264 (p. 377)
1.825
Solution to Exercise 6.265 (p. 377)
0.1825
Solution to Exercise 6.266 (p. 377)
0.01825
Solution to Exercise 6.267 (p. 377)
6.4618
Solution to Exercise 6.268 (p. 377)
0.021926
Solution to Exercise 6.269 (p. 377)
1.6
Solution to Exercise 6.271 (p. 377)
3.7
Solution to Exercise 6.273 (p. 378)
6.04
Solution to Exercise 6.275 (p. 378)
9.38
Solution to Exercise 6.277 (p. 378)
0.46
Solution to Exercise 6.279 (p. 378)
8.6
Solution to Exercise 6.281 (p. 378)
2.4
Solution to Exercise 6.283 (p. 378)
6.21
Solution to Exercise 6.285 (p. 378)
2.18
Solution to Exercise 6.287 (p. 378)
1.001
Solution to Exercise 6.289 (p. 378)
4
Solution to Exercise 6.291 (p. 378)
14
Solution to Exercise 6.293 (p. 378)
111
Solution to Exercise 6.295 (p. 379)
643.51006
Solution to Exercise 6.297 (p. 379)
0.064351006
Solution to Exercise 6.299 (p. 379)

<table>
<thead>
<tr>
<th>Actual Quotient</th>
<th>Tenths</th>
<th>Hundredths</th>
<th>Thousandths</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.81</td>
<td>1.8</td>
<td>1.81</td>
<td>1.810</td>
</tr>
</tbody>
</table>

Table 6.38

Solution to Exercise 6.301 (p. 379)

<table>
<thead>
<tr>
<th>Actual Quotient</th>
<th>Tenths</th>
<th>Hundredths</th>
<th>Thousandths</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.821</td>
<td>4.8</td>
<td>4.82</td>
<td>4.821</td>
</tr>
</tbody>
</table>

Table 6.39

Solution to Exercise 6.303 (p. 379)

<table>
<thead>
<tr>
<th>Actual Quotient</th>
<th>Tenths</th>
<th>Hundredths</th>
<th>Thousandths</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00351</td>
<td>0.0</td>
<td>0.00</td>
<td>0.004</td>
</tr>
</tbody>
</table>

Table 6.40
Solution to Exercise 6.305 (p. 380) 0.01
Solution to Exercise 6.307 (p. 380) 12.11 months
Solution to Exercise 6.309 (p. 380) 27.2 miles per gallon
Solution to Exercise 6.311 (p. 380) 3.7
Solution to Exercise 6.313 (p. 380) 1.94
Solution to Exercise 6.315 (p. 380) 29.120
Solution to Exercise 6.317 (p. 380) 0.173
Solution to Exercise 6.319 (p. 380) 1.111
Solution to Exercise 6.321 (p. 381) \(\frac{39}{5} \)
Solution to Exercise 6.323 (p. 381) \(\frac{47}{5} \) or 1 \(\frac{17}{20} \)
Solution to Exercise 6.325 (p. 381) 2.8634
Solution to Exercise 6.326 (p. 384) 0.3
Solution to Exercise 6.327 (p. 384) 0.85
Solution to Exercise 6.328 (p. 384) 1.2
Solution to Exercise 6.329 (p. 384) 1.3
Solution to Exercise 6.330 (p. 384) 1.17
Solution to Exercise 6.331 (p. 384) 36.3636
Solution to Exercise 6.332 (p. 385) 0.4
Solution to Exercise 6.334 (p. 385) 0.16
Solution to Exercise 6.336 (p. 385) 0.23857
Solution to Exercise 6.338 (p. 385) 10.526
Solution to Exercise 6.340 (p. 385) 0.172
Solution to Exercise 6.342 (p. 385) 6.21951
Solution to Exercise 6.344 (p. 385) 0.0087
Solution to Exercise 6.346 (p. 385) 0.835
Solution to Exercise 6.348 (p. 385) 0.3
Solution to Exercise 6.350 (p. 385) 2.05
Solution to Exercise 6.352 (p. 385) 0.7
Solution to Exercise 6.354 (p. 386) 0.578
Solution to Exercise 6.356 (p. 386) 0.045
Solution to Exercise 6.358 (p. 386) 0.72
Solution to Exercise 6.360 (p. 386) 0.7
Solution to Exercise 6.362 (p. 386) 1
Solution to Exercise 6.364 (p. 386) 4410
Solution to Exercise 6.366 (p. 386) 8.6
Solution to Exercise 6.367 (p. 388) 0.25
Solution to Exercise 6.368 (p. 389) 0.04
Solution to Exercise 6.369 (p. 389) 0.17
Solution to Exercise 6.370 (p. 389) 0.9375
Solution to Exercise 6.371 (p. 389) 0.95
Solution to Exercise 6.372 (p. 389) 8.0126375
Solution to Exercise 6.373 (p. 389) 0.5
Solution to Exercise 6.375 (p. 389) 0.875
Solution to Exercise 6.377 (p. 389) 0.6
Solution to Exercise 6.379 (p. 389) 0.04
Solution to Exercise 6.381 (p. 389) 0.05
Solution to Exercise 6.383 (p. 389) 0.02
Solution to Exercise 6.385 (p. 389) 0.3
Solution to Exercise 6.387 (p. 389) 0.1875
Solution to Exercise 6.389 (p. 390) 0.037
Solution to Exercise 6.391 (p. 390)
0.538461
Solution to Exercise 6.393 (p. 390)
7.6
Solution to Exercise 6.395 (p. 390)
1.13
Solution to Exercise 6.397 (p. 390)
101.24
Solution to Exercise 6.399 (p. 390)
0.24125
Solution to Exercise 6.401 (p. 390)
810.31063125
Solution to Exercise 6.403 (p. 390)
0.11111
Solution to Exercise 6.405 (p. 390)
0.33333
Solution to Exercise 6.407 (p. 390)
0.55556
Solution to Exercise 6.409 (p. 390)
0.77778
Solution to Exercise 6.411 (p. 391)
0.00909
Solution to Exercise 6.413 (p. 391)
0.27273
Solution to Exercise 6.415 (p. 391)
0.45455
Solution to Exercise 6.417 (p. 391)
0.63636
Solution to Exercise 6.419 (p. 391)
0.81818
Solution to Exercise 6.421 (p. 391)
0.128
Solution to Exercise 6.423 (p. 391)
0.9746
Solution to Exercise 6.425 (p. 391)
0.0002
Solution to Exercise 6.427 (p. 391)
38.7347
Solution to Exercise 6.429 (p. 392)
\frac{15}{49}
Solution to Exercise 6.431 (p. 392)
3\frac{29}{50} \text{ or } 3.725
Solution to Exercise 6.433 (p. 393)
2.2 \text{ or } 2\frac{1}{5}
Solution to Exercise 6.434 (p. 393)
9.23
Solution to Exercise 6.435 (p. 393)
10
Solution to Exercise 6.436 (p. 393)
\frac{1}{25} \text{ or } 0.04
Solution to Exercise 6.437 (p. 394) 1
Solution to Exercise 6.439 (p. 394) 0.112
Solution to Exercise 6.441 (p. 394) 0.055
Solution to Exercise 6.443 (p. 394) 0.1276
Solution to Exercise 6.445 (p. 394) 0.7
Solution to Exercise 6.447 (p. 394) 9.4625
Solution to Exercise 6.449 (p. 394) 1.4075
Solution to Exercise 6.451 (p. 394) 0.1875
Solution to Exercise 6.453 (p. 394) 0.75
Solution to Exercise 6.455 (p. 394) 0.615
Solution to Exercise 6.457 (p. 394) 1.35
Solution to Exercise 6.459 (p. 395) 0.125
Solution to Exercise 6.461 (p. 395) 0.15
Solution to Exercise 6.463 (p. 395) 2.6
Solution to Exercise 6.465 (p. 395) yes
Solution to Exercise 6.467 (p. 395) 2^3 \cdot 5^2 \cdot 7 \cdot 11
Solution to Exercise 6.469 (p. 395) 0.302
Solution to Exercise 6.470 (p. 396) hundredths
Solution to Exercise 6.472 (p. 397) seven and two tenths
Solution to Exercise 6.474 (p. 397) sixteen and fifty-two hundredths
Solution to Exercise 6.476 (p. 397) five thousandths
Solution to Exercise 6.478 (p. 397) 9.12
Solution to Exercise 6.480 (p. 397) 56.0035
Solution to Exercise 6.482 (p. 397) 0.004081
Solution to Exercise 6.484 (p. 397) \frac{63}{100}
Solution to Exercise 6.486 (p. 397) \(\frac{11}{14} \)
Solution to Exercise 6.488 (p. 397) \(4 \frac{1}{2} \)
Solution to Exercise 6.490 (p. 398) 4.09
Solution to Exercise 6.492 (p. 398) 17
Solution to Exercise 6.494 (p. 398) 1
Solution to Exercise 6.496 (p. 398) 8.946
Solution to Exercise 6.498 (p. 398) 7.942
Solution to Exercise 6.500 (p. 398) 0.03
Solution to Exercise 6.502 (p. 398) 181,600.1
Solution to Exercise 6.504 (p. 398) 1.4
Solution to Exercise 6.506 (p. 398) 1.5079
Solution to Exercise 6.508 (p. 398) 2.372
Solution to Exercise 6.510 (p. 399) 0.000
Solution to Exercise 6.512 (p. 399) 0.12
Solution to Exercise 6.514 (p. 399) 2.702
Solution to Exercise 6.516 (p. 399) 0.43
Solution to Exercise 6.518 (p. 399) 9.371428
Solution to Exercise 6.520 (p. 399) 1.3
Solution to Exercise 6.522 (p. 399) 125.125125 (not repeating)
Solution to Exercise 6.524 (p. 399) 0.083
Solution to Exercise 6.526 (p. 400) 0.255
Solution to Exercise 6.528 (p. 400) 5.425
Solution to Exercise 6.530 (p. 400) 0.00343
Solution to Exercise 6.532 (p. 400) thousandth
Solution to Exercise 6.533 (p. 400) fifteen and thirty-six thousandths
Solution to Exercise 6.534 (p. 400) 81.12

Solution to Exercise 6.535 (p. 400) 0.003017

Solution to Exercise 6.536 (p. 400) \(\frac{30}{37} \)

Solution to Exercise 6.537 (p. 400) \(\frac{7}{5} \)

Solution to Exercise 6.538 (p. 400) 4.8

Solution to Exercise 6.539 (p. 400) 200

Solution to Exercise 6.540 (p. 400) 0.07

Solution to Exercise 6.541 (p. 400) 20.997

Solution to Exercise 6.542 (p. 401) 45.565

Solution to Exercise 6.543 (p. 401) 77.76

Solution to Exercise 6.544 (p. 401) 16

Solution to Exercise 6.545 (p. 401) 2.4

Solution to Exercise 6.546 (p. 401) 1.1256

Solution to Exercise 6.547 (p. 401) 0

Solution to Exercise 6.548 (p. 401) 6.18

Solution to Exercise 6.549 (p. 401) 0.055625

Solution to Exercise 6.550 (p. 401) 5.45

Solution to Exercise 6.551 (p. 401) \(\frac{27}{128} \) or 0.2109375
Chapter 7

Ratios and Rates

7.1 Objectives

After completing this chapter, you should

Ratios and Rates (Section 7.2)
- be able to distinguish between denominate and pure numbers and between ratios and rates

Proportions (Section 7.3)
- be able to describe proportions and find the missing factor in a proportion
- be able to work with proportions involving rates

Applications of Proportions (Section 7.4)
- solve proportion problems using the five-step method

Percent (Section 7.5)
- understand the relationship between ratios and percents
- be able to make conversions between fractions, decimals, and percents

Fractions of One Percent (Section 7.6)
- understand the meaning of a fraction of one percent
- be able to make conversions involving fractions of one percent

Applications of Percents (Section 7.7)
- be able to distinguish between base, percent, and percentage
- be able to find the percentage, the percent, and the base

7.2 Ratios and Rates

7.2.1 Section Overview
- Denominate Numbers and Pure Numbers
- Ratios and Rates

1This content is available online at <http://cnx.org/content/m18895/1.3/>.
2This content is available online at <http://cnx.org/content/m34980/1.2/>.
7.2.2 Denominate Numbers and Pure Numbers

Denominate Numbers, Like and Unlike Denominate Numbers
It is often necessary or convenient to compare two quantities. Denominate numbers are numbers together with some specified unit. If the units being compared are alike, the denominate numbers are called like denominate numbers. If units are not alike, the numbers are called unlike denominate numbers. Examples of denominate numbers are shown in the diagram:

Pure Numbers
Numbers that exist purely as numbers and do not represent amounts of quantities are called pure numbers. Examples of pure numbers are 8, 254, 0, \(21\frac{5}{8}, \frac{2}{7}\), and 0.07.

Numbers can be compared in two ways: subtraction and division.

Comparing Numbers by Subtraction and Division
Comparison of two numbers by subtraction indicates how much more one number is than another. Comparison by division indicates how many times larger or smaller one number is than another.

Comparing Pure or Like Denominate Numbers by Subtraction
Numbers can be compared by subtraction if and only if they both are like denominate numbers or both pure numbers.

7.2.2.1 Sample Set A

Example 7.1
Compare 8 miles and 3 miles by subtraction.

\[8 \text{ mile} - 3 \text{ miles} = 5 \text{ miles}\]

This means that 8 miles is 5 miles more than 3 miles.

Examples of use: I can now jog 8 miles whereas I used to jog only 3 miles. So, I can now jog 5 miles more than I used to.

Example 7.2
Compare 12 and 5 by subtraction.

\[12 - 5 = 7\]

This means that 12 is 7 more than 5.

Example 7.3
Comparing 8 miles and 5 gallons by subtraction makes no sense.

\[8 \text{ miles} - 5 \text{ gallons} = ?\]

Example 7.4
Compare 36 and 4 by division.

\[36 \div 4 = 9\]

This means that 36 is 9 times as large as 4. Recall that \(36 \div 4 = 9\) can be expressed as \(\frac{36}{4} = 9\).
Example 7.5

Compare 8 miles and 2 miles by division.

\[
\frac{8 \text{ miles}}{2 \text{ miles}} = 4
\]

This means that 8 miles is 4 times as large as 2 miles.

Example of use: I can jog 8 miles to your 2 miles. Or, for every 2 miles that you jog, I jog 8. So, I jog 4 times as many miles as you jog.

Notice that when like quantities are being compared by division, we drop the units. Another way of looking at this is that the units divide out (cancel).

Example 7.6

Compare 30 miles and 2 gallons by division.

\[
\frac{30 \text{ miles}}{2 \text{ gallons}} = \frac{15 \text{ miles}}{1 \text{ gallon}}
\]

Example of use: A particular car goes 30 miles on 2 gallons of gasoline. This is the same as getting 15 miles to 1 gallon of gasoline.

Notice that when the quantities being compared by division are unlike quantities, we do not drop the units.

7.2.2.2 Practice Set A

Make the following comparisons and interpret each one.

Exercise 7.1

Compare 10 diskettes to 2 diskettes by

(a) subtraction:

(b) division:

(Solution on p. 464.)

Exercise 7.2

Compare, if possible, 16 bananas and 2 bags by

(a) subtraction:

(b) division:

(Solution on p. 464.)

7.2.3 Ratios and Rates

Ratio

A comparison, by division, of two pure numbers or two like denominate numbers is a ratio.

The comparison by division of the pure numbers \(\frac{36}{4} \) and the like denominate numbers \(\frac{8 \text{ miles}}{2 \text{ miles}} \) are examples of ratios.

Rate

A comparison, by division, of two unlike denominate numbers is a rate.

The comparison by division of two unlike denominate numbers, such as

\[
\frac{55 \text{ miles}}{1 \text{ gallon}} \text{ and } \frac{40 \text{ dollars}}{5 \text{ tickets}}
\]
CHAPTER 7. RATIOS AND RATES

are examples of rates.

Let’s agree to represent two numbers (pure or denominate) with the letters \(a\) and \(b\). This means that we’re letting \(a\) represent some number and \(b\) represent some, perhaps different, number. With this agreement, we can write the ratio of the two numbers \(a\) and \(b\) as

\[
\frac{a}{b} \quad \text{or} \quad \frac{b}{a}
\]

The ratio \(\frac{a}{b}\) is read as "\(a\) to \(b\)."

The ratio \(\frac{b}{a}\) is read as "\(b\) to \(a\)."

Since a ratio or a rate can be expressed as a fraction, it may be reducible.

7.2.3.1 Sample Set B

Example 7.7

The ratio 30 to 2 can be expressed as \(\frac{30}{2}\). Reducing, we get \(\frac{15}{1}\).

The ratio 30 to 2 is equivalent to the ratio 15 to 1.

Example 7.8

The rate "4 televisions to 12 people" can be expressed as \(\frac{4\ \text{televisions}}{12\ \text{people}}\). The meaning of this rate is that "for every 4 televisions, there are 12 people."

Reducing, we get \(\frac{1\ \text{television}}{3\ \text{people}}\). The meaning of this rate is that "for every 1 television, there are 3 people."

Thus, the rate of "4 televisions to 12 people" is the same as the rate of "1 television to 3 people."

7.2.3.2 Practice Set B

Write the following ratios and rates as fractions.

Exercise 7.3

3 to 2 (Solution on p. 464.)

Exercise 7.4

1 to 9 (Solution on p. 464.)

Exercise 7.5

5 books to 4 people (Solution on p. 464.)

Exercise 7.6

120 miles to 2 hours (Solution on p. 464.)

Exercise 7.7

8 liters to 3 liters (Solution on p. 464.)

Write the following ratios and rates in the form "\(a\) to \(b\)." Reduce when necessary.

Exercise 7.8

\(\frac{7}{5}\) (Solution on p. 464.)

Exercise 7.9

\(\frac{1}{3}\) (Solution on p. 464.)

Exercise 7.10

\(\frac{25\ \text{miles}}{2\ \text{gallons}}\) (Solution on p. 464.)
7.2.4 Exercises

For the following 9 problems, complete the statements.

Exercise 7.13
Two numbers can be compared by subtraction if and only if ________________________.

Exercise 7.14
A comparison, by division, of two pure numbers or two like denominate numbers is called a ________________________.

Exercise 7.15
A comparison, by division, of two unlike denominate numbers is called a ________________________.

Exercise 7.16
\[
\frac{6}{17}
\]
is an example of a ________________________. (ratio/rate)

Exercise 7.17
\[
\frac{5}{17}
\]
is an example of a ________________________. (ratio/rate)

Exercise 7.18
\[
\frac{7 \text{ erasers}}{12 \text{ pencils}}
\]
is an example of a ________________________. (ratio/rate)

Exercise 7.19
\[
\frac{20 \text{ silver coins}}{35 \text{ gold coins}}
\]
is an example of a ________________________. (ratio/rate)

Exercise 7.20
\[
\frac{3 \text{ sprinklers}}{5 \text{ sprinklers}}
\]
is an example of a ________________________. (ratio/rate)

Exercise 7.21
\[
\frac{18 \text{ exhaust valves}}{11 \text{ exhaust valves}}
\]
is an example of a ________________________. (ratio/rate)

For the following 7 problems, write each ratio or rate as a verbal phrase.

Exercise 7.22
\[
\frac{8}{3}
\]
(Solution on p. 464.)

Exercise 7.23
\[
\frac{2}{3}
\]
(Solution on p. 464.)

Exercise 7.24
\[
\frac{8 \text{ feet}}{3 \text{ seconds}}
\]
(Solution on p. 464.)

Exercise 7.25
\[
\frac{29 \text{ miles}}{2 \text{ gallons}}
\]
(Solution on p. 464.)

Exercise 7.26
\[
\frac{30,000 \text{ stars}}{300 \text{ stars}}
\]
(Solution on p. 464.)

Exercise 7.27
\[
\frac{5 \text{ yards}}{2 \text{ yards}}
\]
(Solution on p. 464.)

Exercise 7.28
\[
\frac{164 \text{ trees}}{28 \text{ trees}}
\]
(Solution on p. 464.)

For the following problems, write the simplified fractional form of each ratio or rate.

Exercise 7.29
12 to 5
(Solution on p. 464.)
Exercise 7.30
81 to 19

Exercise 7.31
42 plants to 5 homes (Solution on p. 464.)

Exercise 7.32
8 books to 7 desks

Exercise 7.33
16 pints to 1 quart (Solution on p. 464.)

Exercise 7.34
4 quarts to 1 gallon

Exercise 7.35
2.54 cm to 1 in (Solution on p. 465.)

Exercise 7.36
80 tables to 18 tables

Exercise 7.37
25 cars to 10 cars (Solution on p. 465.)

Exercise 7.38
37 wins to 16 losses

Exercise 7.39
105 hits to 315 at bats (Solution on p. 465.)

Exercise 7.40
510 miles to 22 gallons (Solution on p. 465.)

Exercise 7.41
1,042 characters to 1 page

Exercise 7.42
1,245 pages to 2 books

7.2.4.1 Exercises for Review

Exercise 7.43
(Section 4.3) Convert $\frac{16}{3}$ to a mixed number. (Solution on p. 465.)

Exercise 7.44
(Section 4.7) $1\frac{5}{7}$ of $2\frac{1}{4}$ is what number?

Exercise 7.45
(Section 5.3) Find the difference. $\frac{11}{28} - \frac{7}{45}$. (Solution on p. 465.)

Exercise 7.46
(Section 6.8) Perform the division. If no repeating patterns seems to exist, round the quotient to three decimal places: $22.35 \div 17$ (Solution on p. 465.)

Exercise 7.47
(Section 6.10) Find the value of $1.85 + \frac{3}{8} \cdot 4.1$ (Solution on p. 465.)
7.3 Proportions

7.3.1 Section Overview

- Ratios, Rates, and Proportions
- Finding the Missing Factor in a Proportion
- Proportions Involving Rates

7.3.2 Ratios, Rates, and Proportions

Ratio, Rate
We have defined a \textit{ratio} as a comparison, by division, of two pure numbers or two \textit{like} denominate numbers. We have defined a \textit{rate} as a comparison, by division, of two \textit{unlike} denominate numbers.

Proportion
A \textit{proportion} is a statement that two ratios or rates are equal. The following two examples show how to read proportions.

\[
\begin{align*}
\frac{3}{4} &= \frac{6}{8} \\
\frac{25 \text{ miles}}{1 \text{ gallon}} &= \frac{50 \text{ miles}}{2 \text{ gallons}}
\end{align*}
\]

3 is to 4 as 6 is to 8
25 miles is to 1 gallon as 50 miles is to 2 gallons

7.3.2.1 Sample Set A

Write or read each proportion.

Example 7.9
\[
\frac{3}{5} = \frac{12}{20}
\]
3 is to 5 as 12 is to 20

Example 7.10
\[
\frac{10 \text{ items}}{5 \text{ dollars}} = \frac{2 \text{ items}}{1 \text{ dollar}}
\]
10 items is to 5 dollars as 2 items is to 1 dollar

Example 7.11
\[
\frac{8}{12} = \frac{16}{24}
\]
8 is to 12 as 16 is to 24.

Example 7.12
\[
\frac{50}{1} = \frac{300}{6}
\]
50 milligrams of vitamin C is to 1 tablet as 300 milligrams of vitamin C is to 6 tablets.

\[^3\text{This content is available online at }<\text{http://cnx.org/content/m34981/1.2/>}.\]
7.3.2.2 Practice Set A

Write or read each proportion.

Exercise 7.48
\[\frac{3}{8} = \frac{9}{16} \]
(Solution on p. 465.)

Exercise 7.49
\[\frac{2 \text{ people}}{1 \text{ window}} = \frac{10 \text{ people}}{5 \text{ windows}} \]
(Solution on p. 465.)

Exercise 7.50
15 is to 4 as 75 is to 20.
(Solution on p. 465.)

Exercise 7.51
2 plates are to 1 tray as 20 plates are to 10 trays.

7.3.3 Finding the Missing Factor in a Proportion

Many practical problems can be solved by writing the given information as proportions. Such proportions will be composed of three specified numbers and one unknown number. It is customary to let a letter, such as \(x \), represent the unknown number. An example of such a proportion is

\[\frac{x}{4} = \frac{20}{16} \]

This proportion is read as "\(x \) is to 4 as 20 is to 16."

There is a method of solving these proportions that is based on the equality of fractions. Recall that two fractions are equivalent if and only if their cross products are equal. For example,

\[\frac{3}{4} = \frac{6}{8} \quad \text{since} \quad \frac{3 \times 6}{4 \times 8} = \frac{3 \times 8}{4 \times 8} = \frac{24}{24} \]

Notice that in a proportion that contains three specified numbers and a letter representing an unknown quantity, that regardless of where the letter appears, the following situation always occurs.

\[\text{(number)} \cdot \text{(letter)} = \text{(number)} \cdot \text{(number)} \]

We recognize this as a multiplication statement. Specifically, it is a missing factor statement. (See Section 4.7 for a discussion of multiplication statements.) For example,

\[\frac{x}{4} = \frac{20}{16} \quad \text{means that} \quad 16 \cdot x = 4 \cdot 20 \]
\[\frac{4}{x} = \frac{16}{20} \quad \text{means that} \quad 4 \cdot 20 = 16 \cdot x \]
\[\frac{5}{4} = \frac{x}{16} \quad \text{means that} \quad 5 \cdot 16 = 4 \cdot x \]
\[\frac{5}{4} = \frac{20}{x} \quad \text{means that} \quad 5 \cdot x = 4 \cdot 20 \]

Each of these statements is a multiplication statement. Specifically, each is a missing factor statement. (The letter used here is \(x \), whereas \(M \) was used in Section 4.7.)

Finding the Missing Factor in a Proportion

The missing factor in a missing factor statement can be determined by dividing the product by the known factor, that is, if \(x \) represents the missing factor, then

\[x = \frac{\text{(product)}}{\text{(known factor)}} \]
7.3.3.1 Sample Set B

Find the unknown number in each proportion.

Example 7.13
\[
\frac{5}{4} = \frac{20}{16} \quad \text{Find the cross product.}
\]

\[
16 \cdot x = 20 \cdot 4
\]
\[
16 \cdot x = 80 \quad \text{Divide the product 80 by the known factor 16.}
\]
\[
x = \frac{80}{16}
\]
\[
x = 5 \quad \text{The unknown number is 5.}
\]

This means that \(\frac{5}{4} = \frac{20}{16} \), or 5 is to 4 as 20 is to 16.

Example 7.14
\[
\frac{5}{x} = \frac{20}{16} \quad \text{Find the cross product.}
\]

\[
5 \cdot 16 = 20 \cdot x
\]
\[
80 = 20 \cdot x \quad \text{Divide the product 80 by the known factor 20.}
\]
\[
\frac{80}{20} = x
\]
\[
x = 4 \quad \text{The unknown number is 4.}
\]

This means that \(\frac{5}{x} = \frac{20}{16} \), or 5 is to 4 as 20 is to 6.

Example 7.15
\[
\frac{16}{3} = \frac{64}{x} \quad \text{Find the cross product.}
\]

\[
16 \cdot x = 64 \cdot 3
\]
\[
16 \cdot x = 192 \quad \text{Divide 192 by 16.}
\]
\[
x = \frac{192}{16}
\]
\[
x = 12 \quad \text{The unknown number is 12.}
\]

The means that \(\frac{16}{3} = \frac{64}{x} \), or 16 is to 3 as 64 is to 12.

Example 7.16
\[
\frac{9}{8} = \frac{9}{40} \quad \text{Find the cross products.}
\]

\[
9 \cdot 40 = 8 \cdot x
\]
\[
360 = 8 \cdot x \quad \text{Divide 360 by 8.}
\]
\[
\frac{360}{8} = x
\]
\[
45 = x \quad \text{The unknown number is 45.}
\]

7.3.3.2 Practice Set B

Find the unknown number in each proportion.

Exercise 7.52
\[
\frac{x}{8} = \frac{12}{32} \quad (Solution \text{ on p. 465,})
\]
7.3.4 Proportions Involving Rates

Recall that a rate is a comparison, by division, of unlike denominate numbers. We must be careful when setting up proportions that involve rates. The form is important. For example, if a rate involves two types of units, say unit type 1 and unit type 2, we can write

\[
\frac{\text{unit type 1}}{\text{unit type 2}} = \frac{\text{unit type 2}}{\text{unit type 1}}
\]

or

\[
\text{unit type 1} \quad \text{unit type 1} \\
\text{unit type 2} \quad \text{unit type 2}
\]

Same units appear on same side.

Both cross products produce a statement of the type

\[(\text{unit type 1}) \cdot (\text{unit type 2}) = (\text{unit type 1}) \cdot (\text{unit type 2})\]

which we take to mean the comparison

\[
\frac{(\text{unit type 1})}{\text{Comparison of type 1}} \quad \frac{\text{is to}}{\text{Comparison of type 1}} \quad \frac{(\text{unit type 2})}{\text{is to}} \quad \frac{\text{with type 2}}{\text{with type 2}}
\]

Same overall type

Examples of correctly expressed proportions are the following:

1. \[
\frac{\text{mi}}{\text{hr}} = \frac{\text{mi}}{\text{hr}} \quad \text{Same units appear on the same side}
\]

2. \[
\frac{\text{mi}}{\text{hr}} = \frac{\text{mi}}{\text{hr}} \quad \text{Same units appear on the same side}
\]

However, if we write the same type of units on different sides, such as,

\[
\frac{\text{unit type 1}}{\text{unit type 2}} = \frac{\text{unit type 2}}{\text{unit type 1}}
\]

the cross product produces a statement of the form...
We can see that this is an incorrect comparison by observing the following example: It is incorrect to write
\[
\frac{2 \text{ books}}{3 \text{ poles}} = \frac{6 \text{ poles}}{4 \text{ books}}
\]
for two reasons.

1. The cross product is numerically wrong: \((2 \cdot 4 \neq 3 \cdot 6)\).
2. The cross product produces the statement "hooks are to hooks as poles are to poles," which makes no sense.

7.3.5 Exercises

Exercise 7.56
A statement that two ratios or \(\frac{3}{4}\) are equal is called a \(\frac{15}{20}\).

For the following 9 problems, write each proportion in fractional form.

- **Exercise 7.57**
 3 is to 7 as 18 is to 42.

- **Exercise 7.58**
 1 is to 11 as 3 is to 33.

- **Exercise 7.59**
 9 is to 14 as 27 is to 42.

- **Exercise 7.60**
 6 is to 90 as 3 is to 45.

- **Exercise 7.61**
 5 liters is to 1 bottle as 20 liters is to 4 bottles.

- **Exercise 7.62**
 18 grams of cobalt is to 10 grams of silver as 36 grams of cobalt is to 20 grams of silver.

- **Exercise 7.63**
 4 cups of water is to 1 cup of sugar as 32 cups of water is to 8 cups of sugar.

- **Exercise 7.64**
 3 people absent is to 31 people present as 15 people absent is to 155 people present.

- **Exercise 7.65**
 6 dollars is to 1 hour as 90 dollars is to 15 hours.

For the following 10 problems, write each proportion as a sentence.

- **Exercise 7.66**
 \(\frac{3}{4} = \frac{15}{20}\).

- **Exercise 7.67**
 \(\frac{1}{5} = \frac{5}{30}\).

- **Exercise 7.68**
 \(\frac{3 \text{ joggers}}{100 \text{ feet}} = \frac{6 \text{ joggers}}{200 \text{ feet}}\).

- **Exercise 7.69**
 \(\frac{12 \text{ marshmallows}}{3 \text{ sticks}} = \frac{36 \text{ marshmallows}}{9 \text{ sticks}}\).
Exercise 7.70
\[\frac{40 \text{ miles}}{80 \text{ miles}} = \frac{2 \text{ gallons}}{4 \text{ gallons}} \]

Exercise 7.71
\[\frac{4 \text{ couches}}{10 \text{ couches}} = \frac{2 \text{ houses}}{5 \text{ houses}} \]

Exercise 7.72
\[\frac{1 \text{ person}}{1 \text{ job}} = \frac{8 \text{ people}}{8 \text{ jobs}} \]

Exercise 7.73
\[\frac{1 \text{ popsicle}}{2 \text{ children}} = \frac{2 \text{ popsicle}}{1 \text{ child}} \]

Exercise 7.74
\[\frac{2,000 \text{ pounds}}{1 \text{ ton}} = \frac{60,000 \text{ pounds}}{30 \text{ tons}} \]

Exercise 7.75
\[\frac{1 \text{ table}}{5 \text{ tables}} = \frac{2 \text{ people}}{10 \text{ people}} \]

For the following 10 problems, solve each proportion.

Exercise 7.76
\[\frac{x}{5} = \frac{6}{15} \]

Exercise 7.77
\[\frac{x}{10} = \frac{28}{40} \]

Exercise 7.78
\[\frac{5}{x} = \frac{10}{16} \]

Exercise 7.79
\[\frac{13}{x} = \frac{29}{60} \]

Exercise 7.80
\[\frac{1}{3} = \frac{x}{24} \]

Exercise 7.81
\[\frac{\frac{7}{12}}{\frac{7}{24}} = \frac{x}{60} \]

Exercise 7.82
\[\frac{\frac{8}{3}}{\frac{72}{x}} \]

Exercise 7.83
\[\frac{\frac{16}{1}}{\frac{48}{x}} \]

Exercise 7.84
\[\frac{\frac{x}{25}}{\frac{200}{125}} \]

Exercise 7.85
\[\frac{\frac{65}{50}}{\frac{x}{60}} \]

For the following 5 problems, express each sentence as a proportion then solve the proportion.

Exercise 7.86
\[5 \text{ hats are to } 4 \text{ coats as } x \text{ hats are to } 24 \text{ coats.} \]

Exercise 7.87
\[x \text{ cushions are to } 2 \text{ sofas as } 24 \text{ cushions are to } 16 \text{ sofas.} \]

Exercise 7.88
\[1 \text{ spacecraft is to } 7 \text{ astronauts as } 5 \text{ spacecraft are to } x \text{ astronauts.} \]

Exercise 7.89
\[56 \text{ microchips are to } x \text{ circuit boards as } 168 \text{ microchips are to } 3 \text{ circuit boards.} \]

Exercise 7.90
\[18 \text{ calculators are to } 90 \text{ calculators as } x \text{ students are to } 150 \text{ students.} \]

Exercise 7.91
\[x \text{ dollars are to } $40,000 \text{ as } 2 \text{ sacks are to } 1 \text{ sack.} \]
Indicate whether the proportion is true or false.

Exercise 7.92
\[
\frac{3}{15} = \frac{12}{64}
\]
(Solution on p. 466.)

Exercise 7.93
\[
\frac{2}{15} = \frac{10}{75}
\]
(Solution on p. 466.)

Exercise 7.94
\[
\frac{1}{9} = \frac{3}{27}
\]
(Solution on p. 466.)

Exercise 7.95
\[
6 \text{ knives} : 7 \text{ forks} = 12 \text{ knives} : 15 \text{ forks}
\]
(Solution on p. 466.)

Exercise 7.96
\[
\frac{33 \text{ miles}}{1 \text{ gallon}} = \frac{99 \text{ miles}}{3 \text{ gallons}}
\]
(Solution on p. 466.)

Exercise 7.97
\[
\frac{320 \text{ feet}}{6 \text{ seconds}} = \frac{65 \text{ feet}}{1 \text{ second}}
\]
(Solution on p. 466.)

Exercise 7.98
\[
\frac{35 \text{ students}}{70 \text{ students}} = \frac{1 \text{ class}}{2 \text{ classes}}
\]
(Solution on p. 466.)

Exercise 7.99
\[
\frac{9 \text{ ml chloride}}{45 \text{ ml chloride}} = \frac{1 \text{ test tube}}{7 \text{ test tubes}}
\]

7.3.5.1 Exercises for Review

Exercise 7.100
(Section 1.7) Use the number 5 and 7 to illustrate the commutative property of addition.

Exercise 7.101
(Section 2.7) Use the numbers 5 and 7 to illustrate the commutative property of multiplication.

Exercise 7.102
(Section 5.3) Find the difference. \(\frac{5}{11} - \frac{3}{22} \).

Exercise 7.103
(Section 6.6) Find the product. \(8.06129 \cdot 1,000 \).

Exercise 7.104
(Section 7.2) Write the simplified fractional form of the rate “sixteen sentences to two paragraphs.”

7.4 Applications of Proportions*

7.4.1 Section Overview

- The Five-Step Method
- Problem Solving

*This content is available online at <http://cnx.org/content/m34982/1.2/>.
7.4.2 The Five-Step Method

In Section 7.3 we noted that many practical problems can be solved by writing the given information as proportions. Such proportions will be composed of three specified numbers and one unknown number represented by a letter.

The first and most important part of solving a proportion problem is to determine, by careful reading, what the unknown quantity is and to represent it with some letter.

The Five-Step Method

The five-step method for solving proportion problems:

1. By careful reading, determine what the unknown quantity is and represent it with some letter. There will be only one unknown in a problem.
2. Identify the three specified numbers.
3. Determine which comparisons are to be made and set up the proportion.
4. Solve the proportion (using the methods of Section 7.3).
5. Interpret and write a conclusion in a sentence with the appropriate units of measure.

Step 1 is extremely important. Many problems go unsolved because time is not taken to establish what quantity is to be found.

When solving an applied problem, always begin by determining the unknown quantity and representing it with a letter.

7.4.3 Problem Solving

7.4.3.1 Sample Set A

Example 7.17

On a map, 2 inches represents 25 miles. How many miles are represented by 8 inches?

Step 1: The unknown quantity is miles.
Let \(x \) = number of miles represented by 8 inches

Step 2: The three specified numbers are
- 2 inches
- 25 miles
- 8 inches

Proportions involving ratios and rates are more readily solved by suspending the units while doing the computations.

\[
\frac{2}{25} = \frac{x}{8}
\]

Step 4: \[
\frac{2}{25} = \frac{x}{8}
\]
Perform the cross multiplication.

\[
2 \cdot x = 8 \cdot 25
\]

\[
2 \cdot x = 200 \quad \text{Divide 200 by 2.}
\]

\[
x = \frac{200}{2}
\]

\[
x = 100
\]

In step 1, we let \(x \) represent the number of miles. So, \(x \) represents 100 miles.

Step 5: If 2 inches represents 25 miles, then 8 inches represents 100 miles.

Try Exercise 7.105 in Section 7.4.3.2 (Practice Set A).
Example 7.18

An acid solution is composed of 7 parts water to 2 parts acid. How many parts of water are there in a solution composed of 20 parts acid?

Step 1: The unknown quantity is the number of parts of water. Let \(n \) = number of parts of water.

Step 2: The three specified numbers are
- 7 parts water
- 2 parts acid
- 20 parts acid

Step 3: The comparisons are
- 7 parts water to 2 parts acid \(\rightarrow \frac{7}{2} \)
- \(n \) parts water to 20 parts acid \(\rightarrow \frac{n}{20} \)

\[\frac{7}{2} = \frac{n}{20} \]

Step 4: Perform the cross multiplication.

\[7 \cdot 20 = 2 \cdot n \]

\[140 = 2 \cdot n \quad \text{Divide 140 by 2.} \]

\[\frac{140}{2} = n \]

\[70 = n \]

In step 1 we let \(n \) represent the number of parts of water. So, \(n \) represents 70 parts of water.

Step 5: 7 parts water to 2 parts acid indicates 70 parts water to 20 parts acid.

Try Problem 7.106 in Section 7.4.3.2 (Practice Set A).

Example 7.19

A 5-foot girl casts a \(\frac{3}{4} \)-foot shadow at a particular time of the day. How tall is a person who casts a 3-foot shadow at the same time of the day?

Step 1: The unknown quantity is the height of the person. Let \(h \) = height of the person.

Step 2: The three specified numbers are
- 5 feet (height of girl)
- \(\frac{3}{4} \) feet (length of shadow)
- 3 feet (length of shadow)

Step 3: The comparisons are
- 5-foot girl is to \(\frac{3}{4} \)-foot shadow \(\rightarrow \frac{5}{\frac{3}{4}} \)
- \(h \)-foot person is to 3-foot shadow \(\rightarrow \frac{h}{3} \)

\[\frac{5}{\frac{3}{4}} = \frac{h}{3} \]

Step 4: Perform the cross multiplication.

\[5 \cdot 3 = \frac{3}{4} \cdot h \]

\[15 = \frac{10}{3} \cdot h \quad \text{Divide 15 by } \frac{10}{3} \]

\[\frac{15}{\frac{10}{3}} = h \]

\[\frac{3}{2} = \frac{3}{10} \cdot h \]

\[\frac{9}{2} = h \]

\[h = 4 \frac{1}{2} \]

Step 5: A person who casts a 3-foot shadow at this particular time of the day is \(4 \frac{1}{2} \) feet tall.

Try Exercise 7.107 in Section 7.4.3.2 (Practice Set A).
Example 7.20

The ratio of men to women in a particular town is 3 to 5. How many women are there in the town if there are 19,200 men in town?

Step 1: The unknown quantity is the number of women in town. Let \(x \) = number of women in town.

Step 2: The three specified numbers are

\[
\frac{3}{5} = \frac{19,200}{1} \text{ men to } x \text{ women}
\]

Step 3: The comparisons are 3 men to 5 women → \(\frac{3}{5} \)

\[
19,200 \text{ men to } x \text{ women} \rightarrow \frac{19,200}{x}
\]

Step 4:

\[
\frac{3}{5} = \frac{19,200}{x}
\]

\[
3 \cdot x = 19,200 \cdot 5
\]

\[
3 \cdot x = 96,000
\]

\[
x = \frac{96,000}{3}
\]

\[
x = 32,000
\]

Step 5: There are 32,000 women in town.

Example 7.21

The rate of wins to losses of a particular baseball team is \(\frac{9}{2} \). How many games did this team lose if they won 63 games?

Step 1: The unknown quantity is the number of games lost. Let \(n \) = number of games lost.

Step 2: Since \(\frac{9}{2} \rightarrow \) means 9 wins to 2 losses, the three specified numbers are

- 9 (wins)
- 2 (losses)
- 63 (wins)

Step 3: The comparisons are

- 9 wins to 2 losses → \(\frac{9}{2} \)
- 63 wins to \(n \) losses → \(\frac{63}{n} \)

Step 4:

\[
\frac{9}{2} = \frac{63}{n}
\]

\[
9 \cdot n = 2 \cdot 63
\]

\[
9 \cdot n = 126
\]

\[
n = \frac{126}{9}
\]

\[
n = 14
\]

Step 5: This team had 14 losses.

Try Exercise 7.108 in Section 7.4.3.2 (Practice Set A).

7.4.3.2 Practice Set A

Solve each problem.

Exercise 7.105

On a map, 3 inches represents 100 miles. How many miles are represented by 15 inches?
Step 1:
Step 2:
Step 3:
Step 4:
Step 5:

Exercise 7.106 (Solution on p. 466.)
An alcohol solution is composed of 14 parts water to 3 parts alcohol. How many parts of alcohol are in a solution that is composed of 112 parts water?

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:

Exercise 7.107 (Solution on p. 466.)
A 5\frac{1}{2}-foot woman casts a 7-foot shadow at a particular time of the day. How long of a shadow does a 3-foot boy cast at that same time of day?

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:

Exercise 7.108 (Solution on p. 466.)
The rate of houseplants to outside plants at a nursery is 4 to 9. If there are 384 houseplants in the nursery, how many outside plants are there?

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:

Exercise 7.109 (Solution on p. 466.)
The odds for a particular event occurring are 11 to 2. (For every 11 times the event does occur, it will not occur 2 times.) How many times does the event occur if it does not occur 18 times?

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:

Exercise 7.110 (Solution on p. 466.)
The rate of passing grades to failing grades in a particular chemistry class is \frac{7}{2}. If there are 21 passing grades, how many failing grades are there?

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:
7.4.4 Exercises

For the following 20 problems, use the five-step method to solve each problem.

Exercise 7.111 (Solution on p. 466.)
On a map, 4 inches represents 50 miles. How many inches represent 300 miles?

Exercise 7.112
On a blueprint for a house, 2 inches represents 3 feet. How many inches represent 10 feet?

Exercise 7.113 (Solution on p. 466.)
A model is built to $\frac{2}{15}$ scale. If a particular part of the model measures 6 inches, how long is the actual structure?

Exercise 7.114
An acid solution is composed of 5 parts acid to 9 parts of water. How many parts of acid are there in a solution that contains 108 parts of water?

Exercise 7.115 (Solution on p. 466.)
An alloy contains 3 parts of nickel to 4 parts of silver. How much nickel is in an alloy that contains 44 parts of silver?

Exercise 7.116
The ratio of water to salt in a test tube is 5 to 2. How much salt is in a test tube that contains 35 ml of water?

Exercise 7.117 (Solution on p. 467.)
The ratio of sulfur to air in a container is $\frac{4}{45}$. How many ml of air are there in a container that contains 207 ml of sulfur?

Exercise 7.118
A 6-foot man casts a 4-foot shadow at a particular time of the day. How tall is a person that casts a 3-foot shadow at that same time of the day?

Exercise 7.119 (Solution on p. 467.)
A 5$\frac{1}{2}$-foot woman casts a 1$\frac{1}{2}$-foot shadow at a particular time of the day. How long a shadow does her 3$\frac{1}{2}$-foot niece cast at the same time of the day?

Exercise 7.120
A man, who is 6 feet tall, casts a 7-foot shadow at a particular time of the day. How tall is a tree that casts an 84-foot shadow at that same time of the day?

Exercise 7.121 (Solution on p. 467.)
The ratio of books to shelves in a bookstore is 350 to 3. How many books are there in a store that has 105 shelves?

Exercise 7.122
The ratio of algebra classes to geometry classes at a particular community college is 13 to 2. How many geometry classes does this college offer if it offers 13 algebra classes?

Exercise 7.123 (Solution on p. 467.)
The odds for a particular event to occur are 16 to 3. If this event occurs 64 times, how many times would you predict it does not occur?

Exercise 7.124
The odds against a particular event occurring are 8 to 3. If this event does occur 64 times, how many times would you predict it does not occur?

Exercise 7.125 (Solution on p. 467.)
The owner of a stationery store knows that a 1-inch stack of paper contains 300 sheets. The owner wishes to stack the paper in units of 550 sheets. How many inches tall should each stack be?
Exercise 7.126
A recipe that requires 6 cups of sugar for 15 servings is to be used to make 45 servings. How much sugar will be needed?

Exercise 7.127 (Solution on p. 467.)
A pond loses $7\frac{1}{2}$ gallons of water every 2 days due to evaporation. How many gallons of water are lost, due to evaporation, in $\frac{1}{2}$ day?

Exercise 7.128
A photograph that measures 3 inches wide and $4\frac{1}{2}$ inches high is to be enlarged so that it is 5 inches wide. How high will it be?

Exercise 7.129 (Solution on p. 467.)
If 25 pounds of fertilizer covers 400 square feet of grass, how many pounds will it take to cover 500 square feet of grass?

Exercise 7.130
Every $1\frac{1}{2}$ teaspoons of a particular multiple vitamin, in granular form, contains 0.65 the minimum daily requirement of vitamin C. How many teaspoons of this vitamin are required to supply 1.25 the minimum daily requirement?

7.4.4.1 Exercises for Review

Exercise 7.131 (Solution on p. 467.)
(Section 2.2) Find the product, $818 \cdot 0$.

Exercise 7.132
(Section 4.4) Determine the missing numerator: $\frac{8}{15} = \frac{N}{90}$.

Exercise 7.133 (Solution on p. 467.)
(Section 5.6) Find the value of $\frac{\frac{3}{15} + \frac{4}{20}}{\frac{1}{20}}$.

Exercise 7.134
(Section 6.5) Subtract 0.249 from the sum of 0.344 and 0.612.

Exercise 7.135 (Solution on p. 467.)
(Section 7.3) Solve the proportion: $\frac{6}{x} = \frac{26}{50}$.

7.5 Percent\(^5\)

7.5.1 Section Overview
- Ratios and Percents
- The Relationship Between Fractions, Decimals, and Percents – Making Conversions

\(^5\)This content is available online at <http://cnx.org/content/m34983/1.2/>.
7.5.2 Ratios and Percents

Ratio, Percent

We defined a *ratio* as a comparison, by division, of two pure numbers or two like denominate numbers. A most convenient number to compare numbers to is 100. Ratios in which one number is compared to 100 are called *percents*. The word *percent* comes from the Latin word "per centum." The word "per" means "for each" or "for every," and the word "centum" means "hundred." Thus, we have the following definition.

Percent means "for each hundred," or "for every hundred."

The symbol % is used to represent the word percent.

7.5.2.1 Sample Set A

Example 7.22

The ratio 26 to 100 can be written as 26%. We read 26% as "twenty-six percent."

Example 7.23

The ratio \(\frac{165}{100} \) can be written as 165%.

We read 165% as "one hundred sixty-five percent."

Example 7.24

The percent 38% can be written as the fraction \(\frac{38}{100} \).

Example 7.25

The percent 210% can be written as the fraction \(\frac{210}{100} \) or the mixed number \(2 \frac{10}{100} \) or 2.1.

Example 7.26

Since one dollar is 100 cents, 25 cents is \(\frac{25}{100} \) of a dollar. This implies that 25 cents is 25% of one dollar.

7.5.2.2 Practice Set A

Exercise 7.136

Write the ratio 16 to 100 as a percent. (Solution on p. 467.)

Exercise 7.137

Write the ratio 195 to 100 as a percent. (Solution on p. 467.)

Exercise 7.138

Write the percent 83% as a ratio in fractional form. (Solution on p. 467.)

Exercise 7.139

Write the percent 362% as a ratio in fractional form. (Solution on p. 467.)

7.5.3 The Relationship Between Fractions, Decimals, and Percents – Making Conversions

Since a percent is a ratio, and a ratio can be written as a fraction, and a fraction can be written as a decimal, any of these forms can be converted to any other.

Before we proceed to the problems in Section 7.5.3.1 (Sample Set B) and Section 7.5.3.2 (Practice Set B), let’s summarize the conversion techniques.
Conversion Techniques – Fractions, Decimals, Percents
To Convert a Fraction	To Convert a Decimal	To Convert a Percent
To a decimal: Divide the numerator by the denominator | To a fraction: Read the decimal and reduce the resulting fraction | To a decimal: Move the decimal point 2 places to the left and drop the % symbol
To a percent: Convert the fraction first to a decimal, then move the decimal point 2 places to the right and affix the % symbol | To a percent: Move the decimal point 2 places to the right and affix the % symbol | To a fraction: Drop the % sign and write the number "over" 100. Reduce, if possible.

Table 7.1

7.5.3.1 Sample Set B

Example 7.27
Convert 12% to a decimal.

\[12\% = \frac{12}{100} = 0.12 \]

Note that the % symbol is dropped, and the decimal point moves 2 places to the left.

Example 7.28
Convert 0.75 to a percent.

\[0.75 = \frac{75}{100} = 75\% \]

Note that the % symbol is affixed, and the decimal point moves 2 units to the right.

Example 7.29
Convert \(\frac{3}{5} \) to a percent.

We see in Example 7.28 that we can convert a decimal to a percent. We also know that we can convert a fraction to a decimal. Thus, we can see that if we first convert the fraction to a decimal, we can then convert the decimal to a percent.

\[\frac{3}{5} \rightarrow 0.6 \quad \text{or} \quad \frac{3}{5} = 0.6 = \frac{60}{100} = 60\% \]

Example 7.30
Convert 42% to a fraction.

\[42\% = \frac{42}{100} = \frac{21}{50} \]

or
42% = 0.42 = \frac{42}{100} = \frac{21}{50}

7.5.3.2 Practice Set B

Exercise 7.140
Convert 21% to a decimal.
(Solution on p. 467.)

Exercise 7.141
Convert 461% to a decimal.
(Solution on p. 467.)

Exercise 7.142
Convert 0.55 to a percent.
(Solution on p. 467.)

Exercise 7.143
Convert 5.64 to a percent.
(Solution on p. 467.)

Exercise 7.144
Convert \frac{3}{20} to a percent.
(Solution on p. 467.)

Exercise 7.145
Convert \frac{11}{8} to a percent.
(Solution on p. 467.)

Exercise 7.146
Convert \frac{3}{11} to a percent.
(Solution on p. 467.)

7.5.4 Exercises

For the following 12 problems, convert each decimal to a percent.

Exercise 7.147
0.25
(Solution on p. 467.)

Exercise 7.148
0.36
(Solution on p. 467.)

Exercise 7.149
0.48
(Solution on p. 467.)

Exercise 7.150
0.343
(Solution on p. 467.)

Exercise 7.151
0.771
(Solution on p. 467.)

Exercise 7.152
1.42
(Solution on p. 467.)

Exercise 7.153
2.58
(Solution on p. 467.)

Exercise 7.154
4.976
(Solution on p. 467.)

Exercise 7.155
16.1814
(Solution on p. 468.)

Exercise 7.156
533.01
(Solution on p. 468.)

Exercise 7.157
2
(Solution on p. 468.)
Exercise 7.158

14

For the following 10 problems, convert each percent to a decimal.

Exercise 7.159
15%
(Solution on p. 468.)

Exercise 7.160
43%

Exercise 7.161
16.2%
(Solution on p. 468.)

Exercise 7.162
53.8%

Exercise 7.163
5.05%
(Solution on p. 468.)

Exercise 7.164
6.11%

Exercise 7.165
0.78%
(Solution on p. 468.)

Exercise 7.166
0.88%

Exercise 7.167
0.09%
(Solution on p. 468.)

Exercise 7.168
0.001%

For the following 14 problems, convert each fraction to a percent.

Exercise 7.169
\(\frac{1}{5} \)
(Solution on p. 468.)

Exercise 7.170
\(\frac{2}{5} \)

Exercise 7.171
\(\frac{5}{8} \)
(Solution on p. 468.)

Exercise 7.172
\(\frac{1}{16} \)

Exercise 7.173
\(\frac{7}{25} \)
(Solution on p. 468.)

Exercise 7.174
\(\frac{18}{45} \)

Exercise 7.175
\(\frac{27}{55} \)
(Solution on p. 468.)

Exercise 7.176
\(\frac{15}{8} \)

Exercise 7.177
\(\frac{41}{25} \)
(Solution on p. 468.)

Exercise 7.178
6 \(\frac{1}{4} \)

Exercise 7.179
9 \(\frac{9}{20} \)
(Solution on p. 468.)
Exercise 7.180
\[\frac{1}{20} \]

Exercise 7.181
\[\frac{6}{11} \]

Exercise 7.182
\[\frac{35}{27} \]

For the following 14 problems, convert each percent to a fraction.

Exercise 7.183
80%
(Solution on p. 468.)

Exercise 7.184
60%
(Solution on p. 468.)

Exercise 7.185
25%
(Solution on p. 468.)

Exercise 7.186
75%
(Solution on p. 468.)

Exercise 7.187
65%
(Solution on p. 468.)

Exercise 7.188
18%
(Solution on p. 468.)

Exercise 7.189
12.5%
(Solution on p. 468.)

Exercise 7.190
37.5%
(Solution on p. 468.)

Exercise 7.191
51.2.5%
(Solution on p. 468.)

Exercise 7.192
93.7.5%
(Solution on p. 468.)

Exercise 7.193
9.9%
(Solution on p. 468.)

Exercise 7.194
55.5%
(Solution on p. 468.)

Exercise 7.195
22.2%
(Solution on p. 468.)

Exercise 7.196
63.5%
(Solution on p. 468.)

7.5.4.1 Exercises for Review

Exercise 7.197
(Section 4.6) Find the quotient. \[\frac{40}{34} \div 8 \frac{7}{21} \].
(Solution on p. 468.)

Exercise 7.198
(Section 4.7) \[\frac{9}{8} \] of what number is \[2 \frac{3}{5} \].
(Solution on p. 468.)

Exercise 7.199
(Section 5.3) Find the value of \[\frac{28}{15} + \frac{7}{10} - \frac{5}{12} \].
(Solution on p. 468.)
Exercise 7.200
(Section 6.4) Round 6.99997 to the nearest ten thousandths.

Exercise 7.201
(Solution on p. 468.) (Section 7.4) On a map, 3 inches represent 40 miles. How many inches represent 480 miles?

7.6 Fractions of One Percent

7.6.1 Section Overview
- Conversions Involving Fractions of One Percent
- Conversions Involving Nonterminating Fractions

7.6.2 Conversions Involving Fractions of One Percent

Per cents such as \(\frac{1}{2} \%, \frac{3}{5} \%, \frac{5}{8} \%, \text{ and } \frac{7}{11} \% \), where 1% has not been attained, are fractions of 1%. This implies that

\[
\frac{1}{2} \% = \frac{1}{2} \text{ of } 1\% = \frac{1}{2} \times \frac{1}{100} = \frac{1}{200}
\]

\[
\frac{3}{5} \% = \frac{3}{5} \text{ of } 1\% = \frac{3}{5} \times \frac{1}{100} = \frac{3}{500}
\]

\[
\frac{5}{8} \% = \frac{5}{8} \text{ of } 1\% = \frac{5}{8} \times \frac{1}{100} = \frac{5}{800}
\]

\[
\frac{7}{11} \% = \frac{7}{11} \text{ of } 1\% = \frac{7}{11} \times \frac{1}{100} = \frac{7}{1100}
\]

Example 7.31

Convert \(\frac{2}{3} \% \) to a fraction.

\[
\frac{2}{3} \% = \frac{2}{3} \text{ of } 1\% = \frac{2}{3} \times \frac{1}{100} = \frac{2}{300}
\]

\[
= \frac{112}{300} = \frac{1}{150}
\]

Example 7.32

Convert \(\frac{5}{8} \% \) to a decimal.

\(^{6}\text{This content is available online at <http://cnx.org/content/m34997/1.2/>.}\)
\[
\frac{5}{8} \% = \frac{5}{8} \text{ of } 1\% = \frac{5}{8} \cdot \frac{1}{100} \\
= 0.625 \cdot 0.01 \\
= 0.00625
\]

7.6.2.2 Practice Set A

Exercise 7.202
Convert \(\frac{1}{4}\) % to a fraction.
(Solution on p. 468.)

Exercise 7.203
Convert \(\frac{3}{8}\) % to a fraction.
(Solution on p. 469.)

Exercise 7.204
Convert \(3\frac{1}{3}\) % to a fraction.
(Solution on p. 469.)

7.6.3 Conversions Involving Nonterminating Fractions

We must be careful when changing a fraction of 1% to a decimal. The number \(\frac{2}{3}\), as we know, has a nonterminating decimal representation. Therefore, it cannot be expressed exactly as a decimal.

When converting nonterminating fractions of 1% to decimals, it is customary to express the fraction as a rounded decimal with at least three decimal places.

Converting a Nonterminating Fraction to a Decimal

To convert a nonterminating fraction of 1% to a decimal:

1. Convert the fraction as a rounded decimal.
2. Move the decimal point two digits to the left and remove the percent sign.

7.6.3.1 Sample Set B

Example 7.33
Convert \(\frac{2}{3}\) % to a three-place decimal.

1. Convert \(\frac{2}{3}\) to a decimal.
 Since we wish the resulting decimal to have three decimal digits, and removing the percent sign will account for two of them, we need to round \(\frac{2}{3}\) to one place \((2 + 1 = 3)\).

 \[
 \frac{2}{3}\% = 0.7\% \text{ to one decimal place. } (\frac{2}{3} \approx 0.6666\ldots)
 \]

2. Move the decimal point two digits to the left and remove the % sign. We'll need to add zeros to locate the decimal point in the correct location.
 \[
 \frac{2}{3}\% = 0.007 \text{ to } 3 \text{ decimal places}
 \]

Example 7.34
Convert \(\frac{5}{11}\) % to a four-place decimal.

1. Since we wish the resulting decimal to have four decimal places, and removing the percent sign will account for two, we round \(\frac{5}{11}\) to two places.
 \[
 \frac{5}{11}\% = 5.36\% \text{ to two decimal places. } (\frac{5}{11} \approx 0.3636\ldots)
 \]

2. Move the decimal point two places to the left and drop the percent sign. \(\frac{4}{11}\% = 0.0536\) to four decimal places.
Example 7.35
Convert $\frac{28}{9}\%$ to a decimal rounded to ten thousandths.

1. Since we wish the resulting decimal to be rounded to ten thousandths (four decimal places), and removing the percent sign will account for two, we need to round $\frac{28}{9}$ to two places.
 $\frac{28}{9} = 28.56\%$ to two decimal places. ($\frac{28}{9} \approx 0.5555\ldots$)
2. Move the decimal point to the left two places and drop the percent sign.
 $28\frac{5}{9}\% = 0.2856$ correct to ten thousandths.

7.6.3.2 Practice Set B

Exercise 7.205
Convert $\frac{7}{9}\%$ to a three-place decimal.
(Solution on p. 469.)

Exercise 7.206
Convert $51\frac{5}{11}\%$ to a decimal rounded to ten thousandths.
(Solution on p. 469.)

7.6.4 Exercises

Make the conversions as indicated.

Exercise 7.207
Convert $\frac{3}{4}\%$ to a fraction.
(Solution on p. 469.)

Exercise 7.208
Convert $\frac{5}{6}\%$ to a fraction.

Exercise 7.209
Convert $\frac{1}{4}\%$ to a fraction.
(Solution on p. 469.)

Exercise 7.210
Convert $\frac{15}{19}\%$ to a fraction.

Exercise 7.211
Convert $\frac{5}{4}\%$ to a fraction.
(Solution on p. 469.)

Exercise 7.212
Convert $\frac{7}{3}\%$ to a fraction.

Exercise 7.213
Convert $1\frac{8}{9}\%$ to a fraction.
(Solution on p. 469.)

Exercise 7.214
Convert $2\frac{1}{10}\%$ to a fraction.

Exercise 7.215
Convert $25\frac{1}{4}\%$ to a fraction.
(Solution on p. 469.)

Exercise 7.216
Convert $50\frac{1}{2}\%$ to a fraction.

Exercise 7.217
Convert $72\frac{3}{5}\%$ to a fraction.
(Solution on p. 469.)

Exercise 7.218
Convert $99\frac{1}{8}\%$ to a fraction.

Exercise 7.219
Convert $136\frac{3}{4}\%$ to a fraction.
(Solution on p. 469.)
Exercise 7.220
Convert 521\(\frac{3}{4}\)\% to a fraction.

Exercise 7.221
Convert 10\(\frac{1}{5}\)\% to a decimal.

Exercise 7.222
Convert 12\(\frac{3}{4}\)\% to a decimal.

Exercise 7.223
Convert 3\(\frac{3}{8}\)\% to a decimal.

Exercise 7.224
Convert 7\(\frac{1}{11}\)\% to a decimal.

Exercise 7.225
Convert \(\frac{3}{7}\)\% to a three-place decimal.

Exercise 7.226
Convert \(\frac{1}{9}\)\% to a three-place decimal.

Exercise 7.227
Convert 6\(\frac{4}{11}\)\% to a four-place decimal.

Exercise 7.228
Convert 9\(\frac{7}{11}\)\% to a four-place decimal.

Exercise 7.229
Convert 24\(\frac{5}{21}\)\% to a three-place decimal.

Exercise 7.230
Convert 45\(\frac{5}{27}\)\% to a three-place decimal.

Exercise 7.231
Convert 11\(\frac{10}{17}\)\% to a four-place decimal.

Exercise 7.232
Convert 5\(\frac{3}{7}\)\% to a three-place decimal.

7.6.4.1 Exercises for Review

Exercise 7.233
(Section 3.2) Write 8 \(\cdot\) 8 \(\cdot\) 8 \(\cdot\) 8 \(\cdot\) 8 using exponents.

Exercise 7.234
(Section 4.3) Convert 4\(\frac{7}{8}\) to an improper fraction.

Exercise 7.235
(Section 5.4) Find the sum. \(\frac{7}{10}\) + \(\frac{2}{21}\) + \(\frac{1}{7}\).

Exercise 7.236
(Section 6.6) Find the product. (4.21) (0.006).

Exercise 7.237
(Section 7.5) Convert 8.062 to a percent.
7.7 Applications of Percents

7.7.1 Section Overview
- Base, Percent, and Percentage
- Finding the Percentage
- Finding the Percent
- Finding the Base

7.7.2 Base, Percent, and Percentage

There are three basic types of percent problems. Each type involves a base, a percent, and a percentage, and when they are translated from words to mathematical symbols each becomes a multiplication statement. Examples of these types of problems are the following:

1. What number is 30% of 50? (Missing product statement.)
2. 15 is what percent of 50? (Missing factor statement.)
3. 15 is 30% of what number? (Missing factor statement.)

In problem 1 (list, p. 446), the product is missing. To solve the problem, we represent the missing product with \(P \).

\[P = 30\% \cdot 50 \]

Percentage
The missing product \(P \) is called the **percentage**. Percentage means *part*, or *portion*. In \(P = 30\% \cdot 50 \), \(P \) represents a particular *part* of 50.

In problem 2 (list, p. 446), one of the factors is missing. Here we represent the missing factor with \(Q \).

\[15 = Q \cdot 50 \]

Percent
The missing factor is the **percent**. Percent, we know, means *per* 100, or *part* of 100. In \(15 = Q \cdot 50 \), \(Q \) indicates what part of 50 is being taken or considered. Specifically, \(15 = Q \cdot 50 \) means that if 50 was to be divided into 100 equal parts, then \(Q \) indicates 15 are being considered.

In problem 3 (list, p. 446), one of the factors is missing. Represent the missing factor with \(B \).

\[15 = 30\% \cdot B \]

Base
The missing factor is the **base**. Some meanings of base are a *source of supply*, or a *starting place*. In \(15 = 30\% \cdot B \), \(B \) indicates the amount of supply. Specifically, \(15 = 30\% \cdot B \) indicates that 15 represents 30% of the total supply.

Each of these three types of problems is of the form

\[\text{(percentage)} = \text{(percent)} \cdot \text{(base)} \]

We can determine any one of the three values given the other two using the methods discussed in Section 4.7.

\[^7\text{This content is available online at <http://cnx.org/content/m35007/1.2/>.}\]
7.7.3 Finding the Percentage

7.7.3.1 Sample Set A

Example 7.36

What number is 30% of 50? Missing product statement.

\[
\text{(percentage)} = \frac{\text{(percent)}}{\text{(base)}}
\]

\[
P = \frac{30\%}{50} \quad \text{Convert 30\% to a decimal.}
\]

\[
P = \frac{0.30}{50} \quad \text{Multiply.}
\]

Thus, 15 is 30% of 50.

Do Section 7.7.3.2 (Practice Set A), Exercise 7.238.

Example 7.37

What number is 36% of 95? Missing product statement.

\[
\text{(percentage)} = \frac{\text{(percent)}}{\text{(base)}}
\]

\[
P = \frac{36\%}{95} \quad \text{Convert 36\% to a decimal.}
\]

\[
P = \frac{0.36}{95} \quad \text{Multiply}
\]

Thus, 34.2 is 36% of 95.

Do Section 7.7.3.2 (Practice Set A), Exercise 7.238.

Example 7.38

A salesperson, who gets a commission of 12% of each sale she makes, makes a sale of $8,400.00. How much is her commission?

We need to determine what part of $8,400.00 is to be taken. What part indicates percentage.

\[
\text{(percentage)} = \frac{\text{(percent)}}{\text{(base)}}
\]

\[
P = \frac{12\%}{8,400.00} \quad \text{Convert to decimals.}
\]

\[
P = \frac{0.12}{8,400.00} \quad \text{Multiply.}
\]

Thus, the salesperson’s commission is $1,008.00.

Do Section 7.7.3.2 (Practice Set A), Exercise 7.239.

Example 7.39

A girl, by practicing typing on her home computer, has been able to increase her typing speed by 110%. If she originally typed 16 words per minute, by how many words per minute was she able to increase her speed?

We need to determine what part of 16 has been taken. What part indicates percentage.
What number is \(\frac{110}{100} \) of 16? Missing product statement.

\[
\text{(percentage)} = \text{(percent)} \cdot \text{(base)}
\]
\[
P = 110\% \cdot 16 \quad \text{Convert to decimals.}
\]
\[
P = 1.10 \cdot 16 \quad \text{Multiply.}
\]
\[
P = 17.6
\]

Thus, the girl has increased her typing speed by 17.6 words per minute. Her new speed is \(16 + 17.6 = 33.6 \) words per minute.

Do Section 7.7.3.2 (Practice Set A), Exercise 7.240.

Example 7.40
A student who makes $125 a month working part-time receives a 4\% salary raise. What is the student’s new monthly salary?

With a 4\% raise, this student will make 100\% of the original salary + 4\% of the original salary. This means the new salary will be 104\% of the original salary. We need to determine what part of $125 is to be taken. What part indicates percentage.

\[
\text{(percentage)} = \text{(percent)} \cdot \text{(base)}
\]
\[
P = 104\% \cdot 125 \quad \text{Convert to decimals.}
\]
\[
P = 1.04 \cdot 125 \quad \text{Multiply.}
\]
\[
P = 130
\]

Thus, this student’s new monthly salary is $130.

Do Section 7.7.3.2 (Practice Set A), Exercise 7.241.

Example 7.41
An article of clothing is on sale at 15\% off the marked price. If the marked price is $24.95, what is the sale price?

Since the item is discounted 15\%, the new price will be 100\% - 15\% = 85\% of the marked price. We need to determine what part of 24.95 is to be taken. What part indicates percentage.

\[
\text{(percentage)} = \text{(percent)} \cdot \text{(base)}
\]
\[
P = 85\% \cdot 24.95 \quad \text{Convert to decimals.}
\]
\[
P = .85 \cdot 24.95 \quad \text{Multiply.}
\]
\[
P = 21.2075
\]

Since this number represents money, we’ll round to 2 decimal places
\[
P = 21.21
\]

Thus, the sale price of the item is $21.21.
7.7.3.2 Practice Set A

Exercise 7.238 (Solution on p. 469.)
What number is 42% of 85?

Exercise 7.239 (Solution on p. 469.)
A sales person makes a commission of 16% on each sale he makes. How much is his commission if he makes a sale of $8,500?

Exercise 7.240 (Solution on p. 469.)
An assembly line worker can assemble 14 parts of a product in one hour. If he can increase his assembly speed by 35%, by how many parts per hour would he increase his assembly of products?

Exercise 7.241 (Solution on p. 469.)
A computer scientist in the Silicon Valley makes $42,000 annually. What would this scientist’s new annual salary be if she were to receive an 8% raise?

7.7.4 Finding the Percent

7.7.4.1 Sample Set B

Example 7.42

\[
\begin{align*}
15 \ & \ \text{is} \ & \ \frac{\text{what percent}}{\text{of}} \ & \ 50? \ \text{Missing factor statement.} \\
\text{(percentage)} \ & \ = \ & \ \frac{\text{(percent)}}{\text{(base)}} \ & \ \text{[(product) = (factor) \cdot (factor)]} \\
15 \ & \ = \ & \ Q \ & \ \cdot \ 50 \\
\end{align*}
\]

Recall that (missing factor) = (product) ÷ (known factor).

\[
Q \ = \ 15 \div 50 \quad \text{Divide.}
\]

\[
Q \ = \ 0.3 \quad \text{Convert to a percent.}
\]

\[
Q \ = \ 30\%
\]

Thus, 15 is 30% of 50.

Do Section 7.7.4.2 (Practice Set B), Exercise 7.242.

Example 7.43

\[
\begin{align*}
4.32 \ & \ \text{is} \ & \ \frac{\text{what percent}}{\text{of}} \ & \ 72? \ \text{Missing factor statement.} \\
\text{(percentage)} \ & \ = \ & \ \frac{\text{(percent)}}{\text{(base)}} \ & \ \text{[(product) = (factor) \cdot (factor)]} \\
4.32 \ & \ = \ & \ Q \ & \ \cdot \ 72 \\
\end{align*}
\]

\[
Q \ = \ 4.32 \div 72 \quad \text{Divide.}
\]

\[
Q \ = \ 0.06 \quad \text{Convert to a percent.}
\]

\[
Q \ = \ 6\%
\]

Thus, 4.32 is 6% of 72.
Do Section 7.7.4.2 (Practice Set B), Exercise 7.242.

Example 7.44
On a 160 question exam, a student got 125 correct answers. What percent is this? Round the result to two decimal places.

We need to determine the percent.

\[
\begin{align*}
\text{125 is what percent of 160?} \\
(\text{percentage}) = \frac{\text{(percent)}}{\text{(base)}} \\
125 = Q \cdot 160
\end{align*}
\]

\[
Q = \frac{125}{160} \quad \text{Divide.}
\]

\[Q = 0.78125 \quad \text{Round to two decimal places.}\]

\[Q = 0.78\]

Thus, this student received a 78% on the exam.

Do Section 7.7.4.2 (Practice Set B), Exercise 7.243.

Example 7.45
A bottle contains 80 milliliters of hydrochloric acid (HCl) and 30 milliliters of water. What percent of HCl does the bottle contain? Round the result to two decimal places.

We need to determine the percent. The total amount of liquid in the bottle is

80 milliliters + 30 milliliters = 110 milliliters.

\[
\begin{align*}
\text{80 is what percent of 110?} \\
(\text{percentage}) = \frac{\text{(percent)}}{\text{(base)}} \\
80 = Q \cdot 110
\end{align*}
\]

\[
Q = \frac{80}{110} \quad \text{Divide.}
\]

\[Q = 0.727272 \ldots \quad \text{Round to two decimal places.}\]

\[Q \approx 73\% \quad \text{The symbol } \approx \text{ is read as } \text{"approximately."}\]

Thus, this bottle contains approximately 73% HCl.

Do Section 7.7.4.2 (Practice Set B), Exercise 7.244.

Example 7.46
Five years ago a woman had an annual income of $19,200. She presently earns $42,000 annually. By what percent has her salary increased? Round the result to two decimal places.

We need to determine the percent.
42,000 is what percent of 19,200? Missing factor statement.

\[
\frac{\text{percentage}}{\text{percent}} = \frac{\text{percentage}}{\text{base}}
\]

\[
42,000 = \frac{Q}{19,200}
\]

\[
Q = 42,000 \div 19,200 \quad \text{Divide.}
\]

\[
Q = 2.1875 \quad \text{Round to two decimal places.}
\]

\[
Q = 2.19 \quad \text{Convert to a percent.}
\]

\[
Q = 219\% \quad \text{Convert to a percent.}
\]

Thus, this woman’s annual salary has increased 219%.

7.7.4.2 Practice Set B

Exercise 7.242
99.13 is what percent of 431?
(Solution on p. 469.)

Exercise 7.243
On an 80 question exam, a student got 72 correct answers. What percent did the student get on the exam?
(Solution on p. 470.)

Exercise 7.244
A bottle contains 45 milliliters of sugar and 67 milliliters of water. What fraction of sugar does the bottle contain? Round the result to two decimal places (then express as a percent).
(Solution on p. 470.)

7.7.5 Finding the Base

7.7.5.1 Sample Set C

Example 7.47

\[
15 \quad \text{is} \quad 30\% \quad \text{of} \quad \frac{\text{what number?}}{\text{base}}
\]

\[
\frac{\text{percentage}}{\text{percent}} = \frac{\text{percentage}}{\text{base}}
\]

\[
15 = 30\% \cdot B
\]

\[
B = 15 \div .30
\]

Thus, 15 is 30\% of 50.

Try Exercise 7.245 in Section 7.7.5.2 (Practice Set C).
Example 7.48

\[
\begin{align*}
56.43 & \quad \text{is} \quad 33\% \quad \text{of} \quad \underline{\text{what number?}} \quad \text{Missing factor statement.} \\
(\text{percentage}) &= (\text{percent}) \cdot (\text{base}) \\
56.43 &= 33\% \cdot B \\
56.43 &= .33 \cdot B & \text{Convert to decimals.} \\
B &= \frac{56.43}{.33} \\
B &= 171
\end{align*}
\]

Thus, 56.43 is 33\% of 171.

Try Exercise 7.245 in Section 7.7.5.2 (Practice Set C).

Example 7.49

Fifteen milliliters of water represents 2\% of a hydrochloric acid (HCl) solution. How many milliliters of solution are there?

We need to determine the total supply. The word supply indicates base.

\[
\begin{align*}
15 & \quad \text{is} \quad 2\% \quad \text{of} \quad \underline{\text{what number?}} \quad \text{Missing factor statement.} \\
(\text{percentage}) &= (\text{percent}) \cdot (\text{base}) \\
15 &= 2\% \cdot B \\
15 &= .02 \cdot B & \text{Convert to decimals.} \\
B &= \frac{15}{.02} \\
B &= 750
\end{align*}
\]

Thus, there are 750 milliliters of solution in the bottle.

Try Exercise 7.246 in Section 7.7.5.2 (Practice Set C).

Example 7.50

In a particular city, a sales tax of \(6\frac{1}{2}\\%\) is charged on items purchased in local stores. If the tax on an item is $2.99, what is the price of the item?

We need to determine the price of the item. We can think of price as the starting place. Starting place indicates base. We need to determine the base.

\[
\begin{align*}
2.99 & \quad \text{is} \quad 6\frac{1}{2}\% \quad \text{of} \quad \underline{\text{what number?}} \quad \text{Missing factor statement.} \\
(\text{percentage}) &= (\text{percent}) \cdot (\text{base}) \\
2.99 &= 6\frac{1}{2}\% \cdot B \\
2.99 &= 6.5\% \cdot B \\
2.99 &= .065 \cdot B & [(\text{missing factor}) = (\text{product}) \div (\text{known factor})]
\end{align*}
\]
\[B = 2.99 \div 0.065 \quad \text{Divide.} \]

\[B = 46 \]

Thus, the price of the item is $46.00.

Try Exercise 7.247 in Section 7.7.5.2 (Practice Set C).

Example 7.51

A clothing item is priced at $20.40. This marked price includes a 15% discount. What is the original price?

We need to determine the original price. We can think of the original price as the starting place. **Starting place** indicates base. We need to determine the base. The new price, $20.40, represents \(100\% - 15\% = 85\%\) of the original price.

\[
\begin{align*}
20.40 \quad \downarrow & \quad 85\% \quad \downarrow \quad \text{what number?} \quad \downarrow \\
\text{(percentage)} \quad \downarrow & \quad \text{(percent)} \quad \downarrow \quad \text{(base)}
\end{align*}
\]

Missing factor statement.

\[
\begin{align*}
20.40 &= 85\% \cdot B \\
20.40 &= 0.85 \cdot B
\end{align*}
\]

Convert to decimals.

\[
B = 20.40 \div 0.85 \quad \text{Divide.} \]

\[B = 24 \]

Thus, the original price of the item is $24.00.

Try Exercise 7.248 in Section 7.7.5.2 (Practice Set C).

7.7.5.2 **Practice Set C**

Exercise 7.245

(Solution on p. 470.)

1.98 is 2\% of what number?

Exercise 7.246

(Solution on p. 470.)

3.3 milliliters of HCl represents 25\% of an HCl solution. How many milliliters of solution are there?

Exercise 7.247

(Solution on p. 470.)

A salesman, who makes a commission of 18\frac{1}{4}\% on each sale, makes a commission of $152.39 on a particular sale. Rounded to the nearest dollar, what is the amount of the sale?

Exercise 7.248

(Solution on p. 470.)

At "super-long play," 2\frac{1}{2} hours of play of a video cassette recorder represents 31.25\% of the total playing time. What is the total playing time?

7.7.6 **Exercises**

For the following 25 problems, find each indicated quantity.

Exercise 7.249

(Solution on p. 470.)

What is 21\% of 104?
Exercise 7.250
What is 8% of 36?

Exercise 7.251
What is 98% of 545?
(Solution on p. 470.)

Exercise 7.252
What is 143% of 33?

Exercise 7.253
What is \(10\frac{1}{2}\)% of 20?
(Solution on p. 470.)

Exercise 7.254
3.25 is what percent of 88?

Exercise 7.255
22.44 is what percent of 44?
(Solution on p. 470.)

Exercise 7.256
0.0036 is what percent of 0.03?

Exercise 7.257
31.2 is what percent of 26?
(Solution on p. 470.)

Exercise 7.258
266.4 is what percent of 74?

Exercise 7.259
0.0101 is what percent of 0.0505?
(Solution on p. 470.)

Exercise 7.260
2.4 is 24% of what number?

Exercise 7.261
24.19 is 41% of what number?
(Solution on p. 470.)

Exercise 7.262
61.12 is 16% of what number?

Exercise 7.263
82.81 is 91% of what number?
(Solution on p. 470.)

Exercise 7.264
115.5 is 20% of what number?

Exercise 7.265
43.92 is 480% of what number?
(Solution on p. 470.)

Exercise 7.266
What is 85% of 62?

Exercise 7.267
29.14 is what percent of 5.13?
(Solution on p. 470.)

Exercise 7.268
0.6156 is what percent of 5.13?

Exercise 7.269
What is 0.41% of 291.1?
(Solution on p. 470.)

Exercise 7.270
26.136 is 121% of what number?

Exercise 7.271
1,937.5 is what percent of 775?
(Solution on p. 470.)

Exercise 7.272
1 is what percent of 2,000?
Exercise 7.273 (Solution on p. 470.)
0 is what percent of 39?

Exercise 7.274
An item of clothing is on sale for 10% off the marked price. If the marked price is $14.95, what is the sale price? (Round to two decimal places.)

Exercise 7.275 (Solution on p. 470.)
A grocery clerk, who makes $365 per month, receives a 7% raise. How much is her new monthly salary?

Exercise 7.276
An item of clothing which originally sells for $55.00 is marked down to $46.75. What percent has it been marked down?

Exercise 7.277 (Solution on p. 470.)
On a 25 question exam, a student gets 21 correct. What percent is this?

Exercise 7.278
On a 45 question exam, a student gets 40%. How many questions did this student get correct?

Exercise 7.279 (Solution on p. 470.)
A vitamin tablet, which weighs 250 milligrams, contains 35 milligrams of vitamin C. What percent of the weight of this tablet is vitamin C?

Exercise 7.280
Five years ago a secretary made $11,200 annually. The secretary now makes $17,920 annually. By what percent has this secretary’s salary been increased?

Exercise 7.281 (Solution on p. 470.)
A baseball team wins $48 \frac{3}{4}$% of all their games. If they won 78 games, how many games did they play?

Exercise 7.282
A typist was able to increase his speed by 120% to 42 words per minute. What was his original typing speed?

Exercise 7.283 (Solution on p. 470.)
A salesperson makes a commission of 12% on the total amount of each sale. If, in one month, she makes a total of $8,520 in sales, how much has she made in commission?

Exercise 7.284
A salesperson receives a salary of $850 per month plus a commission of 8 \frac{1}{2}% of her sales. If, in a particular month, she sells $22,800 worth of merchandise, what will be her monthly earnings?

Exercise 7.285 (Solution on p. 470.)
A man borrows $1150.00 from a loan company. If he makes 12 equal monthly payments of $130.60, what percent of the loan is he paying in interest?

Exercise 7.286
The distance from the sun to the earth is approximately 93,000,000 miles. The distance from the sun to Pluto is approximately 860.2% of the distance from the sun to the Earth. Approximately, how many miles is Pluto from the sun?

Exercise 7.287 (Solution on p. 471.)
The number of people on food stamps in Maine in 1975 was 151,000. By 1980, the number had decreased to 59,200. By what percent did the number of people on food stamps decrease? (Round the result to the nearest percent.)

Exercise 7.288
In Nebraska, in 1960, there were 734,000 motor-vehicle registrations. By 1979, the total had increased by about 165.6%. About how many motor-vehicle registrations were there in Nebraska in 1979?
Exercise 7.289
(Solution on p. 471.)
From 1973 to 1979, in the United States, there was an increase of 166.6% of Ph.D. social scientists to 52,000. How many were there in 1973?

Exercise 7.290
In 1950, in the United States, there were 1,894 daily newspapers. That number decreased to 1,747 by 1981. What percent did the number of daily newspapers decrease?

Exercise 7.291
(Solution on p. 471.)
A particular alloy is 27% copper. How many pounds of copper are there in 55 pounds of the alloy?

Exercise 7.292
A bottle containing a solution of hydrochloric acid (HCl) is marked 15% (meaning that 15% of the HCl solution is acid). If a bottle contains 65 milliliters of solution, how many milliliters of water does it contain?

Exercise 7.293
(Solution on p. 471.)
A bottle containing a solution of HCl is marked 45%. A test shows that 36 of the 80 milliliters contained in the bottle are hydrochloric acid. Is the bottle marked correctly? If not, how should it be remarked?

7.7.6.1 Exercises For Review

Exercise 7.294
(Section 2.6) Use the numbers 4 and 7 to illustrate the commutative property of multiplication.

Exercise 7.295
(Solution on p. 471.)
(Section 4.3) Convert \(\frac{14}{5} \) to a mixed number.

Exercise 7.296
(Section 5.5) Arrange the numbers \(\frac{7}{12}, \frac{5}{9} \) and \(\frac{2}{3} \) in increasing order.

Exercise 7.297
(Solution on p. 471.)
(Section 6.3) Convert 4.006 to a mixed number.

Exercise 7.298
(Section 7.6) Convert \(\frac{7}{8} \% \) to a fraction.

7.8 Summary of Key Concepts*

7.8.1 Summary of Key Concepts

Denominate Numbers (Section 7.2)
Numbers that appear along with units are denominate numbers. The amounts 6 dollars and 4 pints are examples of denominate numbers.

Like and Unlike Denominate Numbers (Section 7.2)
Like denominate numbers are denominate numbers with like units. If the units are not the same, the numbers are unlike denominate numbers.

Pure Numbers (Section 7.2)
Numbers appearing without a unit are pure numbers.

*This content is available online at <http://cnx.org/content/m35008/1.2/>.
Comparing Numbers by Subtraction and Division (Section 7.2)
Comparison of two numbers by subtraction indicates how much more one number is than another. Comparison by division indicates how many times larger or smaller one number is than another.

Comparing Pure or Like Denominate Numbers by Subtraction (Section 7.2)
Numbers can be compared by subtraction if and only if they are pure numbers or like denominate numbers.

Ratio Rate (Section 7.2)
A comparison, by division, of two like denominate numbers is a ratio. A comparison, by division, of two unlike denominate numbers is a rate.

Proportion (Section 7.3)
A proportion is a statement that two ratios or rates are equal.

\[
\frac{3 \text{ people}}{2 \text{ jobs}} = \frac{6 \text{ people}}{4 \text{ jobs}}
\]
is a proportion.

Solving a Proportion (Section 7.3)
To solve a proportion that contains three known numbers and a letter that represents an unknown quantity, perform the cross multiplication, then divide the product of the two numbers by the number that multiplies the letter.

Proportions Involving Rates (Section 7.3)
When writing a proportion involving rates it is very important to write it so that the same type of units appears on the same side of either the equal sign or the fraction bar.

\[
\frac{\text{unit type 1}}{\text{unit type 2}} = \frac{\text{unit type 1}}{\text{unit type 2}} \quad \text{or} \quad \frac{\text{unit type 1}}{\text{unit type 2}} = \frac{\text{unit type 1}}{\text{unit type 2}}
\]

Five-Step Method for Solving Proportions (Section 7.4)

1. By careful reading, determine what the unknown quantity is and represent it with some letter. There will be only one unknown in a problem.
2. Identify the three specified numbers.
3. Determine which comparisons are to be made and set up the proportion.
4. Solve the proportion.
5. Interpret and write a conclusion.

When solving applied problems, ALWAYS begin by determining the unknown quantity and representing it with a letter.

percents (Section 7.5)
A ratio in which one number is compared to 100 is a percent. Percent means "for each hundred."

Conversion of Fractions, Decimals, and Percents (Section 7.5)
It is possible to convert decimals to percents, fractions to percents, percents to decimals, and percents to fractions.

Applications of Percents:
The three basic types of percent problems involve a base, a percentage, and a percent.

Base (Section 7.7)
The base is the number used for comparison.

Percentage (Section 7.7)
The percentage is the number being compared to the base.
Percent (Section 7.7)
By its definition, percent means part of.

Solving Problems (Section 7.7)
Percentage = (percent) \times (base)
Percent = \frac{\text{percentage}}{\text{base}}
Base = \frac{\text{percentage}}{\text{percent}}

7.9 Exercise Supplement

7.9.1 Exercise Supplement

7.9.1.1 Ratios and Rates (Section 7.2)

Exercise 7.299 (Solution on p. 471.)
Compare 250 watts to 100 watts by subtraction.

Exercise 7.300
Compare 126 and 48 by subtraction.

Exercise 7.301 (Solution on p. 471.)
Compare 98 radishes to 41 radishes by division.

Exercise 7.302
Compare 144 to 9 by division.

Exercise 7.303 (Solution on p. 471.)
Compare 100 tents to 5 tents by division.

Exercise 7.304
Compare 28 feet to 7 feet by division.

Exercise 7.305 (Solution on p. 471.)
Comparison, by division, of two pure numbers or two like denominate numbers is called a ________.

Exercise 7.306
A comparison, by division, of two unlike denominate numbers is called a ________.

For problems 9-12, express each ratio or rate as a fraction.

Exercise 7.307 (Solution on p. 471.)
15 to 5

Exercise 7.308
72 to 12

Exercise 7.309 (Solution on p. 471.)
8 millimeters to 5 milliliters

Exercise 7.310
106 tablets to 52 tablets

For problems 13-16, write each ratio in the form "a to b".

Exercise 7.311 (Solution on p. 471.)
\frac{9}{11}

Exercise 7.312
\frac{5}{11}

This content is available online at <http://cnx.org/content/m35009/1.2/>.
Exercise 7.313
1 diskette
8 diskettes
Exercise 7.314
5 papers
3 pens

For problems 17-21, write each ratio or rate using words.

Exercise 7.315
\[\frac{9}{16} = \frac{18}{32} \]
Exercise 7.316
\[\frac{1}{4} = \frac{12}{48} \]
Exercise 7.317
\[\frac{8 \text{ items}}{4 \text{ dollars}} = \frac{2 \text{ items}}{1 \text{ dollar}} \]
Exercise 7.318
150 milligrams of niacin is to 2 tablets as 300 milligrams of niacin is to 4 tablets.

Exercise 7.319
20 people is to 4 seats as 5 people is to 1 seat.

7.9.1.2 Proportions (Section 7.3)

For problems 22-27, determine the missing number in each proportion.

Exercise 7.320
\[\frac{x}{3} = \frac{24}{9} \]
Exercise 7.321
\[\frac{15}{4} = \frac{60}{x} \]
Exercise 7.322
\[\frac{1}{x} = \frac{y}{44} \]
Exercise 7.323
\[\frac{3}{x} = \frac{14}{50} \]
Exercise 7.324
\[\frac{15 \text{ bats}}{16 \text{ balls}} = \frac{x \text{ bats}}{128 \text{ balls}} \]
Exercise 7.325
\[\frac{36 \text{ rooms}}{29 \text{ fans}} = \frac{504 \text{ rooms}}{x \text{ fans}} \]

7.9.1.3 Applications of Proportions (Section 7.4)

Exercise 7.326
On a map, 3 inches represents 20 miles. How many miles does 27 inches represent?

Exercise 7.327
A salt solution is composed of 8 parts of salt to 5 parts of water. How many parts of salt are there in a solution that contains 50 parts of water?

Exercise 7.328
A model is built to \(\frac{4}{15} \) scale. If a particular part of the model measures 8 inches in length, how long is the actual structure?

Exercise 7.329
The ratio of ammonia to air in a container is \(\frac{3}{40} \). How many milliliters of air should be in a container that contains 8 milliliters of ammonia?
Exercise 7.330
A 4-foot girl casts a 9-foot shadow at a particular time of the day. How tall is a pole that casts a 144-foot shadow at the same time of the day?

Exercise 7.331
The odds that a particular event will occur are 11 to 2. If this event occurs 55 times, how many times would you predict it does not occur?

Exercise 7.332
Every $\frac{3}{4}$ teaspoon of a multiple vitamin, in granular form, contains 0.85 the minimum daily requirement of vitamin A. How many teaspoons of this vitamin are required to supply 2.25 the minimum daily requirement?

7.9.1.4 Percent and Fractions of One Percent (Section 7.5, Section 7.6)

For problems 35-39, convert each decimal to a percent.

Exercise 7.333
0.16

Exercise 7.334
0.818

Exercise 7.335
5.3536

Exercise 7.336
0.50

Exercise 7.337
3

For problems 40-48, convert each percent to a decimal.

Exercise 7.338
62%

Exercise 7.339
1.58%

Exercise 7.340
9.15%

Exercise 7.341
0.06%

Exercise 7.342
0.003%

Exercise 7.343
$5\frac{3}{17}$ % to a three-place decimal

Exercise 7.344
$\frac{9}{13}$ % to a three-place decimal

Exercise 7.345
82 $\frac{25}{29}$ % to a four-place decimal

Exercise 7.346
18 $\frac{7}{17}$ % to a four-place decimal

For problems 49-55, convert each fraction or mixed number to a percent.

Exercise 7.347
$\frac{3}{5}$
Exercise 7.348
\[\frac{3}{17} \]

Exercise 7.349
\[\frac{5}{16} \]

(Solution on p. 472.)

Exercise 7.350
\[\frac{15}{8} \]

Exercise 7.351
\[\frac{105}{16} \]

(Solution on p. 472.)

Exercise 7.352
\[45 \frac{1}{4} \]

Exercise 7.353
\[6 \frac{278}{9} \]

(Solution on p. 472.)

For problems 56-64, convert each percent to a fraction or mixed number.

Exercise 7.354
95%

Exercise 7.355
12%

(Solution on p. 472.)

Exercise 7.356
83%

Exercise 7.357
38.125%

(Solution on p. 472.)

Exercise 7.358
61. \(\frac{5}{2} \)\%

Exercise 7.359
\(\frac{5}{8} \)\%

(Solution on p. 472.)

Exercise 7.360
\[6 \frac{9}{20} \] %

Exercise 7.361
\[15 \frac{3}{72} \] %

(Solution on p. 472.)

Exercise 7.362
\[106 \frac{19}{35} \] %

7.9.1.5 Applications of Percents (Section 7.7)

For problems 65-72, find each solution.

Exercise 7.363
What is 16% of 40?

(Solution on p. 472.)

Exercise 7.364
29.4 is what percent of 105?

Exercise 7.365
\[3 \frac{21}{59} \] is 547.2% of what number?

(Solution on p. 472.)

Exercise 7.366
0.09378 is what percent of 52.1?

Exercise 7.367
What is 680% of 1.41?

(Solution on p. 472.)
Exercise 7.368
A kitchen knife is on sale for 15% off the marked price. If the marked price is $39.50, what is the sale price?

Exercise 7.369
On an 80 question geology exam, a student gets 68 correct. What percent is correct?

Exercise 7.370
A salesperson makes a commission of 18% of her monthly sales total. She also receives a monthly salary of $1,600.00. If, in a particular month, she sells $4,000.00 worth of merchandise, how much will she make that month?

7.10 Proficiency Exam

7.10.1 Proficiency Exam

Exercise 7.371
(Section 7.2) Compare 4 cassette tapes to 7 dollars.

Exercise 7.372
(Section 7.2) What do we call a comparison, by division, of two unlike denominate numbers?

Exercise 7.373
(Section 7.2) 11 to 9

Exercise 7.374
(Section 7.2) 5 televisions to 2 radios

Exercise 7.375
(Section 7.2) 8 maps
3 people

Exercise 7.376
(Section 7.2) 2 psychologists
75 people

Exercise 7.377
(Section 7.3) \(\frac{2}{x} = \frac{48}{90} \)

Exercise 7.378
(Section 7.3) \(\frac{x}{7} = \frac{4}{28} \)

Exercise 7.379
(Section 7.3) \(\frac{3 \text{ computers}}{x \text{ students}} = \frac{24 \text{ computers}}{x \text{ students}} \)

Exercise 7.380
(Section 7.4) On a map, 4 inches represents 50 miles. How many miles does 3 inches represent?

Exercise 7.381
(Section 7.4) An acid solution is composed of 6 milliliters of acid to 10 milliliters of water. How many milliliters of acid are there in an acid solution that is composed of 3 milliliters of water?

Exercise 7.382
(Section 7.4) The odds that a particular event will occur are 9 to 7. If the event occurs 27 times, how many times would you predict it will not occur?

For problems 3 and 4, express each ratio or rate as a fraction.

For problems 5 and 6, write each ratio or rate in the form "a to b."

For problems 7-9, solve each proportion.

For problems 13 and 14, convert each decimal to a percent.

10This content is available online at <http://cnx.org/content/m35010/1.2/>.
For problems 15 and 16, convert each percent to a decimal.

Exercise 7.385
(Section 7.5) 2.813%

Exercise 7.386
(Section 7.5) 0.006%

For problems 17-19, convert each fraction to a percent.

Exercise 7.387
(Section 7.5) $\frac{42}{5}$

Exercise 7.388
(Section 7.5) $\frac{1}{8}$

Exercise 7.389
(Section 7.5) $\frac{800}{80}$

For problems 20 and 21, convert each percent to a fraction.

Exercise 7.390
(Section 7.5) 15%

Exercise 7.391
(Section 7.5) $\frac{1}{27}$%

For problems 22-25, find each indicated quantity.

Exercise 7.392
(Section 7.7) What is 18% of 26?

Exercise 7.393
(Section 7.7) 0.618 is what percent of 0.3?

Exercise 7.394
(Section 7.7) 0.1 is 1.1% of what number?

Exercise 7.395
(Section 7.7) A salesperson makes a monthly salary of $1,000.00. He also gets a commission of 12% of his total monthly sales. If, in a particular month, he sells $5,500.00 worth of merchandise, what is his income that month?
Solutions to Exercises in Chapter 7

Solution to Exercise 7.1 (p. 419)

(a) 8 diskettes; 10 diskettes is 8 diskettes more than 2 diskettes.
(b) 5; 10 diskettes is 5 times as many diskettes as 2 diskettes.

Solution to Exercise 7.2 (p. 419)

(a) Comparison by subtraction makes no sense.
(b) \(\frac{16 \text{ bananas}}{2 \text{ bags}} = \frac{8 \text{ bananas}}{1 \text{ bag}} \), 8 bananas per bag.

Solution to Exercise 7.3 (p. 420)

\(\frac{3}{2} \)

Solution to Exercise 7.4 (p. 420)

\(\frac{1}{2} \)

Solution to Exercise 7.5 (p. 420)

\(\frac{5 \text{ books}}{4 \text{ people}} \)

Solution to Exercise 7.6 (p. 420)

\(\frac{60 \text{ miles}}{1 \text{ hour}} \)

Solution to Exercise 7.7 (p. 420)

\(\frac{8}{3} \)

Solution to Exercise 7.8 (p. 420)

9 to 5

Solution to Exercise 7.9 (p. 420)

1 to 3

Solution to Exercise 7.10 (p. 420)

25 miles to 2 gallons

Solution to Exercise 7.11 (p. 421)

1 mechanic to 2 wrenches

Solution to Exercise 7.12 (p. 421)

5 to 6

Solution to Exercise 7.13 (p. 421)

They are pure numbers or like denominate numbers.

Solution to Exercise 7.15 (p. 421)

rate

Solution to Exercise 7.17 (p. 421)

ratio

Solution to Exercise 7.19 (p. 421)

rate

Solution to Exercise 7.21 (p. 421)

ratio

Solution to Exercise 7.23 (p. 421)

two to five

Solution to Exercise 7.25 (p. 421)

29 mile per 2 gallons or \(14 \frac{1}{2} \text{ miles per 1 gallon} \)

Solution to Exercise 7.27 (p. 421)

5 to 2

Solution to Exercise 7.29 (p. 421)

\(\frac{10}{8} \)

Solution to Exercise 7.31 (p. 422)

\(\frac{42 \text{ plants}}{8 \text{ homes}} \)
Solution to Exercise 7.33 (p. 422)
16 pins
1 quart

Solution to Exercise 7.35 (p. 422)
25.4 cm
1 inch

Solution to Exercise 7.37 (p. 422)
5
t
3 at bats

Solution to Exercise 7.39 (p. 422)
2
0.54 cm
1 inch

Solution to Exercise 7.41 (p. 422)
5
0.42 characters
1 page

Solution to Exercise 7.43 (p. 422)
5
2

Solution to Exercise 7.45 (p. 422)
3.875

Solution to Exercise 7.47 (p. 422)
3
is to 8 as 6 is to 16

Solution to Exercise 7.48 (p. 424)
2 people are to 1 window as 10 people are to 5 windows

Solution to Exercise 7.49 (p. 424)
15
4
= 75
20

Solution to Exercise 7.50 (p. 424)
2 plates
1 tray
= 20 plates
10 trays

Solution to Exercise 7.51 (p. 424)
x = 3

Solution to Exercise 7.52 (p. 425)
x = 5

Solution to Exercise 7.53 (p. 426)
x = 45

Solution to Exercise 7.54 (p. 426)
x = 48

Solution to Exercise 7.55 (p. 426)
x = 48

Solution to Exercise 7.56 (p. 427)
rates, proportion

Solution to Exercise 7.57 (p. 427)
15
3
= 20
5

Solution to Exercise 7.58 (p. 427)
6
3
= 5
2

Solution to Exercise 7.59 (p. 427)
18
gr cobalt
10
gr silver
= 36
gr cobalt
20
gr silver

Solution to Exercise 7.60 (p. 427)
3 people absent
31 people present
= 15 people absent
115 people present

Solution to Exercise 7.61 (p. 427)
3 is to 4 as 15 is to 20

Solution to Exercise 7.62 (p. 427)
3 joggers are to 100 feet as 6 joggers are to 200 feet

Solution to Exercise 7.63 (p. 427)
40 miles are to 80 miles as 2 gallons are to 4 gallons

Solution to Exercise 7.64 (p. 427)
1 person is to 1 job as 8 people are to 8 jobs
Solution to Exercise 7.74 (p. 428)
2,000 pounds are to 1 ton as 60,000 pounds are to 30 tons

Solution to Exercise 7.76 (p. 428)
\(x = 2 \)

Solution to Exercise 7.78 (p. 428)
\(x = 8 \)

Solution to Exercise 7.80 (p. 428)
\(x = 8 \)

Solution to Exercise 7.82 (p. 428)
\(x = 27 \)

Solution to Exercise 7.84 (p. 428)
\(x = 40 \)

Solution to Exercise 7.86 (p. 428)
\(x = 30 \)

Solution to Exercise 7.88 (p. 428)
\(x = 35 \)

Solution to Exercise 7.90 (p. 428)
\(x = 30 \)

Solution to Exercise 7.92 (p. 429)
true

Solution to Exercise 7.94 (p. 429)
false

Solution to Exercise 7.96 (p. 429)
true

Solution to Exercise 7.98 (p. 429)
true

Solution to Exercise 7.100 (p. 429)
\(5+7=12 \)
\(7+5=12 \)

Solution to Exercise 7.102 (p. 429)
\(\frac{17}{27} \)

Solution to Exercise 7.104 (p. 429)
8 sentences
1 paragraph

Solution to Exercise 7.105 (p. 432)
500 miles

Solution to Exercise 7.106 (p. 433)
24 parts of alcohol

Solution to Exercise 7.107 (p. 433)
\(3\frac{9}{11} \) feet

Solution to Exercise 7.108 (p. 433)
864 outside plants

Solution to Exercise 7.109 (p. 433)
The event occurs 99 times.

Solution to Exercise 7.110 (p. 433)
6 failing grades

Solution to Exercise 7.111 (p. 434)
24

Solution to Exercise 7.113 (p. 434)
45 inches
Solution to Exercise 7.115 (p. 434)
33 parts
Solution to Exercise 7.117 (p. 434)
2328.75
Solution to Exercise 7.119 (p. 434)
$\frac{21}{27}$ feet
Solution to Exercise 7.121 (p. 434)
12,250
Solution to Exercise 7.123 (p. 434)
12
Solution to Exercise 7.125 (p. 434)
$1\frac{2}{6}$
Solution to Exercise 7.127 (p. 435)
$1\frac{7}{8}$
Solution to Exercise 7.129 (p. 435)
$31 \frac{1}{2}$
Solution to Exercise 7.131 (p. 435)
0
Solution to Exercise 7.133 (p. 435)
$\frac{2}{3}$
Solution to Exercise 7.135 (p. 435)
5
Solution to Exercise 7.136 (p. 436)
16%
Solution to Exercise 7.137 (p. 436)
195%
Solution to Exercise 7.138 (p. 436)
$\frac{80}{200}$
Solution to Exercise 7.139 (p. 436)
$\frac{362}{100}$ or $\frac{181}{50}$
Solution to Exercise 7.140 (p. 439)
0.21
Solution to Exercise 7.141 (p. 439)
4.61
Solution to Exercise 7.142 (p. 439)
55%
Solution to Exercise 7.143 (p. 439)
564%
Solution to Exercise 7.144 (p. 439)
15%
Solution to Exercise 7.145 (p. 439)
137.5%
Solution to Exercise 7.146 (p. 439)
27.27%
Solution to Exercise 7.147 (p. 439)
25%
Solution to Exercise 7.149 (p. 439)
48%
Solution to Exercise 7.151 (p. 439)
77.1%
Solution to Exercise 7.153 (p. 439) 258%
Solution to Exercise 7.155 (p. 439) 1,618.14%
Solution to Exercise 7.157 (p. 439) 200%
Solution to Exercise 7.159 (p. 440) 0.15
Solution to Exercise 7.161 (p. 440) 0.162
Solution to Exercise 7.163 (p. 440) 0.0505
Solution to Exercise 7.165 (p. 440) 0.0078
Solution to Exercise 7.167 (p. 440) 0.0009
Solution to Exercise 7.169 (p. 440) 20%
Solution to Exercise 7.171 (p. 440) 62.5%
Solution to Exercise 7.173 (p. 440) 28%
Solution to Exercise 7.175 (p. 440) 49.05%
Solution to Exercise 7.177 (p. 440) 164%
Solution to Exercise 7.179 (p. 440) 945%
Solution to Exercise 7.181 (p. 441) 54.51%
Solution to Exercise 7.183 (p. 441) $\frac{4}{5}$
Solution to Exercise 7.185 (p. 441) $\frac{1}{2}$
Solution to Exercise 7.187 (p. 441) $\frac{12}{25}$
Solution to Exercise 7.189 (p. 441) $\frac{1}{8}$
Solution to Exercise 7.191 (p. 441) $\frac{3}{7}$ or $5\frac{1}{2}$
Solution to Exercise 7.193 (p. 441) $\frac{1}{10}$
Solution to Exercise 7.195 (p. 441) $\frac{2}{5}$
Solution to Exercise 7.197 (p. 441) $\frac{1}{10}$
Solution to Exercise 7.199 (p. 441) $\frac{129}{80}$ or $2\frac{9}{80} = 2\frac{3}{8}$
Solution to Exercise 7.201 (p. 442) 36 inches
Solution to Exercise 7.202 (p. 443)
\[
\frac{1}{1000}
\]
Solution to Exercise 7.203 (p. 443)
\[
\frac{5}{1000}
\]
Solution to Exercise 7.204 (p. 443)
\[
\frac{1}{10}
\]
Solution to Exercise 7.205 (p. 444)
0.008
Solution to Exercise 7.206 (p. 444)
0.5145
Solution to Exercise 7.207 (p. 444)
\[
\frac{1}{100}
\]
Solution to Exercise 7.209 (p. 444)
\[
\frac{1}{500}
\]
Solution to Exercise 7.211 (p. 444)
\[
\frac{5}{100} \text{ or } \frac{1}{50}
\]
Solution to Exercise 7.213 (p. 444)
\[
\frac{13}{1000}
\]
Solution to Exercise 7.215 (p. 444)
\[
\frac{101}{10000}
\]
Solution to Exercise 7.217 (p. 444)
\[
\frac{3}{1000}
\]
Solution to Exercise 7.219 (p. 444)
\[
\frac{41}{50}
\]
Solution to Exercise 7.221 (p. 445)
\[
\frac{51}{1000} = 0.102
\]
Solution to Exercise 7.223 (p. 445)
\[
\frac{31}{1000} = 0.03175
\]
Solution to Exercise 7.225 (p. 445)
0.004
Solution to Exercise 7.227 (p. 445)
0.0027
Solution to Exercise 7.229 (p. 445)
0.242
Solution to Exercise 7.231 (p. 445)
0.1194
Solution to Exercise 7.233 (p. 445)
\[
\frac{85}{1000}
\]
Solution to Exercise 7.235 (p. 445)
\[
\frac{107}{1000}
\]
Solution to Exercise 7.237 (p. 445)
806.2%
Solution to Exercise 7.238 (p. 449)
35.7
Solution to Exercise 7.239 (p. 449)
$1,360
Solution to Exercise 7.240 (p. 449)
4.9
Solution to Exercise 7.241 (p. 449)
$45,360
Solution to Exercise 7.242 (p. 451)
23%
Solution to Exercise 7.243 (p. 451)
90%
Solution to Exercise 7.244 (p. 451)
40%
Solution to Exercise 7.245 (p. 453)
99
Solution to Exercise 7.246 (p. 453)
13.2ml
Solution to Exercise 7.247 (p. 453)
$835
Solution to Exercise 7.248 (p. 453)
8 hours
Solution to Exercise 7.249 (p. 453)
21.84
Solution to Exercise 7.251 (p. 454)
534.1
Solution to Exercise 7.253 (p. 454)
2.1
Solution to Exercise 7.255 (p. 454)
51
Solution to Exercise 7.257 (p. 454)
120
Solution to Exercise 7.259 (p. 454)
20
Solution to Exercise 7.261 (p. 454)
59
Solution to Exercise 7.263 (p. 454)
91
Solution to Exercise 7.265 (p. 454)
9.15
Solution to Exercise 7.267 (p. 454)
568
Solution to Exercise 7.269 (p. 454)
1.19351
Solution to Exercise 7.271 (p. 454)
250
Solution to Exercise 7.273 (p. 455)
0
Solution to Exercise 7.275 (p. 455)
300.55
Solution to Exercise 7.277 (p. 455)
84
Solution to Exercise 7.279 (p. 455)
14
Solution to Exercise 7.281 (p. 455)
160
Solution to Exercise 7.283 (p. 455)
$1,022.40
Solution to Exercise 7.285 (p. 455)
36.28%
Solution to Exercise 7.287 (p. 455)
61
Solution to Exercise 7.289 (p. 456)
19,500
Solution to Exercise 7.291 (p. 456)
14.85
Solution to Exercise 7.293 (p. 456)
Marked correctly
Solution to Exercise 7.295 (p. 456)
$2\frac{1}{5}$
Solution to Exercise 7.297 (p. 456)
$\frac{4}{500}$
Solution to Exercise 7.299 (p. 458)
250 watts are 150 watts more than 100 watts
Solution to Exercise 7.301 (p. 458)
98 radishes are 2.39 times as many radishes as 41 radishes
Solution to Exercise 7.303 (p. 458)
100 tents are 20 times as many tents as 5 tents
Solution to Exercise 7.305 (p. 458)
ratio
Solution to Exercise 7.307 (p. 458)
$\frac{3}{4}$
Solution to Exercise 7.309 (p. 458)
$\frac{8}{5}$
Solution to Exercise 7.311 (p. 458)
9 to 16
Solution to Exercise 7.313 (p. 458)
1 diskette to 8 diskettes
Solution to Exercise 7.315 (p. 459)
9 is to 16 as 18 is to 32
Solution to Exercise 7.317 (p. 459)
8 items are to 4 dollars as 2 items are to 1 dollar
Solution to Exercise 7.319 (p. 459)
$\frac{20}{4} = \frac{5}{1}$
20 people are to 4 seats as 5 people are to 1 seat
Solution to Exercise 7.321 (p. 459)
28
Solution to Exercise 7.323 (p. 459)
10
Solution to Exercise 7.325 (p. 459)
406
Solution to Exercise 7.327 (p. 459)
80
Solution to Exercise 7.329 (p. 459)
$\frac{320}{4} \text{ or } 106 \frac{2}{3}$
Solution to Exercise 7.331 (p. 460)
10
Solution to Exercise 7.333 (p. 460)
16%
Solution to Exercise 7.335 (p. 460)
535.36%
Solution to Exercise 7.337 (p. 460)
300%
Solution to Exercise 7.339 (p. 460)
0.0158
Solution to Exercise 7.341 (p. 460)
0.0006
Solution to Exercise 7.343 (p. 460)
0.033
Solution to Exercise 7.345 (p. 460)
0.8286
Solution to Exercise 7.347 (p. 460)
60%
Solution to Exercise 7.349 (p. 460)
31.25%
Solution to Exercise 7.351 (p. 460)
656.25%
Solution to Exercise 7.353 (p. 460)
3688.8 %
Solution to Exercise 7.355 (p. 461)
\[\frac{3}{27} \]
Solution to Exercise 7.357 (p. 461)
\[\frac{61}{169} \]
Solution to Exercise 7.359 (p. 461)
\[\frac{1}{169} \]
Solution to Exercise 7.361 (p. 461)
\[\frac{2977}{19800} \]
Solution to Exercise 7.363 (p. 461)
6.4
Solution to Exercise 7.365 (p. 461)
0.625 or \[\frac{5}{8} \]
Solution to Exercise 7.367 (p. 461)
9.588
Solution to Exercise 7.369 (p. 462)
85
Solution to Exercise 7.371 (p. 462)
\[\frac{4 \text{ cassette tapes}}{9 \text{ dollars}} \]
Solution to Exercise 7.372 (p. 462)
Rate
Solution to Exercise 7.373 (p. 462)
\[\frac{11}{7} \]
Solution to Exercise 7.374 (p. 462)
\[\frac{5 \text{ televisions}}{2 \text{ radios}} \]
Solution to Exercise 7.375 (p. 462)
8 maps to 3 people
Solution to Exercise 7.376 (p. 462)
two psychologists to seventy-five people
Solution to Exercise 7.377 (p. 462)
\[\frac{15}{15} \]
Solution to Exercise 7.378 (p. 462)
1
Solution to Exercise 7.379 (p. 462)
64
Solution to Exercise 7.380 (p. 462)
$37\frac{1}{2}$
Solution to Exercise 7.381 (p. 462)
1.8
Solution to Exercise 7.382 (p. 462)
21
Solution to Exercise 7.383 (p. 462)
82%
Solution to Exercise 7.384 (p. 463)
$377\frac{7}{8}$%
Solution to Exercise 7.385 (p. 463)
0.02813
Solution to Exercise 7.386 (p. 463)
0.00006
Solution to Exercise 7.387 (p. 463)
840%
Solution to Exercise 7.388 (p. 463)
12.5%
Solution to Exercise 7.389 (p. 463)
1,000%
Solution to Exercise 7.390 (p. 463)
$\frac{1}{20}$
Solution to Exercise 7.391 (p. 463)
$\frac{4}{17}$ or $\frac{1}{5}$
Solution to Exercise 7.392 (p. 463)
4.68
Solution to Exercise 7.393 (p. 463)
206
Solution to Exercise 7.394 (p. 463)
9.05
Solution to Exercise 7.395 (p. 463)
$1,660$
Chapter 8

Techniques of Estimation

8.1 Objectives

After completing this chapter, you should

Estimation by Rounding (Section 8.2)

- understand the reason for estimation
- be able to estimate the result of an addition, multiplication, subtraction, or division using the rounding technique

Estimation by Clustering (Section 8.3)

- understand the concept of clustering
- be able to estimate the result of adding more than two numbers when clustering occurs using the clustering technique

Mental Arithmetic—Using the Distributive Property (Section 8.4)

- understand the distributive property
- be able to obtain the exact result of a multiplication using the distributive property

Estimation by Rounding Fractions (Section 8.5)

- be able to estimate the sum of two or more fractions using the technique of rounding fractions

8.2 Estimation by Rounding

8.2.1 Section Overview

- Estimation By Rounding

When beginning a computation, it is valuable to have an idea of what value to expect for the result. When a computation is completed, it is valuable to know if the result is reasonable.

In the rounding process, it is important to note two facts:

1. This content is available online at <http://cnx.org/content/m18896/1.3/>.
2. This content is available online at <http://cnx.org/content/m35011/1.2/>.
1. The rounding that is done in estimation does not always follow the rules of rounding discussed in Section 1.4 (Rounding Whole Numbers). Since estimation is concerned with the expected value of a computation, rounding is done using convenience as the guide rather than using hard-and-fast rounding rules. For example, if we wish to estimate the result of the division \(80 \div 26 \), we might round 26 to 20 rather than to 30 since 80 is more conveniently divided by 20 than by 30.

2. Since rounding may occur out of convenience, and different people have different ideas of what may be convenient, results of an estimation done by rounding may vary. For a particular computation, different people may get different estimated results. Results may vary.

Estimation

Estimation is the process of determining an expected value of a computation.

Common words used in estimation are *about*, *near*, and *between*.

8.2.2 Estimation by Rounding

The rounding technique estimates the result of a computation by rounding the numbers involved in the computation to one or two nonzero digits.

8.2.2.1 Sample Set A

Example 8.1

Estimate the sum: \(2,357 + 6,106 \).

Notice that 2,357 is near \(2,400 \), and that 6,106 is near \(6,100 \).

The sum can be estimated by \(2,400 + 6,100 = 8,500 \). (It is quick and easy to add 24 and 61.)

Thus, \(2,357 + 6,106 \) is *about* 8,400. In fact, \(2,357 + 6,106 = 8,463 \).

8.2.2.2 Practice Set A

Exercise 8.1

Estimate the sum: \(4,216 + 3,942 \). *(Solution on p. 502.)*

Exercise 8.2

Estimate the sum: \(812 + 514 \). *(Solution on p. 502.)*

Exercise 8.3

Estimate the sum: \(43,892 + 92,106 \). *(Solution on p. 502.)*

8.2.2.3 Sample Set B

Example 8.2

Estimate the difference: \(5,203 - 3,015 \).

Notice that 5,203 is near \(5,200 \), and that 3,015 is near \(3,000 \).

The difference can be estimated by \(5,200 - 3,000 = 2,200 \).
Thus, $5,203 - 3,015$ is about $2,200$. In fact, $5,203 - 3,015 = 2,188$.

We could make a less accurate estimation by observing that $5,203$ is near $5,000$. The number $5,000$ has only one nonzero digit rather than two (as does $5,200$). This fact makes the estimation quicker (but a little less accurate). We then estimate the difference by $5,000 - 3,000 = 2,000$, and conclude that $5,203 - 3,015$ is about $2,000$. This is why we say "answers may vary."

8.2.2.4 Practice Set B

Exercise 8.4
Estimate the difference: $628 - 413$.
(Solution on p. 502.)

Exercise 8.5
Estimate the difference: $7,842 - 5,209$.
(Solution on p. 502.)

Exercise 8.6
Estimate the difference: $73,812 - 28,492$.
(Solution on p. 502.)

8.2.2.5 Sample Set C

Example 8.3
Estimate the product: $73 \cdot 46$.

Notice that 73 is near 70, and that 46 is near 50.

The product can be estimated by $70 \cdot 50 = 3,500$. (Recall that to multiply numbers ending in zeros, we multiply the nonzero digits and affix to this product the total number of ending zeros in the factors. See Section 2.2 for a review of this technique.)

Thus, $73 \cdot 46$ is about $3,500$. In fact, $73 \cdot 46 = 3,358$.

Example 8.4
Estimate the product: $87 \cdot 4,316$.

Notice that 87 is close to 90, and that $4,316$ is close to $4,000$.

The product can be estimated by $90 \cdot 4,000 = 360,000$.

Thus, $87 \cdot 4,316$ is about $360,000$. In fact, $87 \cdot 4,316 = 375,492$.

8.2.2.6 Practice Set C

Exercise 8.7
Estimate the product: $31 \cdot 87$.
(Solution on p. 502.)

Exercise 8.8
Estimate the product: $18 \cdot 42$.
(Solution on p. 502.)

Exercise 8.9
Estimate the product: $16 \cdot 94$.
(Solution on p. 502.)
8.2.2.7 Sample Set D

Example 8.5
Estimate the quotient: $153 \div 17$.

Notice that 153 is close to 150, and that 17 is close to 15.

The quotient can be estimated by $150 \div 15 = 10$.
Thus, $153 \div 17$ is about 10. In fact, $153 \div 17 = 9$.

Example 8.6
Estimate the quotient: $742,000 \div 2,400$.

Notice that 742,000 is close to 700,000, and that 2,400 is close to 2,000.

The quotient can be estimated by $700,000 \div 2,000 = 350$.
Thus, $742,000 \div 2,400$ is about 350. In fact, $742,000 \div 2,400 = 309.16$.

8.2.2.8 Practice Set D

Exercise 8.10
Estimate the quotient: $221 \div 18$. (Solution on p. 502.)

Exercise 8.11
Estimate the quotient: $4,079 \div 381$. (Solution on p. 502.)

Exercise 8.12
Estimate the quotient: $609,000 \div 16,000$. (Solution on p. 502.)

8.2.2.9 Sample Set E

Example 8.7
Estimate the sum: $53.82 + 41.6$.

Notice that 53.82 is close to 54, and that 41.6 is close to 42.

The sum can be estimated by $54 + 42 = 96$.
Thus, $53.82 + 41.6$ is about 96. In fact, $53.82 + 41.6 = 95.42$.
8.2.2.10 Practice Set E

Exercise 8.13
Estimate the sum: 61.02 + 26.8.

Exercise 8.14
Estimate the sum: 109.12 + 137.88.

8.2.2.11 Sample Set F

Example 8.8
Estimate the product: (31.28)(14.2).

Notice that 31.28 is close to 30, and that 14.2 is close to 15.
The product can be estimated by $30 \cdot 15 = 450$. ($3 \cdot 15 = 45$, then affix one zero.)
Thus, (31.28)(14.2) is about 450. In fact, (31.28)(14.2) = 444.176.

Example 8.9
Estimate 21% of 5.42.

Notice that 21% = .21 as a decimal, and that .21 is close to .2.

Notice also that 5.42 is close to 5.

Then, 21% of 5.42 can be estimated by (.2)(5) = 1.
Thus, 21% of 5.42 is about 1. In fact, 21% of 5.42 is 1.1382.

8.2.2.12 Practice Set F

Exercise 8.15
Estimate the product: (47.8)(21.1).

Exercise 8.16
Estimate 32% of 14.88.

8.2.3 Exercises

Estimate each calculation using the method of rounding. After you have made an estimate, find the exact value and compare this to the estimated result to see if your estimated value is reasonable. Results may vary.

Exercise 8.17
1,402 + 2,198

Exercise 8.18
3,481 + 4,216
Exercise 8.19
921 + 796
(Solution on p. 502.)

Exercise 8.20
611 + 806

Exercise 8.21
4,681 + 9,325
(Solution on p. 502.)

Exercise 8.22
6,476 + 7,814

Exercise 8.23
7,805 − 4,266
(Solution on p. 502.)

Exercise 8.24
8,427 − 5,342

Exercise 8.25
14,106 − 8,412
(Solution on p. 502.)

Exercise 8.26
26,486 − 18,931

Exercise 8.27
32 · 53
(Solution on p. 502.)

Exercise 8.28
67 · 42

Exercise 8.29
628 · 891
(Solution on p. 502.)

Exercise 8.30
426 · 741

Exercise 8.31
18,012 · 32,416
(Solution on p. 502.)

Exercise 8.32
22,481 · 51,076

Exercise 8.33
287 ÷ 19
(Solution on p. 502.)

Exercise 8.34
884 ÷ 33

Exercise 8.35
1,254 ÷ 57
(Solution on p. 503.)

Exercise 8.36
2,189 ÷ 42

Exercise 8.37
8,092 ÷ 239
(Solution on p. 503.)

Exercise 8.38
2,688 ÷ 48

Exercise 8.39
72.14 + 21.08
(Solution on p. 503.)

Exercise 8.40
43.016 + 47.58

Exercise 8.41
96.53 − 26.91
(Solution on p. 503.)
Exercise 8.42
115.0012 - 25.018

Exercise 8.43
206.19 + 142.38

Exercise 8.44
992.131 + 211.6

Exercise 8.45
(32.12) (48.7)

Exercise 8.46
(87.013) (21.07)

Exercise 8.47
(3.003) (16.52)

Exercise 8.48
(6.032) (14.091)

Exercise 8.49
(114.06) (384.3)

Exercise 8.50
(5.137.118) (263.56)

Exercise 8.51
(6.92) (0.88)

Exercise 8.52
(83.04) (1.03)

Exercise 8.53
(17.31) (.003)

Exercise 8.54
(14.016) (.016)

Exercise 8.55
93% of 7.01

Exercise 8.56
107% of 12.6

Exercise 8.57
32% of 15.3

Exercise 8.58
74% of 21.93

Exercise 8.59
18% of 4.118

Exercise 8.60
4% of .863

Exercise 8.61
2% of .0039

(Solution on p. 503.)
CHAPTER 8. TECHNIQUES OF ESTIMATION

8.2.3.1 Exercises for Review

Exercise 8.62
(Section 5.3) Find the difference: $\frac{7}{10} - \frac{5}{16}$.

Exercise 8.63
(Section 5.6) Find the value $\frac{6 - \frac{1}{4}}{6 + \frac{1}{4}}$.

Exercise 8.64
(Section 6.3) Convert the complex decimal $1.11\frac{1}{4}$ to a decimal.

Exercise 8.65
(Solution on p. 503.) (Section 7.4) A woman 5 foot tall casts an 8-foot shadow at a particular time of the day. How tall is a tree that casts a 96-foot shadow at the same time of the day?

Exercise 8.66
(Solution on p. 503.) (Section 7.7) 11.62 is 83% of what number?

8.3 Estimation by Clustering*

8.3.1 Section Overview

• Estimation by Clustering

Cluster
When more than two numbers are to be added, the sum may be estimated using the clustering technique. The rounding technique could also be used, but if several of the numbers are seen to cluster (are seen to be close to) one particular number, the clustering technique provides a quicker estimate. Consider a sum such as

$32 + 68 + 29 + 73$

Notice two things:

1. There are more than two numbers to be added.
2. Clustering occurs.

(a) Both 68 and 73 cluster around 70, so $68 + 73$ is close to $80 + 70 = 2 \cdot 70 = 140$.

(b) Both 32 and 29 cluster around 30, so $32 + 29$ is close to $30 + 30 = 2 \cdot 30 = 60$.

The sum may be estimated by

$(2 \cdot 30) + (2 \cdot 70) = 6 + 140 = 200$

In fact, $32 + 68 + 29 + 73 = 202$.

*This content is available online at <http://cnx.org/content/m35012/1.2/>.
8.3.1.1 Sample Set A

Estimate each sum. Results may vary.

Example 8.10

\[27 + 48 + 31 + 52. \]

27 and 31 cluster near 30. Their sum is about \(2 \cdot 30 = 60\).

48 and 52 cluster near 50. Their sum is about \(2 \cdot 50 = 100\).

Thus, \(27 + 48 + 31 + 52\) is about \((2 \cdot 30) + (2 \cdot 50) = 60 + 100\) \(= 160\).

In fact, \(27 + 48 + 31 + 52 = 158\).

Example 8.11

\[88 + 21 + 19 + 91. \]

88 and 91 cluster near 90. Their sum is about \(2 \cdot 90 = 180\).

21 and 19 cluster near 20. Their sum is about \(2 \cdot 20 = 40\).

Thus, \(88 + 21 + 19 + 91\) is about \((2 \cdot 90) + (2 \cdot 20) = 180 + 40\) \(= 220\).

In fact, \(88 + 21 + 19 + 91 = 219\).

Example 8.12

\[17 + 21 + 48 + 18. \]

17, 21, and 18 cluster near 20. Their sum is about \(3 \cdot 20 = 60\).

48 is about 50.

Thus, \(17 + 21 + 48 + 18\) is about \((3 \cdot 20) + 50 = 60 + 50\) \(= 110\).

In fact, \(17 + 21 + 48 + 18 = 104\).

Example 8.13

\[61 + 48 + 49 + 57 + 52. \]

61 and 57 cluster near 60. Their sum is about \(2 \cdot 60 = 120\).

48, 49, and 52 cluster near 50. Their sum is about \(3 \cdot 50 = 150\).

Thus, \(61 + 48 + 49 + 57 + 52\) is about \((2 \cdot 60) + (3 \cdot 50) = 120 + 150\) \(= 270\).

In fact, \(61 + 48 + 49 + 57 + 52 = 267\).

Example 8.14

\[706 + 321 + 293 + 684. \]

706 and 684 cluster near 700. Their sum is about \(2 \cdot 700 = 1,400\).
321 and 293 cluster near 300. Their sum is about \(2 \cdot 300 = 600 \).

Thus, \(706 + 321 + 293 + 684 \) is about \((2 \cdot 700) + (2 \cdot 300) = 1,400 + 600 = 2,000 \).

In fact, \(706 + 321 + 293 + 684 = 2,004 \).

8.3.1.2 Practice Set A

Use the clustering method to estimate each sum.

<table>
<thead>
<tr>
<th>Exercise 8.67</th>
<th>(Solution on p. 503.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(28 + 51 + 31 + 47)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exercise 8.68</th>
<th>(Solution on p. 503.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(42 + 39 + 68 + 41)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exercise 8.69</th>
<th>(Solution on p. 503.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(37 + 39 + 83 + 42 + 79)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exercise 8.70</th>
<th>(Solution on p. 503.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(612 + 585 + 830 + 794)</td>
<td></td>
</tr>
</tbody>
</table>

8.3.2 Exercises

Use the clustering method to estimate each sum. Results may vary.

<table>
<thead>
<tr>
<th>Exercise 8.71</th>
<th>(Solution on p. 503.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(28 + 51 + 31 + 47)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exercise 8.72</th>
<th>(Solution on p. 503.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(42 + 19 + 39 + 23)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exercise 8.73</th>
<th>(Solution on p. 503.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(88 + 62 + 59 + 90)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exercise 8.74</th>
<th>(Solution on p. 503.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(76 + 29 + 33 + 82)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exercise 8.75</th>
<th>(Solution on p. 503.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(19 + 23 + 87 + 21)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exercise 8.76</th>
<th>(Solution on p. 503.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(41 + 28 + 42 + 37)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exercise 8.77</th>
<th>(Solution on p. 503.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(89 + 32 + 89 + 93)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exercise 8.78</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(73 + 72 + 27 + 71)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exercise 8.79</th>
<th>(Solution on p. 503.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(43 + 62 + 61 + 55)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exercise 8.80</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(31 + 77 + 31 + 27)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exercise 8.81</th>
<th>(Solution on p. 504.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(57 + 34 + 28 + 61 + 62)</td>
<td></td>
</tr>
</tbody>
</table>
Exercise 8.82
94 + 18 + 23 + 91 + 19

Exercise 8.83
103 + 72 + 66 + 97 + 99

Exercise 8.84
42 + 121 + 119 + 124 + 41

Exercise 8.85
19 + 24 + 87 + 23 + 91 + 93

Exercise 8.86
108 + 61 + 63 + 96 + 57 + 99

Exercise 8.87
518 + 721 + 493 + 689

Exercise 8.88
981 + 1208 + 1214 + 1006

Exercise 8.89
23 + 81 + 77 + 79 + 23 + 91 + 93

Exercise 8.90
94 + 68 + 66 + 101 + 106 + 71 + 110

8.3.2.1 Exercises for Review

Exercise 8.91
(Section 1.2) Specify all the digits greater than 6.

Exercise 8.92
(Section 4.5) Find the product: $\frac{2}{3} \cdot \frac{9}{14} \cdot \frac{7}{12}$.

Exercise 8.93
(Section 6.3) Convert 0.06 to a fraction.

Exercise 8.94
(Section 7.3) Write the proportion in fractional form: "5 is to 8 as 25 is to 40."

Exercise 8.95
(Section 8.2) Estimate the sum using the method of rounding: 4,882 + 2,704.

8.4 Mental Arithmetic-Using the Distributive Property

8.4.1 Section Overview

- The Distributive Property
- Estimation Using the Distributive Property

4This content is available online at <http://cnx.org/content/m35013/1.2/>.
8.4.2 The Distributive Property

Distributive Property
The distributive property is a characteristic of numbers that involves both addition and multiplication. It is used often in algebra, and we can use it now to obtain exact results for a multiplication.

Suppose we wish to compute $3(2 + 5)$. We can proceed in either of two ways, one way which is known to us already (the order of operations), and a new way (the distributive property).

1. Compute $3(2 + 5)$ using the order of operations.

 $3(2 + 5)$

 Operate inside the parentheses first: $2 + 5 = 7$.

 $3(2 + 5) = 3 \cdot 7$

 Now multiply 3 and 7.

 $3(2 + 5) = 3 \cdot 7 = 21$

 Thus, $3(2 + 5) = 21$.

2. Compute $3(2 + 5)$ using the distributive property.

 We know that multiplication describes repeated addition. Thus,

 \[
 3(2 + 5) = \underbrace{2 + 5 + 2 + 5 + 2 + 5}_{
 \text{2 + 5 appears 3 times}}
 \]

 \[
 = 2 + 2 + 2 + 5 + 5 + 5
 \] \hspace{1em} \text{(by the commutative property of addition)}

 \[
 = 3 \cdot 2 + 3 \cdot 5
 \] \hspace{1em} \text{(since multiplication describes repeated addition)}

 \[
 = 6 + 15
 \]

 \[
 = 21
 \]

 Thus, $3(2 + 5) = 21$.

Let’s look again at this use of the distributive property.

\[
3(2 + 5) = \underbrace{2 + 5 + 2 + 5 + 2 + 5}_{
\text{2 + 5 appears 3 times}}
\]

\[
3(2 + 5) = \underbrace{2 + 2 + 2}_{
\text{2 appears 3 times}} + \underbrace{5 + 5 + 5}_{
\text{5 appears 3 times}}
\]

\[
3(2 + 5) = 3 \cdot 2 + 3 \cdot 5
\]

The 3 has been distributed to the 2 and 5.

This is the distributive property. We distribute the factor to each addend in the parentheses. The distributive property works for both sums and differences.
8.4.2.1 Sample Set A

Example 8.15

\[4(6 + 2) = 4 \cdot 6 + 4 \cdot 2 \]
\[= 24 + 8 \]
\[= 32 \]

Using the order of operations, we get

\[4(6 + 2) = 4 \cdot 8 \]
\[= 32 \]

Example 8.16

\[8(9 + 6) = 8 \cdot 9 + 8 \cdot 6 \]
\[= 72 + 48 \]
\[= 120 \]

Using the order of operations, we get

\[8(9 + 6) = 8 \cdot 15 \]
\[= 120 \]

Example 8.17

\[4(9 - 5) = 4 \cdot 9 - 4 \cdot 5 \]
\[= 36 - 20 \]
\[= 16 \]

Example 8.18

\[25(20 - 3) = 25 \cdot 20 - 25 \cdot 3 \]
\[= 500 - 75 \]
\[= 425 \]

8.4.2.2 Practice Set A

Use the distributive property to compute each value.

Exercise 8.96
\[6(8 + 4) \]
(Solution on p. 504.)

Exercise 8.97
\[4(4 + 7) \]
(Solution on p. 504.)

Exercise 8.98
\[8(2 + 9) \]
(Solution on p. 504.)

Exercise 8.99
\[12(10 + 3) \]
(Solution on p. 504.)

Exercise 8.100
\[6(11 - 3) \]
(Solution on p. 504.)

Exercise 8.101
\[8(9 - 7) \]
(Solution on p. 504.)

Exercise 8.102
\[15(30 - 8) \]
(Solution on p. 504.)
8.4.3 Estimation Using the Distributive Property

We can use the distributive property to obtain exact results for products such as $25 \cdot 23$. The distributive property works best for products when one of the factors ends in 0 or 5. We shall restrict our attention to only such products.

8.4.3.1 Sample Set B

Use the distributive property to compute each value.

Example 8.19

$25 \cdot 23$

Notice that $23 = 20 + 3$. We now write

$25 \cdot 23 = 25(20 + 3)$

$= 25 \cdot 20 + 25 \cdot 3$

$= 500 + 75$

$= 575$

Thus, $25 \cdot 23 = 575$

We could have proceeded by writing 23 as $30 - 7$.

$25 \cdot 23 = 25(30 - 7)$

$= 25 \cdot 30 - 25 \cdot 7$

$= 750 - 175$

$= 575$

Example 8.20

$15 \cdot 37$

Notice that $37 = 30 + 7$. We now write

$15 \cdot 37 = 15(30 + 7)$

$= 15 \cdot 30 + 15 \cdot 7$

$= 450 + 105$

$= 555$

Thus, $15 \cdot 37 = 555$

We could have proceeded by writing 37 as $40 - 3$.

$15 \cdot 37 = 15(40 - 3)$

$= 15 \cdot 40 - 15 \cdot 3$

$= 600 - 45$

$= 555$

Example 8.21

$15 \cdot 86$

Notice that $86 = 80 + 6$. We now write
\[15 \cdot 86 = 15(80 + 6) \]
\[= 15 \cdot 80 + 15 \cdot 6 \]
\[= 1,200 + 90 \]
\[= 1,290 \]

We could have proceeded by writing 86 as 90 – 4.

\[15 \cdot 86 = 15(90 - 4) \]
\[= 15 \cdot 90 - 15 \cdot 4 \]
\[= 1,350 - 60 \]
\[= 1,290 \]

8.4.3.2 Practice Set B

Use the distributive property to compute each value.

- **Exercise 8.103**
 \[25 \cdot 12 \]
 (Solution on p. 504.)

- **Exercise 8.104**
 \[35 \cdot 14 \]
 (Solution on p. 504.)

- **Exercise 8.105**
 \[80 \cdot 58 \]
 (Solution on p. 504.)

- **Exercise 8.106**
 \[65 \cdot 62 \]
 (Solution on p. 504.)

8.4.4 Exercises

Use the distributive property to compute each product.

- **Exercise 8.107**
 \[15 \cdot 13 \]
 (Solution on p. 504.)

- **Exercise 8.108**
 \[15 \cdot 14 \]
 (Solution on p. 504.)

- **Exercise 8.109**
 \[25 \cdot 11 \]
 (Solution on p. 504.)

- **Exercise 8.110**
 \[25 \cdot 16 \]
 (Solution on p. 504.)

- **Exercise 8.111**
 \[15 \cdot 16 \]
 (Solution on p. 504.)

- **Exercise 8.112**
 \[35 \cdot 12 \]
 (Solution on p. 504.)

- **Exercise 8.113**
 \[45 \cdot 83 \]
 (Solution on p. 504.)

- **Exercise 8.114**
 \[45 \cdot 38 \]
 (Solution on p. 504.)

- **Exercise 8.115**
 \[25 \cdot 38 \]
 (Solution on p. 504.)
Exercise 8.116
25 · 96

Exercise 8.117
75 · 14
(Solution on p. 504.)

Exercise 8.118
85 · 34

Exercise 8.119
65 · 26
(Solution on p. 505.)

Exercise 8.120
55 · 51

Exercise 8.121
15 · 107
(Solution on p. 505.)

Exercise 8.122
25 · 208

Exercise 8.123
35 · 402
(Solution on p. 505.)

Exercise 8.124
85 · 110

Exercise 8.125
95 · 12
(Solution on p. 505.)

Exercise 8.126
65 · 40

Exercise 8.127
80 · 32
(Solution on p. 505.)

Exercise 8.128
30 · 47

Exercise 8.129
50 · 63
(Solution on p. 505.)

Exercise 8.130
90 · 78

Exercise 8.131
40 · 89
(Solution on p. 505.)

8.4.4.1 Exercises for Review

Exercise 8.132
(Section 3.5) Find the greatest common factor of 360 and 3,780.

Exercise 8.133
(Section 4.5) Reduce \(\frac{594}{5,148} \) to lowest terms.
(Solution on p. 505.)

Exercise 8.134
(Section 4.7) \(1 \frac{4}{5} \) of \(2 \frac{4}{7} \) is what number?
(Solution on p. 505.)

Exercise 8.135
(Section 7.3) Solve the proportion: \(\frac{7}{15} = \frac{x}{30} \).
(Solution on p. 505.)

Exercise 8.136
(Section 8.3) Use the clustering method to estimate the sum: \(88 + 106 + 91 + 114 \).
8.5 Estimation by Rounding Fractions

8.5.1 Section Overview

- Estimation by Rounding Fractions

Estimation by rounding fractions is a useful technique for estimating the result of a computation involving fractions. Fractions are commonly rounded to $\frac{1}{4}$, $\frac{1}{2}$, $\frac{3}{4}$, 0, and 1. Remember that rounding may cause estimates to vary.

8.5.1.1 Sample Set A

Make each estimate remembering that results may vary.

Example 8.22

Estimate $\frac{3}{5} + \frac{5}{12}$.

Notice that $\frac{3}{5}$ is about $\frac{1}{2}$, and that $\frac{5}{12}$ is about $\frac{1}{2}$.

Thus, $\frac{3}{5} + \frac{5}{12}$ is about $\frac{1}{2} + \frac{1}{2} = 1$. In fact, $\frac{3}{5} + \frac{5}{12} = \frac{61}{60}$, a little more than 1.

Example 8.23

Estimate $5 \frac{3}{8} + 4 \frac{9}{10} + 11 \frac{1}{5}$.

Adding the whole number parts, we get 20. Notice that $\frac{3}{8}$ is close to $\frac{1}{4}$, $\frac{9}{10}$ is close to 1, and $\frac{1}{5}$ is close to $\frac{1}{4}$. Then $\frac{3}{8} + \frac{9}{10} + \frac{1}{5}$ is close to $\frac{1}{4} + 1 + \frac{1}{4} = 1 \frac{1}{2}$.

Thus, $5 \frac{3}{8} + 4 \frac{9}{10} + 11 \frac{1}{5}$ is close to $20 + 1 \frac{1}{2} = 21 \frac{1}{2}$.

In fact, $5 \frac{3}{8} + 4 \frac{9}{10} + 11 \frac{1}{5} = 21 \frac{19}{40}$, a little less than $21 \frac{1}{2}$.

8.5.1.2 Practice Set A

Use the method of rounding fractions to estimate the result of each computation. Results may vary.

Exercise 8.137

$\frac{5}{8} + \frac{5}{12}$
(Solution on p. 505.)

Exercise 8.138

$\frac{7}{9} + \frac{3}{5}$
(Solution on p. 505.)

Exercise 8.139

$8 \frac{4}{15} + 3 \frac{7}{10}$
(Solution on p. 505.)

Exercise 8.140

$16 \frac{1}{20} + 4 \frac{7}{8}$
(Solution on p. 505.)

5 This content is available online at <http://cnx.org/content/m35014/1.2/>.
8.5.2 Exercises

Estimate each sum or difference using the method of rounding. After you have made an estimate, find the exact value of the sum or difference and compare this result to the estimated value. Result may vary.

Exercise 8.141
\[\frac{3}{6} + \frac{1}{3} \]
(Solution on p. 505.)

Exercise 8.142
\[\frac{3}{8} + \frac{11}{12} \]

Exercise 8.143
\[\frac{9}{10} + \frac{1}{5} \]
(Solution on p. 505.)

Exercise 8.144
\[\frac{13}{15} + \frac{1}{20} \]

Exercise 8.145
\[\frac{3}{26} + \frac{6}{25} \]
(Solution on p. 505.)

Exercise 8.146
\[\frac{1}{12} + \frac{4}{5} \]

Exercise 8.147
\[\frac{15}{12} + \frac{1}{12} \]
(Solution on p. 505.)

Exercise 8.148
\[\frac{29}{50} + \frac{11}{20} \]

Exercise 8.149
\[\frac{5}{12} + 6\frac{4}{11} \]
(Solution on p. 505.)

Exercise 8.150
\[\frac{3}{7} + 8\frac{4}{15} \]

Exercise 8.151
\[\frac{9}{10} + 2\frac{2}{5} \]
(Solution on p. 505.)

Exercise 8.152
\[\frac{19}{20} + 15\frac{5}{7} \]

Exercise 8.153
\[8\frac{2}{5} + 4\frac{1}{20} \]
(Solution on p. 505.)

Exercise 8.154
\[\frac{5}{20} + 2\frac{8}{15} \]

Exercise 8.155
\[9\frac{1}{15} + 6\frac{4}{5} \]
(Solution on p. 505.)

Exercise 8.156
\[7\frac{5}{12} + 10\frac{1}{17} \]

Exercise 8.157
\[3\frac{14}{25} + 2\frac{13}{25} + 1\frac{2}{5} \]
(Solution on p. 505.)

Exercise 8.158
\[6\frac{12}{17} + 1\frac{1}{10} + 5\frac{2}{5} \]

Exercise 8.159
\[15\frac{15}{16} - \frac{7}{5} \]
(Solution on p. 505.)

Exercise 8.160
\[\frac{13}{25} - \frac{9}{26} \]
8.5.2.1 Exercises for Review

Exercise 8.161
(Section 2.6) The fact that
(a first number · a second number) · a third number = a first number
(a second number · a third number)
is an example of which property of multiplication?

Exercise 8.162
(Section 4.6) Find the quotient: \(\frac{14}{15} \div \frac{4}{15} \).

Exercise 8.163
(Section 5.4) Find the difference: \(3 \frac{2}{5} - 2 \frac{2}{7} \).

Exercise 8.164
(Section 6.8) Find the quotient: \(4.6 \div 0.11 \).

Exercise 8.165
(Section 8.4) Use the distributive property to compute the product: \(25 \cdot 37 \).

8.6 Summary of Key Concepts\(^6\)

8.6.1 Summary of Key Concepts

Estimation (Section 8.2)

Estimation is the process of determining an expected value of a computation.

Estimation By Rounding (Section 8.2)

The rounding technique estimates the result of a computation by rounding the numbers involved in the computation to one or two nonzero digits. For example, \(512 + 896 \) can be estimated by \(500 + 900 = 1,400 \).

Cluster (Section 8.3)

When several numbers are close to one particular number, they are said to cluster near that particular number.

Estimation By Clustering (Section 8.3)

The clustering technique of estimation can be used when

1. there are more than two numbers to be added, and
2. clustering occurs.

For example, \(31 + 62 + 28 + 59 \) can be estimated by \((2 \cdot 30) + (2 \cdot 60) = 60 + 120 = 180 \)

Distributive Property (Section 8.4)

The distributive property is a characteristic of numbers that involves both addition and multiplication. For example, \(3 (4 + 6) = 3 \cdot 4 + 3 \cdot 6 = 12 + 18 = 30 \)

Estimation Using the Distributive Property (Section 8.4)

The distributive property can be used to obtain exact results for a multiplication. For example, \(15 \cdot 23 = 15 \cdot (20 + 3) = 15 \cdot 20 + 15 \cdot 3 = 300 + 45 = 345 \)

\(^6\)This content is available online at \(<http://cnx.org/content/m35015/1.2/>\).
Estimation by Rounding Fractions (Section 8.5)

Estimation by rounding fractions commonly rounds fractions to $\frac{1}{4}$, $\frac{1}{2}$, $\frac{3}{4}$, 0, and 1.

For example,

$\frac{5}{12} + \frac{5}{16}$ can be estimated by $\frac{1}{2} + \frac{1}{4} = \frac{3}{4}$

8.7 Exercise Supplement

8.7.1 Exercise Supplement

8.7.1.1 Estimation by Rounding (Section 8.2)

For problems 1-70, estimate each value using the method of rounding. After you have made an estimate, find the exact value. Compare the exact and estimated values. Results may vary.

Exercise 8.166

$286 + 312$
(Solution on p. 506.)

Exercise 8.167

$419 + 582$

Exercise 8.168

$689 + 511$
(Solution on p. 506.)

Exercise 8.169

$926 + 1,105$

Exercise 8.170

$1,927 + 3,017$
(Solution on p. 506.)

Exercise 8.171

$5,026 + 2,814$

Exercise 8.172

$1,408 + 2,352$
(Solution on p. 506.)

Exercise 8.173

$1,186 + 4,228$

Exercise 8.174

$5,771 + 246$
(Solution on p. 506.)

Exercise 8.175

$8,305 + 484$

Exercise 8.176

$3,812 + 2,906$
(Solution on p. 506.)

Exercise 8.177

$5,293 + 8,007$

Exercise 8.178

$28,481 + 32,856$
(Solution on p. 506.)

Exercise 8.179

$92,512 + 26,071$

Exercise 8.180

$87,612 + 2,106$
(Solution on p. 506.)

Exercise 8.181

$42,612 + 4,861$

This content is available online at [http://cnx.org/content/m35016/1.2/].
Exercise 8.182
212,413 + 609
(Solution on p. 506.)

Exercise 8.183
487,235 + 494

Exercise 8.184
2,409 + 1,526
(Solution on p. 506.)

Exercise 8.185
3,704 + 4,704
(Solution on p. 506.)

Exercise 8.186
41 · 63
(Solution on p. 506.)

Exercise 8.187
38 · 81
(Solution on p. 506.)

Exercise 8.188
18 · 28
(Solution on p. 506.)

Exercise 8.189
52 · 21
(Solution on p. 506.)

Exercise 8.190
307 · 489
(Solution on p. 506.)

Exercise 8.191
412 · 807
(Solution on p. 506.)

Exercise 8.192
77 · 614
(Solution on p. 506.)

Exercise 8.193
62 · 596
(Solution on p. 506.)

Exercise 8.194
27 · 473
(Solution on p. 506.)

Exercise 8.195
92 · 336
(Solution on p. 506.)

Exercise 8.196
12 · 814
(Solution on p. 506.)

Exercise 8.197
8 · 2,106
(Solution on p. 506.)

Exercise 8.198
192 · 452
(Solution on p. 506.)

Exercise 8.199
374 · 816
(Solution on p. 506.)

Exercise 8.200
88 · 4,392
(Solution on p. 506.)

Exercise 8.201
126 · 2,834
(Solution on p. 506.)

Exercise 8.202
3,896 · 413
(Solution on p. 506.)

Exercise 8.203
5,794 · 837
(Solution on p. 506.)

Exercise 8.204
6,311 · 3,512
(Solution on p. 506.)
Exercise 8.205
7,471 ÷ 5,782

Exercise 8.206
180 ÷ 12
(Solution on p. 506.)

Exercise 8.207
309 ÷ 16
(Solution on p. 506.)

Exercise 8.208
286 ÷ 22

Exercise 8.209
527 ÷ 17
(Solution on p. 506.)

Exercise 8.210
1,007 ÷ 19
(Solution on p. 506.)

Exercise 8.211
1,728 ÷ 36
(Solution on p. 506.)

Exercise 8.212
2,703 ÷ 53
(Solution on p. 506.)

Exercise 8.213
2,562 ÷ 61

Exercise 8.214
1,260 ÷ 12
(Solution on p. 507.)

Exercise 8.215
3,618 ÷ 18
(Solution on p. 507.)

Exercise 8.216
3,344 ÷ 76
(Solution on p. 507.)

Exercise 8.217
7,476 ÷ 356
(Solution on p. 507.)

Exercise 8.218
20,984 ÷ 488

Exercise 8.219
43,776 ÷ 608
(Solution on p. 507.)

Exercise 8.220
7,196 ÷ 514
(Solution on p. 507.)

Exercise 8.221
51,492 ÷ 514
(Solution on p. 507.)

Exercise 8.222
26,962 ÷ 442
(Solution on p. 507.)

Exercise 8.223
33,712 ÷ 112
(Solution on p. 507.)

Exercise 8.224
105,152 ÷ 106

Exercise 8.225
176,978 ÷ 214
(Solution on p. 507.)

Exercise 8.226
48.06 + 23.11
(Solution on p. 507.)

Exercise 8.227
73.73 + 72.9
Exercise 8.228
62.91 + 56.4

(Solution on p. 507.)

Exercise 8.229
87.865 + 46.772

(Solution on p. 507.)

Exercise 8.230
174.6 + 97.2

(Solution on p. 507.)

Exercise 8.231
(48.3) (29.6)

(Solution on p. 507.)

Exercise 8.232
(87.11) (23.2)

(Solution on p. 507.)

Exercise 8.233
(107.02) (48.7)

(Solution on p. 507.)

Exercise 8.234
(0.76) (5.21)

(Solution on p. 507.)

Exercise 8.235
(1.07) (13.89)

(Solution on p. 507.)

8.7.1.2 Estimation by Clustering (Section 8.3)

For problems 71-90, estimate each value using the method of clustering. After you have made an estimate, find the exact value. Compare the exact and estimated values. Results may vary.

Exercise 8.236
38 + 51 + 41 + 48

(Solution on p. 507.)

Exercise 8.237
19 + 73 + 23 + 71

(Solution on p. 507.)

Exercise 8.238
27 + 62 + 59 + 31

(Solution on p. 507.)

Exercise 8.239
18 + 73 + 69 + 19

(Solution on p. 507.)

Exercise 8.240
83 + 49 + 79 + 52

(Solution on p. 507.)

Exercise 8.241
67 + 71 + 84 + 81

(Solution on p. 507.)

Exercise 8.242
16 + 13 + 24 + 26

(Solution on p. 507.)

Exercise 8.243
34 + 56 + 36 + 55

(Solution on p. 507.)

Exercise 8.244
14 + 17 + 83 + 87

(Solution on p. 507.)

Exercise 8.245
93 + 108 + 96 + 111

(Solution on p. 507.)

Exercise 8.246
18 + 20 + 31 + 29 + 24 + 38

(Solution on p. 507.)

Exercise 8.247
32 + 27 + 48 + 51 + 72 + 69

(Solution on p. 507.)
Exercise 8.248
64 + 17 + 27 + 59 + 31 + 21
(Solution on p. 507.)

Exercise 8.249
81 + 41 + 92 + 38 + 88 + 80
(Solution on p. 507.)

Exercise 8.250
87 + 22 + 91
(Solution on p. 507.)

Exercise 8.251
44 + 38 + 87
(Solution on p. 507.)

Exercise 8.252
19 + 18 + 39 + 22 + 42
(Solution on p. 507.)

Exercise 8.253
31 + 28 + 49 + 29
(Solution on p. 507.)

Exercise 8.254
88 + 86 + 27 + 91 + 29
(Solution on p. 507.)

Exercise 8.255
57 + 62 + 18 + 23 + 61 + 21
(Solution on p. 507.)

8.7.1.3 Mental Arithmetic- Using the Distributive Property (Section 8.4)

For problems 91-110, compute each product using the distributive property.

Exercise 8.256
15 · 33
(Solution on p. 507.)

Exercise 8.257
15 · 42
(Solution on p. 507.)

Exercise 8.258
35 · 36
(Solution on p. 507.)

Exercise 8.259
35 · 28
(Solution on p. 507.)

Exercise 8.260
85 · 23
(Solution on p. 507.)

Exercise 8.261
95 · 11
(Solution on p. 507.)

Exercise 8.262
30 · 14
(Solution on p. 507.)

Exercise 8.263
60 · 18
(Solution on p. 508.)

Exercise 8.264
75 · 23
(Solution on p. 508.)

Exercise 8.265
65 · 31
(Solution on p. 508.)

Exercise 8.266
17 · 15
(Solution on p. 508.)

Exercise 8.267
38 · 25
8.7.1.4 Estimation by Rounding Fractions (Section 8.5)

For problems 111-125, estimate each sum using the method of rounding fractions. After you have made an estimate, find the exact value. Compare the exact and estimated values. Results may vary.

Exercise 8.276
\(\frac{3}{8} + \frac{5}{8} \)
(Solution on p. 508.)

Exercise 8.277
\(\frac{7}{15} + \frac{1}{24} \)

Exercise 8.278
\(\frac{7}{15} + \frac{13}{30} \)
(Solution on p. 508.)

Exercise 8.279
\(\frac{14}{15} + \frac{19}{30} \)

Exercise 8.280
\(\frac{13}{25} + \frac{7}{50} \)
(Solution on p. 508.)

Exercise 8.281
\(\frac{11}{12} + \frac{7}{8} \)

Exercise 8.282
\(\frac{9}{32} + \frac{15}{16} \)
(Solution on p. 508.)

Exercise 8.283
\(\frac{5}{8} + \frac{1}{32} \)

Exercise 8.284
\(2\frac{3}{4} + 6\frac{1}{3} \)
(Solution on p. 508.)

Exercise 8.285
\(4\frac{5}{9} + 8\frac{1}{3} \)

Exercise 8.286
\(11\frac{5}{16} + 7\frac{22}{18} \)
(Solution on p. 508.)

Exercise 8.287
\(14\frac{19}{36} + 2\frac{7}{18} \)
Exercise 8.288
\[\frac{6}{25} + 2\frac{1}{10} + 8\frac{13}{100} \] (Solution on p. 508.)

Exercise 8.289
\[\frac{5}{8} + 1\frac{1}{4} + 12\frac{5}{12} \] (Solution on p. 508.)

Exercise 8.290
\[10\frac{1}{2} + 6\frac{15}{10} + 8\frac{10}{80} \] (Solution on p. 508.)

8.8 Proficiency Exam*

8.8.1 Proficiency Exam

For problems 1 - 16, estimate each value. After you have made an estimate, find the exact value. Results may vary.

Exercise 8.291
(Section 8.2) \(3,716 + 6,789 \) (Solution on p. 508.)

Exercise 8.292
(Section 8.2) \(8,821 + 9,217 \) (Solution on p. 508.)

Exercise 8.293
(Section 8.2) \(7,316 - 2,305 \) (Solution on p. 508.)

Exercise 8.294
(Section 8.2) \(110,812 - 83,406 \) (Solution on p. 508.)

Exercise 8.295
(Section 8.2) \(82 \cdot 38 \) (Solution on p. 508.)

Exercise 8.296
(Section 8.2) \(51 \cdot 92 \) (Solution on p. 508.)

Exercise 8.297
(Section 8.2) \(48 \cdot 6,012 \) (Solution on p. 508.)

Exercise 8.298
(Section 8.2) \(238 \div 17 \) (Solution on p. 508.)

Exercise 8.299
(Section 8.2) \(2,660 \div 28 \) (Solution on p. 508.)

Exercise 8.300
(Section 8.2) \(43.06 + 37.94 \) (Solution on p. 508.)

Exercise 8.301
(Section 8.2) \(307.006 + 198.0005 \) (Solution on p. 508.)

Exercise 8.302
(Section 8.2) \((47.2) (92.8) \) (Solution on p. 509.)

Exercise 8.303
(Section 8.3) \(58 + 91 + 61 + 88 \) (Solution on p. 509.)

Exercise 8.304
(Section 8.3) \(43 + 39 + 89 + 92 \) (Solution on p. 509.)

Exercise 8.305
(Section 8.3) \(81 + 78 + 27 + 79 \) (Solution on p. 509.)

*This content is available online at <http://cnx.org/content/m35017/1.2/>.
Exercise 8.306
(Solution on p. 509.)
(Section 8.3) $804 + 612 + 801 + 795 + 606$
For problems 17-21, use the distributive property to obtain the exact result.

Exercise 8.307
(Solution on p. 509.)
(Section 8.4) $25 \cdot 14$

Exercise 8.308
(Solution on p. 509.)
(Section 8.4) $15 \cdot 83$

Exercise 8.309
(Solution on p. 509.)
(Section 8.4) $65 \cdot 98$

Exercise 8.310
(Solution on p. 509.)
(Section 8.4) $80 \cdot 107$

Exercise 8.311
(Solution on p. 509.)
(Section 8.4) $400 \cdot 215$

For problems 22-25, estimate each value. After you have made an estimate, find the exact value. Results may vary.

Exercise 8.312
(Solution on p. 509.)
(Section 8.5) $\frac{15}{16} + \frac{5}{8}$

Exercise 8.313
(Solution on p. 509.)
(Section 8.5) $\frac{1}{25} + \frac{11}{26} + \frac{17}{36}$

Exercise 8.314
(Solution on p. 509.)
(Section 8.5) $8\frac{13}{17} + 14\frac{1}{12}$

Exercise 8.315
(Solution on p. 509.)
(Section 8.5) $5\frac{4}{9} + 1\frac{17}{36} + 6\frac{5}{12}$
Solutions to Exercises in Chapter 8

Solution to Exercise 8.1 (p. 476)
4, 216 + 3, 942 : 4, 200 + 3, 900. About 8,100. In fact, 8,158.

Solution to Exercise 8.2 (p. 476)
812 + 514 : 800 + 500. About 1,300. In fact, 1,326.

Solution to Exercise 8.3 (p. 476)
43, 892 + 92, 106 : 44, 000 + 92, 000. About 136,000. In fact, 135,998.

Solution to Exercise 8.4 (p. 477)

Solution to Exercise 8.5 (p. 477)

Solution to Exercise 8.6 (p. 477)
73, 812 − 28, 492 : 74, 000 − 28, 000. About 46,000. In fact, 45,320.

Solution to Exercise 8.7 (p. 477)
31 · 87 : 30 · 90. About 2,700. In fact, 2,697.

Solution to Exercise 8.8 (p. 477)
18 · 42 : 20 · 40. About 800. In fact, 756.

Solution to Exercise 8.9 (p. 477)
16 · 94 : 15 · 100. About 1,500. In fact, 1,504.

Solution to Exercise 8.10 (p. 478)

Solution to Exercise 8.11 (p. 478)
4, 079 ÷ 381 : 4, 000 ÷ 400. About 10. In fact, 10.70603675...

Solution to Exercise 8.12 (p. 478)
609, 000 ÷ 16, 000 : 600, 000 ÷ 15, 000. About 40. In fact, 38.0625.

Solution to Exercise 8.13 (p. 479)
61.02 + 26.8 : 61 + 27. About 88. In fact, 87.82.

Solution to Exercise 8.14 (p. 479)
109.12 + 137.88 : 110 + 138. About 248. In fact, 247. We could have estimated 137.88 with 140. Then 110 + 140 is an easy mental addition. We would conclude then that 109.12 + 137.88 is about 250.

Solution to Exercise 8.15 (p. 479)
(47.8) (21.1) : (50) (20). About 1,000. In fact, 1,008.58.

Solution to Exercise 8.16 (p. 479)

Solution to Exercise 8.17 (p. 479)
about 3,600; in fact 3,600

Solution to Exercise 8.19 (p. 480)
about 1,700; in fact 1,717

Solution to Exercise 8.21 (p. 480)
about 14,000; in fact 14,006

Solution to Exercise 8.23 (p. 480)
about 3,500; in fact 3,539

Solution to Exercise 8.25 (p. 480)
about 5,700; in fact 5,694

Solution to Exercise 8.27 (p. 480)
about 1,500; in fact 1,696

Solution to Exercise 8.29 (p. 480)
about 540,000; in fact 559,548

Solution to Exercise 8.31 (p. 480)
about 583,200,000; in fact 583,876,992
Solution to Exercise 8.33 (p. 480)
about 15; in fact 15.11
Solution to Exercise 8.35 (p. 480)
about 20; in fact 22
Solution to Exercise 8.37 (p. 480)
about 33; in fact 33.86
Solution to Exercise 8.39 (p. 480)
about 93.2; in fact 93.22
Solution to Exercise 8.41 (p. 480)
about 70; in fact 69.62
Solution to Exercise 8.43 (p. 481)
about 348.6; in fact 348.57
Solution to Exercise 8.45 (p. 481)
about 1,568.0; in fact 1,564.244
Solution to Exercise 8.47 (p. 481)
about 49.5; in fact 49.60956
Solution to Exercise 8.49 (p. 481)
about 43,776; in fact 43,833.258
Solution to Exercise 8.51 (p. 481)
about 6.21; in fact 6.0896
Solution to Exercise 8.53 (p. 481)
about 0.0519; in fact 0.05193
Solution to Exercise 8.55 (p. 481)
about 6.3; in fact 6.5193
Solution to Exercise 8.57 (p. 481)
about 4.5; in fact 4.896
Solution to Exercise 8.59 (p. 481)
about 0.8; in fact 0.74124
Solution to Exercise 8.61 (p. 481)
about 0.00008; in fact 0.000078
Solution to Exercise 8.63 (p. 482)
\[
\frac{23}{25} \quad \text{or} \quad 23 \div 25 = 0.92
\]
Solution to Exercise 8.65 (p. 482)
60 feet tall
Solution to Exercise 8.67 (p. 484)
\[
(2 \cdot 30) + (2 \cdot 50) = 60 + 100 = 160
\]
Solution to Exercise 8.68 (p. 484)
\[
(3 \cdot 40) + 70 = 120 + 70 = 190
\]
Solution to Exercise 8.69 (p. 484)
\[
(3 \cdot 40) + (2 \cdot 80) = 120 + 160 = 280
\]
Solution to Exercise 8.70 (p. 484)
\[
(2 \cdot 600) + (2 \cdot 800) = 1,200 + 1,600 = 2,800
\]
Solution to Exercise 8.71 (p. 484)
\[
2 \cdot (30) + 2 \cdot (50) = 60 + 100 = 160 \quad (157)
\]
Solution to Exercise 8.73 (p. 484)
\[
2 \cdot (90) + 2 \cdot (60) = 300 \quad (299)
\]
Solution to Exercise 8.75 (p. 484)
\[
3 \cdot (20) + 90 = 150 \quad (150)
\]
Solution to Exercise 8.77 (p. 484)
\[
3 \cdot (90) + 30 = 300 \quad (303)
\]
Solution to Exercise 8.79 (p. 484)
40 + 3 (60) = 220 (221)

Solution to Exercise 8.81 (p. 484)
3 (60) + 2 (30) = 240 (242)

Solution to Exercise 8.83 (p. 485)
3 (100) + 2 (70) = 440 (437)

Solution to Exercise 8.85 (p. 485)
3 (20) + 3 (90) = 330 (337)

Solution to Exercise 8.87 (p. 485)
2 (500) + 2 (700) = 2,400 (2,421)

Solution to Exercise 8.89 (p. 485)
2 (20) + 4 (80) = 360 (360)

Solution to Exercise 8.91 (p. 485)
7, 8, 9

Solution to Exercise 8.93 (p. 485)
3

Solution to Exercise 8.95 (p. 485)
4, 900 + 2,700 = 7,600 (7,586)

Solution to Exercise 8.96 (p. 487)
6 · 8 + 6 · 4 = 48 + 24 = 72

Solution to Exercise 8.97 (p. 487)
4 · 4 + 4 · 7 = 16 + 28 = 44

Solution to Exercise 8.98 (p. 487)
8 · 2 + 8 · 9 = 16 + 72 = 88

Solution to Exercise 8.99 (p. 487)
12 · 10 + 12 · 3 = 120 + 36 = 156

Solution to Exercise 8.100 (p. 487)
6 · 11 − 6 · 3 = 66 − 18 = 48

Solution to Exercise 8.101 (p. 487)
8 · 9 − 8 · 7 = 72 − 56 = 16

Solution to Exercise 8.102 (p. 487)
15 · 30 − 15 · 8 = 450 − 120 = 330

Solution to Exercise 8.103 (p. 489)
25 (10 + 2) = 25 · 10 + 25 · 2 = 250 + 50 = 300

Solution to Exercise 8.104 (p. 489)
35 (10 + 4) = 35 · 10 + 35 · 4 = 350 + 140 = 490

Solution to Exercise 8.105 (p. 489)
80 (50 + 8) = 80 · 50 + 80 · 8 = 4,000 + 640 = 4,640

Solution to Exercise 8.106 (p. 489)
65 (60 + 2) = 65 · 60 + 65 · 2 = 3,900 + 130 = 4,030

Solution to Exercise 8.107 (p. 489)
15 (10 + 3) = 150 + 45 = 195

Solution to Exercise 8.109 (p. 489)
25 (10 + 1) = 250 + 25 = 275

Solution to Exercise 8.111 (p. 489)
15 (20 + 4) = 300 − 60 = 240

Solution to Exercise 8.113 (p. 489)
45 (80 + 3) = 3600 + 135 = 3735

Solution to Exercise 8.115 (p. 489)
25 (40 − 2) = 1,000 − 50 = 950
Solution to Exercise 8.117 (p. 490)
75 (10 + 4) = 750 + 300 = 1,050
Solution to Exercise 8.119 (p. 490)
65 (20 + 6) = 1,300 + 390 = 1,690 or 65 (30 − 4) = 1,950 − 260 = 1,690
Solution to Exercise 8.121 (p. 490)
15 (100 + 7) = 1,500 + 105 = 1,605
Solution to Exercise 8.123 (p. 490)
35 (400 + 2) = 14,000 + 70 = 14,070
Solution to Exercise 8.125 (p. 490)
95 (10 + 2) = 950 + 190 = 1,140
Solution to Exercise 8.127 (p. 490)
80 (30 + 2) = 2,400 + 160 = 2,560
Solution to Exercise 8.129 (p. 490)
50 (60 + 3) = 3,000 + 150 = 3,150
Solution to Exercise 8.131 (p. 490)
40 (90 − 1) = 3,600 − 40 = 3,560
Solution to Exercise 8.133 (p. 490)
\[\frac{3}{2} \cdot \frac{2}{3} \]
Solution to Exercise 8.135 (p. 490)
\[x = 42 \]
Solution to Exercise 8.137 (p. 491)
Results may vary. \[\frac{1}{2} + \frac{1}{2} = 1 \]. In fact, \[\frac{2}{5} + \frac{1}{2} = \frac{25}{24} = 1 \frac{1}{24} \]
Solution to Exercise 8.138 (p. 491)
Results may vary. \[1 + \frac{1}{2} = 1 \frac{1}{2} \]. In fact, \[\frac{7}{5} + \frac{3}{5} = 1 \frac{12}{25} \]
Solution to Exercise 8.139 (p. 491)
Results may vary. \[\frac{8}{3} + \frac{3}{4} = 11 + 1 = 12 \]. In fact, \[\frac{8}{15} + \frac{3}{10} = 1 \frac{29}{30} \]
Solution to Exercise 8.140 (p. 491)
Results may vary. \[(16 + 0) + (4 + 1) = 16 + 5 = 21 \]. In fact, \[16 \frac{1}{20} + 4 \frac{7}{12} = 20 \frac{37}{120} \]
Solution to Exercise 8.141 (p. 492)
\[1 + 1 = 2 \ (1 \frac{21}{22}) \]
Solution to Exercise 8.143 (p. 492)
\[1 + \frac{1}{2} = 1 \frac{1}{2} \ (1 \frac{1}{2}) \]
Solution to Exercise 8.145 (p. 492)
\[\frac{1}{3} + \frac{1}{4} = \frac{1}{2} \ (\frac{30}{100}) \]
Solution to Exercise 8.147 (p. 492)
\[1 + 0 = 1 \ (1 \frac{1}{15}) \]
Solution to Exercise 8.149 (p. 492)
\[\frac{1}{2} + 6 \frac{1}{2} = 7 \ (6 \frac{10}{15}) \]
Solution to Exercise 8.151 (p. 492)
\[1 + 2 \frac{1}{2} = 3 \frac{1}{2} \ (3 \frac{1}{2}) \]
Solution to Exercise 8.153 (p. 492)
\[8 \frac{1}{2} + 4 = 12 \frac{1}{2} \ (12 \frac{13}{20}) \]
Solution to Exercise 8.155 (p. 492)
\[9 + 7 = 16 \ (15 \frac{13}{12}) \]
Solution to Exercise 8.157 (p. 492)
\[3 \frac{1}{2} + 2 \frac{1}{2} + 2 = 8 \ (\frac{100}{270}) \]
Solution to Exercise 8.159 (p. 492)
\[1 − 1 = 0 \ (\frac{1}{10}) \]
Solution to Exercise 8.161 (p. 493)
associative
Solution to Exercise 8.163 (p. 493)
\[\frac{5}{8} \]
Solution to Exercise 8.165 (p. 493)
\[25(40 - 3) = 1000 - 75 = 925 \]
Solution to Exercise 8.166 (p. 494)
\[600 \text{ (598)} \]
Solution to Exercise 8.168 (p. 494)
\[(1,200) \]
Solution to Exercise 8.170 (p. 494)
\[4,900 \text{ (4,944)} \]
Solution to Exercise 8.172 (p. 494)
\[3,800 \text{ (3,760)} \]
Solution to Exercise 8.174 (p. 494)
\[6,050 \text{ (6,017)} \]
Solution to Exercise 8.176 (p. 494)
\[6,700 \text{ (6,718)} \]
Solution to Exercise 8.178 (p. 494)
\[61,400 \text{ (61,337)} \]
Solution to Exercise 8.180 (p. 494)
\[89,700 \text{ (89,718)} \]
Solution to Exercise 8.182 (p. 495)
\[213,000 \text{ (213,022)} \]
Solution to Exercise 8.184 (p. 495)
\[3,900 \text{ (3,935)} \]
Solution to Exercise 8.186 (p. 495)
\[2,400 \text{ (2,583)} \]
Solution to Exercise 8.188 (p. 495)
\[600 \text{ (504)} \]
Solution to Exercise 8.190 (p. 495)
\[150,123 \text{ 147,000 (150,123)} \]
Solution to Exercise 8.192 (p. 495)
\[47,278 \text{ 48,000 (47,278)} \]
Solution to Exercise 8.194 (p. 495)
\[12,771 \text{ 14,100 (12,711)} \]
Solution to Exercise 8.196 (p. 495)
\[8,100 \text{ (9,768)} \]
Solution to Exercise 8.198 (p. 495)
\[90,000 \text{ (86,784)} \]
Solution to Exercise 8.200 (p. 495)
\[396,000 \text{ (386,496)} \]
Solution to Exercise 8.202 (p. 495)
\[1,609,048 \text{ 1,560,000 (1,609,048)} \]
Solution to Exercise 8.204 (p. 495)
\[22,050,000 \text{ (22,164,232)} \]
Solution to Exercise 8.206 (p. 496)
\[18 \text{ (15)} \]
Solution to Exercise 8.208 (p. 496)
\[14 \frac{1}{2} \text{ (13)} \]
Solution to Exercise 8.210 (p. 496)
\[50 \text{ (53)} \]
Solution to Exercise 8.212 (p. 496)
54 (51)
Solution to Exercise 8.214 (p. 496)
130 (105)
Solution to Exercise 8.216 (p. 496)
41.25 (44)
Solution to Exercise 8.218 (p. 496)
42 (43)
Solution to Exercise 8.220 (p. 496)
14.4 (14)
Solution to Exercise 8.222 (p. 496)
60 (61)
Solution to Exercise 8.224 (p. 496)
1,000 (992)
Solution to Exercise 8.226 (p. 496)
71.1 (71.17)
Solution to Exercise 8.228 (p. 497)
119.4 (119.31)
Solution to Exercise 8.230 (p. 497)
272 (271.8)
Solution to Exercise 8.232 (p. 497)
2,001 (2,020.952)
Solution to Exercise 8.234 (p. 497)
4.16 (3.9596)
Solution to Exercise 8.236 (p. 497)
2 (40) + 2 (50) = 180 (178)
Solution to Exercise 8.238 (p. 497)
2 (30) + 2 (60) = 180 (179)
Solution to Exercise 8.240 (p. 497)
2 (80) + 2 (50) = 260 (263)
Solution to Exercise 8.242 (p. 497)
3 (20) + 1 (10) = 70 (79)
Solution to Exercise 8.244 (p. 497)
2 (15) + 2 (80) = 190 (201)
Solution to Exercise 8.246 (p. 497)
3 (20) + 2 (30) + 40 = 160 (160)
Solution to Exercise 8.248 (p. 498)
2 (60) + 2 (20) + 2 (30) = 220 (219)
Solution to Exercise 8.250 (p. 498)
2 (90) + 20 = 200 (200)
Solution to Exercise 8.252 (p. 498)
3 (20) + 2 (40) = 140 (140)
Solution to Exercise 8.254 (p. 498)
3 (90) + 2 (30) = 330 (321)
Solution to Exercise 8.256 (p. 498)
15 (30 + 3) = 450 + 45 = 495
Solution to Exercise 8.258 (p. 498)
35 (40 − 4) = 1400 − 140 = 1,260
Solution to Exercise 8.260 (p. 498)
85 (20 + 3) = 1,700 + 225 = 1,955
Solution to Exercise 8.262 (p. 498)
30 \times (10 + 4) = 300 + 120 = 420

Solution to Exercise 8.264 (p. 498)
75 \times (20 + 3) = 1,500 + 225 = 1,725

Solution to Exercise 8.266 (p. 498)
15 \times (20 - 3) = 300 - 45 = 255

Solution to Exercise 8.268 (p. 498)
65 \times (10 + 4) = 650 + 260 = 910

Solution to Exercise 8.270 (p. 499)
60 \times (40 + 2) = 2,400 + 120 = 2,520

Solution to Exercise 8.272 (p. 499)
15 \times (100 + 5) = 1,500 + 75 = 1,575

Solution to Exercise 8.274 (p. 499)
45 \times (300 + 6) = 13,500 + 270 = 13,770

Solution to Exercise 8.276 (p. 499)
\frac{1}{2} + 1 = \frac{3}{2} \times \left(\frac{5}{24}\right)

Solution to Exercise 8.278 (p. 499)
\frac{1}{2} + \frac{1}{2} = 1 \times \left(\frac{27}{10} \text{ or } \frac{9}{30}\right)

Solution to Exercise 8.280 (p. 499)
\frac{1}{2} + \frac{1}{2} = \frac{3}{4} \times \left(\frac{1}{10}\right)

Solution to Exercise 8.282 (p. 499)
\frac{1}{2} + 1 = \frac{3}{2} \times \left(\frac{3}{20} \text{ or } \frac{1}{10}\right)

Solution to Exercise 8.284 (p. 499)
2\frac{3}{4} + 6\frac{1}{2} = 9\frac{1}{4} \times \left(\frac{9}{20}\right)

Solution to Exercise 8.286 (p. 499)
11\frac{1}{2} + 7\frac{1}{2} = 18\frac{3}{4} \times \left(\frac{22}{30}\right)

Solution to Exercise 8.288 (p. 500)
6 + 2 + 8\frac{1}{4} = 16\frac{1}{4} \times \left(\frac{11}{20}\right)

Solution to Exercise 8.290 (p. 500)
10\frac{1}{2} + 7 + 8\frac{1}{4} = 25\frac{3}{4} \times \left(\frac{22}{30}\right)

Solution to Exercise 8.291 (p. 500)
10,500 (10,505)

Solution to Exercise 8.292 (p. 500)
18,000 (18,038)

Solution to Exercise 8.293 (p. 500)
5,000 (5,011)

Solution to Exercise 8.294 (p. 500)
28,000 (27,406)

Solution to Exercise 8.295 (p. 500)
3,200 (3,116)

Solution to Exercise 8.296 (p. 500)
4,500 (4,692)

Solution to Exercise 8.297 (p. 500)
300,000 (288,576)

Solution to Exercise 8.298 (p. 500)
12 (14)

Solution to Exercise 8.299 (p. 500)
90 (95)

Solution to Exercise 8.300 (p. 500)
81 (81.00)
Solution to Exercise 8.301 (p. 500)
305 (505.00065)

Solution to Exercise 8.302 (p. 500)
4,371 (4,380.16)

Solution to Exercise 8.303 (p. 500)
2 (60) + 2 (90) = 300 (298)

Solution to Exercise 8.304 (p. 500)
2 (40) + 2 (90) = 260 (263)

Solution to Exercise 8.305 (p. 500)
30 + 3 (80) = 270 (265)

Solution to Exercise 8.306 (p. 501)
3 (800) + 2 (600) = 3,600 (3,618)

Solution to Exercise 8.307 (p. 501)
25 (10 + 4) = 250 + 100 = 350

Solution to Exercise 8.308 (p. 501)
15 (80 + 3) = 1,200 + 45 = 1,245

Solution to Exercise 8.309 (p. 501)
65 (100 − 2) = 6,500 − 130 = 6,370

Solution to Exercise 8.310 (p. 501)
80 (100 + 7) = 8,000 + 560 = 8,560

Solution to Exercise 8.311 (p. 501)
400 (200 + 15) = 80,000 + 6,000 = 86,000

Solution to Exercise 8.312 (p. 501)
1 + $\frac{1}{2} = 1\frac{1}{2}$

Solution to Exercise 8.313 (p. 501)
0 + $\frac{1}{2} + \frac{1}{2} = 1(\frac{3}{3})$

Solution to Exercise 8.314 (p. 501)
$8\frac{1}{2} + 14 = 22\frac{1}{2}$

Solution to Exercise 8.315 (p. 501)
$5\frac{1}{2} + 1\frac{1}{2} + 6\frac{1}{2} = 13\frac{1}{2} (13\frac{1}{2})$
Chapter 9

Measurement and Geometry

9.1 Objectives

After completing this chapter, you should

Measurement and the United States System (Section 9.2)
- know what the word measurement means
- be familiar with United States system of measurement
- be able to convert from one unit of measure in the United States system to another unit of measure

The Metric System of Measurement (Section 9.3)
- be more familiar with some of the advantages of the base ten number system
- know the prefixes of the metric measures
- be familiar with the metric system of measurement
- be able to convert from one unit of measure in the metric system to another unit of measure

Simplification of Denominate Numbers (Section 9.4)
- be able to convert an unsimplified unit of measure to a simplified unit of measure
- be able to add and subtract denominate numbers
- be able to multiply and divide a denominate number by a whole number

Perimeter and Circumference of Geometric Figures (Section 9.5)
- know what a polygon is
- know what perimeter is and how to find it
- know what the circumference, diameter, and radius of a circle is and how to find each one
- know the meaning of the symbol π and its approximating value
- know what a formula is and four versions of the circumference formula of a circle

Area and Volume of Geometric Figures and Objects (Section 9.6)
- know the meaning and notation for area
- know the area formulas for some common geometric figures
- be able to find the areas of some common geometric figures
- know the meaning and notation for volume
- know the volume formulas for some common geometric objects
- be able to find the volume of some common geometric objects

1This content is available online at <http://cnx.org/content/m18897/1.3/>.
9.2 Measurement and the United States System

9.2.1 Section Overview
- Measurement
- The United States System of Measurement
- Conversions in the United States System

9.2.2 Measurement
There are two major systems of measurement in use today. They are the United States system and the metric system. Before we describe these systems, let’s gain a clear understanding of the concept of measurement.

Measurement
Measurement is comparison to some standard.

Standard Unit of Measure
The concept of measurement is based on the idea of direct comparison. This means that measurement is the result of the comparison of two quantities. The quantity that is used for comparison is called the standard unit of measure.

Over the years, standards have changed. Quite some time in the past, the standard unit of measure was determined by a king. For example,

1 inch was the distance between the tip of the thumb and the knuckle of the king.
1 inch was also the length of 16 barley grains placed end to end.

Today, standard units of measure rarely change. Standard units of measure are the responsibility of the Bureau of Standards in Washington D.C.

Some desirable properties of a standard are the following:

1. **Accessibility.** We should have access to the standard so we can make comparisons.
2. **Invariance.** We should be confident that the standard is not subject to change.
3. **Reproducibility.** We should be able to reproduce the standard so that measurements are convenient and accessible to many people.

9.2.3 The United States System of Measurement
Some of the common units (along with their abbreviations) for the United States system of measurement are listed in the following table.

<table>
<thead>
<tr>
<th>Unit Conversion Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
</tr>
<tr>
<td>1 foot (ft) = 12 inches (in.)</td>
</tr>
<tr>
<td>1 yard (yd) = 3 feet (ft)</td>
</tr>
<tr>
<td>1 mile (mi) = 5,280 feet</td>
</tr>
</tbody>
</table>

This content is available online at <http://cnx.org/content/m35018/1.2/>.
Table 9.1

9.2.4 Conversions in the United States System

It is often convenient or necessary to convert from one unit of measure to another. For example, it may be convenient to convert a measurement of length that is given in feet to one that is given in inches. Such conversions can be made using unit fractions.

Unit Fraction

A unit fraction is a fraction with a value of 1.

Unit fractions are formed by using two equal measurements. One measurement is placed in the numerator of the fraction, and the other in the denominator. Placement depends on the desired conversion.

Placement of Units

Place the unit being converted to in the numerator.
Place the unit being converted from in the denominator.

For example,
this unit fraction has feet in the numerator. Now, multiply 11 yd by the unit fraction. Notice that since the unit fraction has the value of 1, multiplying by it does not change the value of 11 yd.

\[11 \text{ yd} = \frac{11 \text{ yd}}{1} \cdot \frac{3 \text{ ft}}{1 \text{ yd}} \]

\[= \frac{11 \cdot 3 \text{ ft}}{1} \]

\[= \frac{33 \text{ ft}}{1} \]

Thus, 11 yd = 33 ft.

Example 9.2

Convert 36 fl oz to pints.

Looking in the unit conversion table under *liquid volume*, we see that 1 pt = 16 fl oz. Since we are to convert to pints, we will construct a unit fraction with pints in the numerator.

\[36 \text{ fl oz} = \frac{36 \text{ fl oz}}{1} \cdot \frac{1 \text{ pt}}{16 \text{ fl oz}} \]

\[= \frac{36 \cdot 1 \text{ pt}}{16} \]

\[= \frac{36}{16} \text{ pt} \]

Reduce.

\[= \frac{9}{4} \text{ pt} \]

Convert to decimals: \(\frac{9}{4} = 2.25 \).

Thus, 36 fl oz = 2.25 pt.

Example 9.3

Convert 2,016 hr to weeks.

Looking in the unit conversion table under *time*, we see that 1 wk = 7 da and that 1 da = 24 hr. To convert from hours to weeks, we must first convert from hours to days and then from days to weeks. We need two unit fractions.

The unit fraction needed for converting from hours to days is \(\frac{1 \text{ da}}{24 \text{ hr}} \). The unit fraction needed for converting from days to weeks is \(\frac{1 \text{ wk}}{7 \text{ da}} \).

\[2,016 \text{ hr} = \frac{2,016 \text{ hr}}{1} \cdot \frac{1 \text{ da}}{24 \text{ hr}} \cdot \frac{1 \text{ wk}}{7 \text{ da}} \]

\[= \frac{2,016 \cdot 1 \text{ wk}}{24 \cdot 7} \]

Reduce.

\[= \frac{12 \text{ wk}}{1} \]

Thus, 2,016 hr = 12 wk.

9.2.4.2 Practice Set A

Make the following conversions. If a fraction occurs, convert it to a decimal rounded to two decimal places.

Exercise 9.1

Convert 18 ft to yards.
Exercise 9.2
Convert 2 mi to feet.
(Solution on p. 567.)

Exercise 9.3
Convert 26 ft to yards.
(Solution on p. 567.)

Exercise 9.4
Convert 9 qt to pints.
(Solution on p. 567.)

Exercise 9.5
Convert 52 min to hours.
(Solution on p. 567.)

Exercise 9.6
Convert 412 hr to weeks.
(Solution on p. 567.)

9.2.5 Exercises

Make each conversion using unit fractions. If fractions occur, convert them to decimals rounded to two decimal places.

Exercise 9.7
14 yd to feet
(Solution on p. 567.)

Exercise 9.8
3 mi to yards

Exercise 9.9
8 mi to inches
(Solution on p. 567.)

Exercise 9.10
2 mi to inches

Exercise 9.11
18 in. to feet
(Solution on p. 567.)

Exercise 9.12
84 in. to yards

Exercise 9.13
5 in. to yards
(Solution on p. 567.)

Exercise 9.14
106 ft to miles

Exercise 9.15
62 in. to miles
(Solution on p. 567.)

Exercise 9.16
0.4 in. to yards

Exercise 9.17
3 qt to pints
(Solution on p. 567.)

Exercise 9.18
5 lb to ounces

Exercise 9.19
6 T to ounces
(Solution on p. 567.)

Exercise 9.20
4 oz to pounds

Exercise 9.21
15,000 oz to pounds
(Solution on p. 567.)
Exercise 9.22
15,000 oz to tons

Exercise 9.23
9 tbsp to teaspoons

Exercise 9.24
3 c to tablespoons

Exercise 9.25
5 pt to fluid ounces

Exercise 9.26
16 tsp to cups

Exercise 9.27
5 fl oz to quarts

Exercise 9.28
3 qt to gallons

Exercise 9.29
5 pt to teaspoons

Exercise 9.30
3 qt to tablespoons

Exercise 9.31
18 min to seconds

Exercise 9.32
4 days to hours

Exercise 9.33
3 hr to days

Exercise 9.34
$\frac{1}{2}$ hr to days

Exercise 9.35
$\frac{1}{2}$ da to weeks

Exercise 9.36
$3\frac{1}{4}$ wk to seconds

9.2.5.1 Exercises for Review

Exercise 9.37
(Section 2.5) Specify the digits by which 23,840 is divisible.

Exercise 9.38
(Section 4.5) Find $2\frac{3}{5}$ of $5\frac{3}{6}$ of $7\frac{5}{7}$.

Exercise 9.39
() Convert $0.3\frac{2}{3}$ to a fraction.

Exercise 9.40
(Section 8.3) Use the clustering method to estimate the sum: $53 + 82 + 79 + 49$.

Exercise 9.41
(Section 8.4) Use the distributive property to compute the product: $60 \cdot 46$.

(Solution on p. 567.)
9.3 The Metric System of Measurement

9.3.1 Section Overview

- The Advantages of the Base Ten Number System
- Prefixes
- Conversion from One Unit to Another Unit
- Conversion Table

9.3.2 The Advantages of the Base Ten Number System

The metric system of measurement takes advantage of our base ten number system. The advantage of the metric system over the United States system is that in the metric system it is possible to convert from one unit of measure to another simply by multiplying or dividing the given number by a power of 10. This means we can make a conversion simply by moving the decimal point to the right or the left.

9.3.3 Prefixes

Common units of measure in the metric system are the meter (for length), the liter (for volume), and the gram (for mass). To each of the units can be attached a prefix. The *metric prefixes* along with their meaning are listed below.

Metric Prefixes

- **kilo** — thousand
- **deci** — tenth
- **hecto** — hundred
- **centi** — hundredth
- **deka** — ten
- **milli** — thousandth

For example, if length is being measured,

1 kilometer is equivalent to 1000 meters.
1 centimeter is equivalent to one hundredth of a meter.
1 millimeter is equivalent to one thousandth of a meter.

9.3.4 Conversion from One Unit to Another Unit

Let's note three characteristics of the metric system that occur in the metric table of measurements.

1. In each category, the prefixes are the same.
2. We can move from a *larger to a smaller* unit of measure by moving the decimal point to the *right*.
3. We can move from a *smaller to a larger unit* of measure by moving the decimal point to the *left*.

The following table provides a summary of the relationship between the basic unit of measure (meter, gram, liter) and each prefix, and how many places the decimal point is moved and in what direction.

```
kilo hecto deka unit deci centi milli
```

[^3]: This content is available online at <http://cnx.org/content/m35019/1.2/>.
Basic Unit to Prefix	Move the Decimal Point
unit to deka | 1 to 10 1 place to the left
unit to hectar | 1 to 100 2 places to the left
unit to kilo | 1 to 1,000 3 places to the left
unit to deci | 1 to 0.1 1 place to the right
unit to centi | 1 to 0.01 2 places to the right
unit to milli | 1 to 0.001 3 places to the right

Table 9.3

9.3.5 Conversion Table

Listed below, in the unit conversion table, are some of the common metric units of measure.

<table>
<thead>
<tr>
<th>Unit Conversion Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Mass</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

continued on next page
Table 9.4

<table>
<thead>
<tr>
<th>Unit</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 centigram (cg)</td>
<td>$\frac{1}{100}$ gram</td>
</tr>
<tr>
<td>1 milligram (mg)</td>
<td>$\frac{1}{1000}$ gram</td>
</tr>
<tr>
<td>1 kilogram (kg)</td>
<td></td>
</tr>
<tr>
<td>1 milliliter (mL)</td>
<td>$\frac{1}{1000}$ liter</td>
</tr>
<tr>
<td>1 deciliter (dL)</td>
<td>$\frac{1}{10}$ liter</td>
</tr>
<tr>
<td>1 centiliter (cL)</td>
<td>$\frac{1}{100}$ liter</td>
</tr>
<tr>
<td>1 millimeter (mm)</td>
<td>$\frac{1}{1000}$ meter</td>
</tr>
<tr>
<td>1 micrometer (µm)</td>
<td>$\frac{1}{1000000}$ meter</td>
</tr>
<tr>
<td>1 nanometer (nm)</td>
<td>$\frac{1}{1000000000}$ meter</td>
</tr>
<tr>
<td>1 picometer (pm)</td>
<td>$\frac{1}{1000000000000}$ meter</td>
</tr>
<tr>
<td>1 femtometer (fm)</td>
<td>$\frac{1}{1000000000000000}$ meter</td>
</tr>
<tr>
<td>1 attometer (am)</td>
<td>$\frac{1}{1000000000000000000}$ meter</td>
</tr>
<tr>
<td>1 zeptometer (zm)</td>
<td>$\frac{1}{1000000000000000000000}$ meter</td>
</tr>
<tr>
<td>1 yoctometer (ym)</td>
<td>$\frac{1}{1000000000000000000000000}$ meter</td>
</tr>
</tbody>
</table>

Distinction Between Mass and Weight

There is a distinction between mass and weight. The **weight** of a body is related to gravity whereas the mass of a body is not. For example, your weight on the earth is different than it is on the moon, but your mass is the same in both places. **Mass** is a measure of a body's resistance to motion. The more massive a body, the more resistant it is to motion. Also, more massive bodies weigh more than less massive bodies.

Converting Metric Units

To convert from one metric unit to another metric unit:

1. Determine the location of the original number on the metric scale (pictured in each of the following examples).
2. Move the decimal point of the original number in the same direction and same number of places as is necessary to move to the metric unit you wish to go to.

We can also convert from one metric unit to another using unit fractions. Both methods are shown in Example 9.4 of Section 9.3.5.1 (Sample Set A).

9.3.5.1 Sample Set A

Example 9.4

Convert 3 kilograms to grams.

(a) 3 kg can be written as 3.0 kg. Then,

\[
\begin{array}{c c c c c c c}
\text{kg} & \text{hg} & \text{dag} & \text{g} & \text{dg} & \text{cg} & \text{mg} \\
1 & 2 & 3 & \text{places to the right} \\
\end{array}
\]

\[
3.0 \text{ kg} = 3\,000. \text{ g}
\]

Thus, 3kg = 3,000 g.

(b) We can also use unit fractions to make this conversion. Since we are converting to grams, and \(1,000 \text{ g} = 1 \text{ kg}\), we choose the unit fraction \(\frac{1,000 \text{ g}}{1 \text{ kg}}\) since grams is in the numerator.
3 kg = 3 kg · \frac{1,000 g}{1 kg} \\
= 3 \cdot \frac{1,000 g}{1 kg} \\
= 3 \cdot 1,000 g \\
= 3,000 g

Example 9.5
Convert 67.2 hectoliters to milliliters.

\[
67.2 \text{ hL} = 67,200 \text{ mL}
\]

Thus, 67.2 hL = 67,200 mL.

Example 9.6
Convert 100.07 centimeters to meters.

\[
100.07 \text{ cm} = 1.0007 \text{ m}
\]

Thus, 100.07 cm = 1.0007 m.

Example 9.7
Convert 0.16 milligrams to grams.

\[
0.16 \text{ mg} = 0.00016 \text{ g}
\]

Thus, 0.16 mg = 0.00016 g.

9.3.5.2 Practice Set A

Exercise 9.42
Convert 411 kilograms to grams. (Solution on p. 567.)

Exercise 9.43
Convert 5.626 liters to centiliters. (Solution on p. 567.)

Exercise 9.44
Convert 80 milliliters to kiloliters. (Solution on p. 568.)

Exercise 9.45
Convert 150 milligrams to centigrams. (Solution on p. 568.)

Exercise 9.46
Convert 2.5 centimeters to meters. (Solution on p. 568.)
9.3.6 Exercises

Make each conversion.

Exercise 9.47
87 m to cm (Solution on p. 568.)

Exercise 9.48
905 L to mL

Exercise 9.49
16,005 mg to g

Exercise 9.50
48.66 L to dL

Exercise 9.51
905 L to mL (Solution on p. 568.)

Exercise 9.52
16,005 mg to g (Solution on p. 568.)

Exercise 9.53
11.161 kL to L

Exercise 9.54
48.66 L to dL (Solution on p. 568.)

Exercise 9.55
521.85 cm to mm

Exercise 9.56
1.26 dag to dg

Exercise 9.57
11.161 kL to L (Solution on p. 568.)

Exercise 9.58
99.04 dam to cm

Exercise 9.59
99.04 dam to cm (Solution on p. 568.)

Exercise 9.60
0.51 kL to daL

Exercise 9.61
0.17 kL to daL (Solution on p. 568.)

Exercise 9.62
0.05 m to dm

Exercise 9.63
0.05 m to dm (Solution on p. 568.)

Exercise 9.64
0.001 km to mm

Exercise 9.65
8.106 hg to cg

Exercise 9.66
17.0186 kL to mL (Solution on p. 568.)

Exercise 9.67
3 cm to m

Exercise 9.68
9 mm to m

Exercise 9.69
4 g to mg

Exercise 9.70
2 L to kL

Exercise 9.71
6 kg to mg (Solution on p. 568.)

Exercise 9.72
7 daL to mL
9.3.6.1 Exercises for Review

Exercise 9.67
(Solution on p. 568.)
(Section 5.3) Find the value of $\frac{5}{8} - \frac{1}{3} + \frac{3}{4}$.

Exercise 9.68
(Section 7.3) Solve the proportion: $\frac{9}{x} = \frac{27}{60}$.

Exercise 9.69
(Solution on p. 568.)
(Section 8.2) Use the method of rounding to estimate the sum: $8,226 + 4,118$.

Exercise 9.70
(Section 8.3) Use the clustering method to estimate the sum: $87 + 121 + 118 + 91 + 92$.

Exercise 9.71
(Solution on p. 568.)
(Section 9.2) Convert 3 in. to yd.

9.4 Simplification of Denominate Numbers

9.4.1 Section Overview

- Converting to Multiple Units
- Adding and Subtracting Denominate Numbers
- Multiplying a Denominate Number by a Whole Number
- Dividing a Denominate Number by a Whole Number

9.4.2 Converting to Multiple Units

Denominate Numbers

Numbers that have units of measure associated with them are called denominate numbers. It is often convenient, or even necessary, to simplify a denominate number.

Simplified Denominate Number

A denominate number is simplified when the number of standard units of measure associated with it does not exceed the next higher type of unit.

The denominate number 55 min is simplified since it is smaller than the next higher type of unit, 1 hr. The denominate number 65 min is not simplified since it is not smaller than the next higher type of unit, 1 hr. The denominate number 65 min can be simplified to 1 hr 5 min. The denominate number 1 hr 5 min is simplified since the next higher type of unit is day, and 1 hr does not exceed 1 day.

9.4.2.1 Sample Set A

Example 9.8

Simplify 19 in.

Since 12 in. = 1 ft, and 19 = 12 + 7,

$$19\text{ in.} = 12\text{ in.} + 7\text{ in.}$$

$$= 1\text{ ft} + 7\text{ in.}$$

$$= 1\text{ ft} 7\text{ in.}$$

4This content is available online at <http://cnx.org/content/m35021/1.2/>.
Example 9.9
Simplify 4 gal 5 qt.
Since 4 qt = 1 gal, and 5 = 4 + 1,

\[4 \text{ gal } 5 \text{ qt } = 4 \text{ gal } + 4 \text{ qt } + 1 \text{ qt } \]
\[= 4 \text{ gal } + 1 \text{ gal } + 1 \text{ qt } \]
\[= 5 \text{ gal } + 1 \text{ qt } \]
\[= 5 \text{ gal } 1 \text{ qt } \]

Example 9.10
Simplify 2 hr 75 min.
Since 60 min = 1 hr, and 75 = 60 + 15,

\[2 \text{ hr } 75 \text{ min } = 2 \text{ hr } + 60 \text{ min } + 15 \text{ min } \]
\[= 2 \text{ hr } + 1 \text{ hr } + 15 \text{ min } \]
\[= 3 \text{ hr } + 15 \text{ min } \]
\[= 3 \text{ hr } 15 \text{ min } \]

Example 9.11
Simplify 43 fl oz.
Since 8 fl oz = 1 c (1 cup), and 43 ÷ 8 = 5 R3,

\[43 \text{ fl oz } = 40 \text{ fl oz } + 3 \text{ fl oz } \]
\[= 5 \cdot 8 \text{ fl oz } + 3 \text{ fl oz } \]
\[= 5 \cdot 1 \text{ c } + 3 \text{ fl oz } \]
\[= 5 \text{ c } + 3 \text{ fl oz } \]

But, 2 c = 1 pt and 5 ÷ 2 = 2 R1. So,

\[5 \text{ c } + 3 \text{ fl oz } = 2 \cdot 2 \text{ c } + 1 \text{ c } + 3 \text{ fl oz } \]
\[= 2 \cdot 1 \text{ pt } + 1 \text{ c } + 3 \text{ fl oz } \]
\[= 2 \text{ pt } + 1 \text{ c } + 3 \text{ fl oz } \]

But, 2 pt = 1 qt, so
\[2 \text{ pt } + 1 \text{ c } + 3 \text{ fl oz } = 1 \text{ qt } 1 \text{ c } 3 \text{ fl oz } \]

9.4.2.2 Practice Set A
Simplify each denominate number. Refer to the conversion tables given in Section 9.2, if necessary.

Exercise 9.72
18 in. (Solution on p. 568.)

Exercise 9.73
8 gal 9 qt (Solution on p. 568.)
9.4.3 Adding and Subtracting Denominate Numbers

Adding and Subtracting Denominate Numbers

Denominate numbers can be added or subtracted by:

1. writing the numbers vertically so that the like units appear in the same column.
2. adding or subtracting the number parts, carrying along the unit.
3. simplifying the sum or difference.

9.4.3.1 Sample Set B

Example 9.12
Add 6 ft 8 in. to 2 ft 9 in.

\[
\begin{array}{c}
6 \text{ ft} & \text{8 in.} \\
+2 \text{ ft} & 9 \text{ in.}
\end{array}
\]

8 ft 17 in. Simplify this denominate number.

Since 12 in. = 1 ft,

\[
8 \text{ ft} + 12 \text{ in.} + 5 \text{ in.} = 8 \text{ ft} + 1 \text{ ft} + 5 \text{ in.}
= 9 \text{ ft} + 5 \text{ in.}
= 9 \text{ ft} 5 \text{ in.}
\]

Example 9.13
Subtract 5 da 3 hr from 8 da 11 hr.

\[
\begin{array}{c}
8 \text{ da} & 11 \text{ hr} \\
-5 \text{ da} & 3 \text{ hr}
\end{array}
\]

3 da 8 hr

Example 9.14
Subtract 3 lb 14 oz from 5 lb 3 oz.

\[
\begin{array}{c}
5 \text{ lb} & 3 \text{ oz} \\
-3 \text{ lb} & 14 \text{ oz}
\end{array}
\]

We cannot directly subtract 14 oz from 3 oz, so we must borrow 16 oz from the pounds.
5 lb 3 oz = 5 lb + 3 oz
 = 4 lb + 1 lb + 3 oz
 = 4 lb + 16 oz + 3 oz (Since 1 lb = 16 oz.)
 = 4 lb + 19 oz
 = 4 lb 19 oz

4 lb 19 oz
− 3 lb 14 oz
1 lb 5 oz

Example 9.15
Subtract 4 da 9 hr 21 min from 7 da 10 min.

7 da 0 hr 10 min
−4 da 9 hr 21 min Borrow 1 da from the 7 da.

6 da 24 hr 10 min
−4 da 9 hr 21 min Borrow 1 hr from the 24 hr.

6 da 23 hr 70 min
−4 da 9 hr 21 min
2 da 14 hr 49 min

9.4.3.2 Practice Set B
Perform each operation. Simplify when possible.

Exercise 9.77
Add 4 gal 3 qt to 1 gal 2 qt.
(Solution on p. 568.)

Exercise 9.78
Add 9 hr 48 min to 4 hr 26 min.
(Solution on p. 568.)

Exercise 9.79
Subtract 2 ft 5 in. from 8 ft 7 in.
(Solution on p. 568.)

Exercise 9.80
Subtract 15 km 460 m from 27 km 800 m.
(Solution on p. 568.)

Exercise 9.81
Subtract 8 min 35 sec from 12 min 10 sec.
(Solution on p. 569.)

Exercise 9.82
Add 4 yd 2 ft 7 in. to 9 yd 2 ft 8 in.
(Solution on p. 569.)

Exercise 9.83
Subtract 11 min 55 sec from 25 min 8 sec.
(Solution on p. 569.)
9.4.4 Multiplying a Denominate Number by a Whole Number

Let’s examine the repeated sum

\[
\begin{align*}
4 \text{ ft 9 in.} + 4 \text{ ft 9 in.} + 4 \text{ ft 9 in.} &= \text{12 ft 27 in.} \\
\text{3 times}
\end{align*}
\]

Recalling that multiplication is a description of repeated addition, by the distributive property we have

\[
3 (4 \text{ ft 9 in.}) = 3 (4 \text{ ft} + 9 \text{ in.})
\]

\[
= 3 \cdot 4 \text{ ft} + 3 \cdot 9 \text{ in.}
\]

\[
= 12 \text{ ft} + 27 \text{ in.} \quad \text{Now, 27 in. = 2 ft 3 in.}
\]

\[
= 12 \text{ ft} + 2 \text{ ft} + 3 \text{ in.}
\]

\[
= 14 \text{ ft} + 3 \text{ in.}
\]

From these observations, we can suggest the following rule.

Multiplying a Denominate Number by a Whole Number

To multiply a denominate number by a whole number, multiply the number part of each unit by the whole number and affix the unit to this product.

9.4.4.1 Sample Set C

Perform the following multiplications. Simplify if necessary.

Example 9.16

\[
6 \cdot (2 \text{ ft 4 in.}) = 6 \cdot 2 \text{ ft} + 6 \cdot 4 \text{ in.}
\]

\[
= 12 \text{ ft} + 24 \text{ in.}
\]

Since 3 ft = 1 yd and 12 in. = 1 ft,

\[
12 \text{ ft} + 24 \text{ in.} = 4 \text{ yd} + 2 \text{ ft}
\]

\[
= 4 \text{ yd} 2 \text{ ft}
\]

Example 9.17

\[
8 \cdot (5 \text{ hr 21 min 55 sec}) = 8 \cdot 5 \text{ hr} + 8 \cdot 21 \text{ min} + 8 \cdot 55 \text{ sec}
\]

\[
= 40 \text{ hr} + 168 \text{ min} + 440 \text{ sec}
\]

\[
= 40 \text{ hr} + 168 \text{ min} + 7 \text{ min} + 20 \text{ sec}
\]

\[
= 40 \text{ hr} + 175 \text{ min} + 20 \text{ sec}
\]

\[
= 40 \text{ hr} + 2 \text{ hr} + 55 \text{ min} + 20 \text{ sec}
\]

\[
= 42 \text{ hr} + 55 \text{ min} + 20 \text{ sec}
\]

\[
= 24 \text{ hr} + 18 \text{ hr} + 55 \text{ min} + 20 \text{ sec}
\]

\[
= 1 \text{ da} + 18 \text{ hr} + 55 \text{ min} + 20 \text{ sec}
\]

\[
= 1 \text{ da} 18 \text{ hr} 55 \text{ min} 20 \text{ sec}
\]
9.4.4.2 Practice Set C

Perform the following multiplications. Simplify.

Exercise 9.84
2 · (10 min)

Exercise 9.85
5 · (3 qt)

Exercise 9.86
4 · (5 ft 8 in.)

Exercise 9.87
10 · (2 hr 15 min 40 sec)

(Solution on p. 569.)

9.4.5 Dividing a Denominate Number by a Whole Number

Dividing a Denominate Number by a Whole Number

To divide a denominate number by a whole number, divide the number part of each unit by the whole number beginning with the largest unit. Affix the unit to this quotient. Carry any remainder to the next unit.

9.4.5.1 Sample Set D

Perform the following divisions. Simplify if necessary.

Example 9.18
(12 min 40 sec) ÷ 4

\[\begin{array}{c}
3 \text{ min } 10 \text{ sec} \\
\hline
4 \left| 12 \text{ min } 40 \text{ sec} \\
-12 \text{ min} \\
\hline
40 \text{ sec} \\
40 \text{ sec} \\
\hline
0
\end{array} \]

Thus (12 min 40 sec) ÷ 4 = 3 min 10 sec

Example 9.19
(5 yd 2 ft 9 in.) ÷ 3

\[\begin{array}{c}
1 \text{ yd } 2 \text{ ft } 11 \text{ in.} \\
3 \left| 5 \text{ yd } 2 \text{ ft } 9 \text{ in.} \\
3 \text{ yd} \\
\hline
2 \text{ yd } 2 \text{ ft} \\
\hline
-8 \text{ ft} \\
6 \text{ ft} \\
\hline
2 \text{ ft } 9 \text{ in.} \\
33 \text{ in.} \\
\hline
33 \text{ in.} \\
0
\end{array} \]

Convert to feet: 2 yd 2 ft = 8 ft .

Convert to inches: 2 ft 9 in. = 33 in .

Thus (5 yd 2 ft 9 in.) ÷ 3 = 1 yd 2 ft 11 in.
9.4.5.2 Practice Set D

Perform the following divisions. Simplify if necessary.

Exercise 9.88
(18 hr 36 min) ÷ 9
(Solution on p. 569.)

Exercise 9.89
(34 hr 8 min.) ÷ 8
(Solution on p. 569.)

Exercise 9.90
(13 yd 7 in.) ÷ 5
(Solution on p. 569.)

Exercise 9.91
(47 gal 2 qt 1 pt) ÷ 3
(Solution on p. 569.)

9.4.6 Exercises

For the following 15 problems, simplify the denominators.

Exercise 9.92
16 in.
(Solution on p. 569.)

Exercise 9.93
19 ft

Exercise 9.94
85 min
(Solution on p. 569.)

Exercise 9.95
90 min

Exercise 9.96
17 da
(Solution on p. 569.)

Exercise 9.97
25 oz
(Solution on p. 569.)

Exercise 9.98
240 oz

Exercise 9.99
3,500 lb
(Solution on p. 569.)

Exercise 9.100
26 qt
(Solution on p. 569.)

Exercise 9.101
300 sec
(Solution on p. 569.)

Exercise 9.102
135 oz

Exercise 9.103
14 tsp

Exercise 9.104
18 pt
(Solution on p. 569.)

Exercise 9.105
3,500 m

Exercise 9.106
16,300 mL
(Solution on p. 569.)

For the following 15 problems, perform the indicated operations and simplify the answers if possible.
Exercise 9.107
Add 6 min 12 sec to 5 min 15 sec.

Exercise 9.108
Add 14 da 6 hr to 1 da 5 hr. (Solution on p. 569.)

Exercise 9.109
Add 9 gal 3 qt to 2 gal 3 qt.

Exercise 9.110
Add 16 lb 10 oz to 42 lb 15 oz. (Solution on p. 569.)

Exercise 9.111
Subtract 3 gal 1 qt from 8 gal 3 qt.

Exercise 9.112
Subtract 3 ft 10 in. from 5 ft 8 in. (Solution on p. 569.)

Exercise 9.113
Subtract 5 lb 9 oz from 12 lb 5 oz.

Exercise 9.114
Subtract 10 hr 10 min from 11 hr 28 min. (Solution on p. 569.)

Exercise 9.115
Add 3 fl oz 1 tbsp 2 tsp to 5 fl oz 1 tbsp 2 tsp.

Exercise 9.116
Add 4 da 7 hr 12 min to 1 da 8 hr 53 min. (Solution on p. 569.)

Exercise 9.117
Subtract 5 hr 21 sec from 11 hr 2 min 14 sec. (Solution on p. 569.)

Exercise 9.118
Subtract 6 T 1,300 lb 10 oz from 8 T 400 lb 10 oz. (Solution on p. 569.)

Exercise 9.119
Subtract 15 mi 10 in. from 27 mi 800 ft 7 in. (Solution on p. 570.)

Exercise 9.120
Subtract 3 wk 5 da 50 min 12 sec from 5 wk 6 da 20 min 5 sec. (Solution on p. 570.)

Exercise 9.121
Subtract 3 gal 3 qt 1 pt 1 oz from 10 gal 2 qt 2 oz.

9.4.6.1 Exercises for Review

Exercise 9.122
(Section 4.6) Find the value: \((\frac{5}{8})^2 + \frac{39}{61}\). (Solution on p. 570.)

Exercise 9.123
(Section 5.4) Find the sum: 8 + 6 3\frac{3}{8}.

Exercise 9.124
(Section 6.3) Convert 2.05\frac{1}{11} to a fraction. (Solution on p. 570.)

Exercise 9.125
(Section 7.4) An acid solution is composed of 3 parts acid to 7 parts water. How many parts of acid are there in a solution that contains 126 parts water?

Exercise 9.126
(Section 9.3) Convert 126 kg to grams. (Solution on p. 570.)
9.5 Perimeter and Circumference of Geometric Figures

9.5.1 Section Overview
- Polygons
- Perimeter
- Circumference/Diameter/Radius
- The Number π
- Formulas

9.5.2 Polygons
We can make use of conversion skills with denominate numbers to make measurements of geometric figures such as rectangles, triangles, and circles. To make these measurements we need to be familiar with several definitions.

Polygon
A **polygon** is a closed plane (flat) figure whose sides are line segments (portions of straight lines).

Polygons

![Polygons](image1)

Not polygons

![Not polygons](image2)

9.5.3 Perimeter

Perimeter
The **perimeter** of a polygon is the distance around the polygon.

To find the perimeter of a polygon, we simply add up the lengths of all the sides.

9.5.3.1 Sample Set A

Find the perimeter of each polygon.

Example 9.20

![Example 9.20](image3)
Perimeter = 2 cm + 5 cm + 2 cm + 5 cm
= 14 cm

Example 9.21

Perimeter = 3.1 mm
4.2 mm
4.3 mm
1.52 mm
5.4 mm
+ 9.2 mm
27.72 mm

Example 9.22

Our first observation is that three of the dimensions are missing. However, we can determine the missing measurements using the following process. Let A, B, and C represent the missing measurements. Visualize

\[
A = 12m - 2m = 10m \\
B = 9m + 1m - 2m = 8m \\
C = 12m - 1m = 11m
\]
Perimeter $= \begin{array}{l}
8 \text{ m} \\
10 \text{ m} \\
2 \text{ m} \\
2 \text{ m} \\
9 \text{ m} \\
11 \text{ m} \\
1 \text{ m} \\
+ 1 \text{ m} \\
44 \text{ m}
\end{array}$

9.5.3.2 Practice Set A

Find the perimeter of each polygon.

Exercise 9.127

Exercise 9.128

Exercise 9.129

9.5.4 Circumference/Diameter/Radius

Circumference

The **circumference** of a circle is the distance around the circle.

Diameter

A **diameter** of a circle is any line segment that passes through the center of the circle and has its endpoints on the circle.
Radius
A radius of a circle is any line segment having as its endpoints the center of the circle and a point on the circle.
The radius is one half the diameter.

9.5.5 The Number \(\pi \)
The symbol \(\pi \), read "pi," represents the nonterminating, nonrepeating decimal number \(3.14159 \ldots \). This number has been computed to millions of decimal places without the appearance of a repeating block of digits.

For computational purposes, \(\pi \) is often approximated as 3.14. We will write \(\pi \approx 3.14 \) to denote that \(\pi \) is approximately equal to 3.14. The symbol "\(\approx \)" means "approximately equal to."

9.5.6 Formulas
To find the circumference of a circle, we need only know its diameter or radius. We then use a formula for computing the circumference of the circle.

Formula
A formula is a rule or method for performing a task. In mathematics, a formula is a rule that directs us in computations.

Formulas are usually composed of letters that represent important, but possibly unknown, quantities.

If \(C, d, \) and \(r \) represent, respectively, the circumference, diameter, and radius of a circle, then the following two formulas give us directions for computing the circumference of the circle.

Circumference Formulas

1. \(C = \pi d \) or \(C \approx (3.14) d \)
2. \(C = 2\pi r \) or \(C \approx 2 (3.14) r \)

9.5.6.1 Sample Set B

Example 9.23
Find the exact circumference of the circle.

Use the formula \(C = \pi d \).
$C = \pi \cdot 7\text{in.}$

By commutativity of multiplication,

$C = 7\text{in.} \cdot \pi$

$C = 7\pi\text{in.}$, exactly

This result is exact since π has not been approximated.

Example 9.24

Find the approximate circumference of the circle.

![Circle with diameter labeled 6.2 mm](image)

Use the formula $C = \pi d$.

$C \approx (3.14) (6.2)$

$C \approx 19.648 \text{ mm}$

This result is approximate since π has been approximated by 3.14.

Example 9.25

Find the approximate circumference of a circle with radius 18 inches.

Since we’re given that the radius, r, is 18 in., we’ll use the formula $C = 2\pi r$.

$C \approx (2) (3.14) (18 \text{ in.})$

$C \approx 113.04 \text{ in.}$

Example 9.26

Find the approximate perimeter of the figure.

![Figure with dimensions labeled](image)

We notice that we have two semicircles (half circles).

The larger radius is 6.2 cm.

The smaller radius is 6.2 cm - 2.0 cm = 4.2 cm.

The width of the bottom part of the rectangle is 2.0 cm.
Perimeter
\[
= 2.0 \text{ cm} \\
5.1 \text{ cm} \\
2.0 \text{ cm} \\
5.1 \text{ cm} \\
(0.5) \cdot (2) \cdot (3.14) \cdot (6.2 \text{ cm}) \\
+ (0.5) \cdot (2) \cdot (3.14) \cdot (4.2 \text{ cm})
\]
Circumference of outer semicircle.
Circumference of inner semicircle
\[
6.2 \text{ cm} - 2.0 \text{ cm} = 4.2 \text{ cm}
\]
The 0.5 appears because we want the perimeter of only half a circle.

Perimeter
\[
\approx 2.0 \text{ cm} \\
5.1 \text{ cm} \\
2.0 \text{ cm} \\
5.1 \text{ cm} \\
19.468 \text{ cm} \\
+13.188 \text{ cm} \\
48.856 \text{ cm}
\]

9.5.6.2 Practice Set B

Exercise 9.130
Find the exact circumference of the circle.
(Solution on p. 570.)

Exercise 9.131
Find the approximate circumference of the circle.
(Solution on p. 570.)

Exercise 9.132
Find the approximate circumference of the circle with radius 20.1 m.
(Solution on p. 570.)

Exercise 9.133
Find the approximate outside perimeter of
(Solution on p. 570.)
CHAPTER 9. MEASUREMENT AND GEOMETRY

9.5.7 Exercises

Find each perimeter or approximate circumference. Use $\pi \approx 3.14$.

Exercise 9.134

(solution on p. 570.)

Exercise 9.135

(solution on p. 570.)

Exercise 9.136

(solution on p. 570.)

Exercise 9.137

(solution on p. 570.)

Exercise 9.138

(solution on p. 570.)

Exercise 9.139

(solution on p. 570.)
Exercise 9.140

(Solution on p. 570.)

Exercise 9.141

(Solution on p. 570.)

Exercise 9.142

(Solution on p. 570.)

Exercise 9.143

(Solution on p. 570.)

Exercise 9.144

(Solution on p. 570.)

Exercise 9.145
Exercise 9.146

(Solution on p. 570.)

Exercise 9.147

(Solution on p. 570.)

Exercise 9.148

(Solution on p. 570.)

Exercise 9.149
Exercise 9.150

(Solution on p. 570.)

Exercise 9.151

(Solution on p. 570.)

Exercise 9.152

(Solution on p. 570.)

Exercise 9.153
9.5.7.1 Exercises for Review

Exercise 9.154
(Section 4.5) Find the value of $2\frac{8}{13} \cdot \sqrt{10\frac{9}{16}}$.

Exercise 9.155
(Section 5.3) Find the value of $\frac{8}{15} + \frac{7}{10} + \frac{21}{60}$.

Exercise 9.156
(Section 6.9) Convert $\frac{7}{8}$ to a decimal.

Exercise 9.157
(Section 9.2) What is the name given to a quantity that is used as a comparison to determine the measure of another quantity?

Exercise 9.158
(Section 9.4) Add 42 min 26 sec to 53 min 40 sec and simplify the result.

9.6 Area and Volume of Geometric Figures and Objects

9.6.1 Section Overview

- The Meaning and Notation for Area
- Area Formulas
- Finding Areas of Some Common Geometric Figures
- The Meaning and Notation for Volume
- Volume Formulas
- Finding Volumes of Some Common Geometric Objects

Quite often it is necessary to multiply one denominate number by another. To do so, we multiply the number parts together and the unit parts together. For example,

\[8 \text{ in.} \cdot 8 \text{ in.} = 8 \cdot 8 \cdot \text{in.} \cdot \text{in.} = 64 \text{ in.}^2 \]

\[4 \text{ mm} \cdot 4 \text{ mm} \cdot 4 \text{ mm} = 4 \cdot 4 \cdot 4 \cdot \text{mm} \cdot \text{mm} \cdot \text{mm} = 64 \text{ mm}^3 \]

Sometimes the product of units has a physical meaning. In this section, we will examine the meaning of the products (length unit)2 and (length unit)3.

9.6.2 The Meaning and Notation for Area

The product (length unit) \cdot (length unit) = (length unit)2, or, square length unit (sq length unit), can be interpreted physically as the area of a surface.

Area

The area of a surface is the amount of square length units contained in the surface.

For example, 3 sq in. means that 3 squares, 1 inch on each side, can be placed precisely on some surface. (The squares may have to be cut and rearranged so they match the shape of the surface.)
We will examine the area of the following geometric figures.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Area Formula</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangle</td>
<td>$A_T = \frac{1}{2} \cdot b \cdot h$</td>
<td>Area of a triangle is one half the base times the height.</td>
</tr>
<tr>
<td>Rectangle</td>
<td>$A_R = l \cdot w$</td>
<td>Area of a rectangle is the length times the width.</td>
</tr>
</tbody>
</table>
9.6.4 Finding Areas of Some Common Geometric Figures

9.6.4.1 Sample Set A

Example 9.27
Find the area of the triangle.

\[A_T = \frac{1}{2} \cdot b \cdot h \]
\[= \frac{1}{2} \cdot 20 \cdot 6 \text{ sq ft} \]
\[= 10 \cdot 6 \text{ sq ft} \]
\[= 60 \text{ sq ft} \]
\[= 60 \text{ ft}^2 \]

The area of this triangle is 60 sq ft, which is often written as 60 ft\(^2\).

Example 9.28
Find the area of the rectangle.

\[A_R = \text{length} \times \text{width} \]
\[= 4 \text{ ft} \times 8 \text{ in.} \]
\[= \frac{4 \text{ ft}}{1} \times \frac{12 \text{ in.}}{1} \]
\[= \frac{48 \text{ in.}}{1} \]
\[= 48 \text{ in.} \]

Let’s first convert 4 ft 2 in. to inches. Since we wish to convert to inches, we’ll use the unit fraction \[\frac{12 \text{ in.}}{1 \text{ ft}} \] since it has inches in the numerator. Then,

\[4 \text{ ft} = \frac{4 \text{ ft}}{1} \times \frac{12 \text{ in.}}{1} \text{ ft} \]
\[= \frac{48 \text{ in.}}{1} \]
\[= 48 \text{ in.} \]
Thus, \(4 \text{ ft} \ 2 \text{ in.} = 48 \text{ in.} + 2 \text{ in.} = 50 \text{ in.} \)

\[
A_R = l \cdot w = 50 \text{ in.} \cdot 8 \text{ in.} = 400 \text{ sq in.}
\]

The area of this rectangle is 400 sq in.

Example 9.29

Find the area of the parallelogram.

\[
A_P = b \cdot h = 10.3 \text{ cm} \cdot 6.2 \text{ cm} = 63.86 \text{ sq cm}
\]

The area of this parallelogram is 63.86 sq cm.

Example 9.30

Find the area of the trapezoid.

\[
A_{\text{Trap}} = \frac{1}{2} \cdot (b_1 + b_2) \cdot h = \frac{1}{2} \cdot (14.5 \text{ mm}, +, 20.4 \text{ mm}) \cdot (4.1 \text{ mm}) = \frac{1}{2} \cdot (34.9 \text{ mm}) \cdot (4.1 \text{ mm}) = \frac{1}{2} \cdot (143.09 \text{ sq mm}) = 71.545 \text{ sq mm}
\]

The area of this trapezoid is 71.545 sq mm.

Example 9.31

Find the approximate area of the circle.
\[A_c = \pi \cdot r^2 \approx (3.14) \cdot (16.8 \text{ ft})^2 \approx (3.14) \cdot (282.24 \text{ sq ft}) \approx 888.23 \text{ sq ft} \]

The area of this circle is approximately 886.23 sq ft.

9.6.4.2 Practice Set A

Find the area of each of the following geometric figures.

Exercise 9.159

(Solution on p. 570.)

Exercise 9.160

(Solution on p. 571.)

Exercise 9.161

(Solution on p. 571.)

Exercise 9.162

(Solution on p. 571.)

Exercise 9.163

(Solution on p. 571.)
9.6.5 The Meaning and Notation for Volume

The product \(\text{(length unit)} \times \text{(length unit)} \times \text{(length unit)} = \text{(length unit)}^3 \), or cubic length unit (cu length unit), can be interpreted physically as the volume of a three-dimensional object.

Volume

The **volume** of an object is the amount of cubic length units contained in the object.

For example, 4 cu mm means that 4 cubes, 1 mm on each side, would precisely fill some three-dimensional object. (The cubes may have to be cut and rearranged so they match the shape of the object.)
9.6.6 Volume Formulas

<table>
<thead>
<tr>
<th>Figure</th>
<th>Volume Formula</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangular solid</td>
<td>$V_R = l \cdot w \cdot h = (\text{area of base}) \cdot (\text{height})$</td>
<td>The volume of a rectangular solid is the length times the width times the height.</td>
</tr>
<tr>
<td>Sphere</td>
<td>$V_S = \frac{4}{3} \cdot \pi \cdot r^3$</td>
<td>The volume of a sphere is $\frac{4}{3}$ times π times the cube of the radius.</td>
</tr>
</tbody>
</table>

continued on next page
The volume of a cylinder is \(\pi \times r^2 \times h \), or the area of the base times the height.

The volume of a cone is \(\frac{1}{3} \times \pi \times r^2 \times h \), or \(\frac{1}{3} \) times \(\pi \) times the area of the base times the height.

<table>
<thead>
<tr>
<th>Cylinder</th>
<th>[V_{\text{Cyl}} = \pi \cdot r^2 \cdot h = \text{(area of base)} \times \text{height}]</th>
<th>The volume of a cylinder is (\pi \times r^2 \times h), or the area of the base times the height.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cone</td>
<td>[V_c = \frac{1}{3} \cdot \pi \cdot r^2 \cdot h = \text{(area of base)} \times \text{height}]</td>
<td>The volume of a cone is (\frac{1}{3} \pi \times r^2 \times h), or (\frac{1}{3} \pi) times the area of the base times the height.</td>
</tr>
</tbody>
</table>

Table 9.6

9.6.7 Finding Volumes of Some Common Geometric Objects

9.6.7.1 Sample Set B

Example 9.32
Find the volume of the rectangular solid.

\[V_{R} = l \cdot w \cdot h \]
\[= 9 \text{ in.} \times 10 \text{ in.} \times 3 \text{ in.} \]
\[= 270 \text{ cu in.} \]

The volume of this rectangular solid is 270 cu in.

Example 9.33
Find the approximate volume of the sphere.
\[V_S = \frac{4}{3} \cdot \pi \cdot r^3 \]
\[\approx \left(\frac{4}{3} \right) \cdot (3.14) \cdot (6 \text{ cm})^3 \]
\[\approx \left(\frac{4}{3} \right) \cdot (3.14) \cdot (216 \text{ cu cm}) \]
\[\approx 904.32 \text{ cu cm} \]

The approximate volume of this sphere is 904.32 cu cm, which is often written as 904.32 cm\(^3\).

Example 9.34
Find the approximate volume of the cylinder.

\[V_{Cyl} = \pi \cdot r^2 \cdot h \]
\[\approx (3.14) \cdot (4.9 \text{ ft})^2 \cdot (7.8 \text{ ft}) \]
\[\approx (3.14) \cdot (24.01 \text{ sq ft}) \cdot (7.8 \text{ ft}) \]
\[\approx (3.14) \cdot (187.278 \text{ cu ft}) \]
\[\approx 588.05292 \text{ cu ft} \]

The volume of this cylinder is approximately 588.05292 cu ft. The volume is approximate because we approximated \(\pi \) with 3.14.

Example 9.35
Find the approximate volume of the cone. Round to two decimal places.

\[V_c = \frac{1}{3} \cdot \pi \cdot r^2 \cdot h \]
\[\approx \left(\frac{1}{3} \right) \cdot (3.14) \cdot (2 \text{ mm})^2 \cdot (5 \text{ mm}) \]
\[\approx \left(\frac{1}{3} \right) \cdot (3.14) \cdot (4 \text{ sq mm}) \cdot (5 \text{ mm}) \]
\[\approx \left(\frac{1}{3} \right) \cdot (3.14) \cdot (20 \text{ cu mm}) \]
\[\approx 20.93 \text{ cu mm} \]
\[\approx 20.93 \text{ cu mm} \]
The volume of this cone is approximately 20.93 cm³. The volume is approximate because we approximated π with 3.14.

9.6.7.2 Practice Set B

Find the volume of each geometric object. If π is required, approximate it with 3.14 and find the approximate volume.

Exercise 9.165

(Solution on p. 571.)

Exercise 9.166

(Solution on p. 571.)

Exercise 9.167

(Solution on p. 571.)

Exercise 9.168

(Solution on p. 571.)

9.6.8 Exercises

Find each indicated measurement.
Exercise 9.169
Area

Exercise 9.170
Area

Exercise 9.171
Area

Exercise 9.172
Area

Exercise 9.173
Area

Exercise 9.174
Area

Exercise 9.175
Exact area

(Solution on p. 571.)
Exercise 9.176
Approximate area

Exercise 9.177
Area
(Solution on p. 571.)

Exercise 9.178
Area

Exercise 9.179
Approximate area
(Solution on p. 571.)

Exercise 9.180
Exact area

Exercise 9.181
Approximate area
(Solution on p. 571.)
Exercise 9.182
Exact area

Exercise 9.183
Approximate area

Exercise 9.184
Area

Exercise 9.185
Approximate area

Exercise 9.186
Volume

Exercise 9.187
Volume

(Solution on p. 571.)
Exercise 9.188
Exact volume

Exercise 9.189
Approximate volume

(Solution on p. 571.)

Exercise 9.190
Approximate volume

Exercise 9.191
Exact volume

(Solution on p. 571.)

Exercise 9.192
Approximate volume
9.6.8.1 Exercises for Review

Exercise 9.195
(Section 1.2) In the number 23,426, how many hundreds are there?
(Solution on p. 571.)

Exercise 9.196
(Section 3.4) List all the factors of 32.

Exercise 9.197
(Section 5.4) Find the value of $4\frac{2}{3} - 3\frac{2}{5} + 1\frac{2}{3}$.
(Solution on p. 571.)

Exercise 9.198
(Section 5.6) Find the value of $\frac{5 + \frac{1}{2}}{2 + \frac{3}{10}}$.

Exercise 9.199
(Section 9.5) Find the perimeter.
9.7 Summary of Key Concepts

9.7.1 Summary of Key Concepts

Measurement (Section 9.2)
Measurement is comparison to some standard.

Standard Unit of Measure (Section 9.2)
A quantity that is used for comparison is called a standard unit of measure.

Two Types of Measurement Systems (Section 9.2)
There are two major types of measurement systems in use today. They are the United States system and the metric system.

Unit Fraction (Section 9.2)
A unit fraction is a fraction that has a value of 1. Unit fractions can be used to convert from one unit of measure to another.

Meter, Liter, Gram, and associated prefixes (Section 9.3)
Common units of measure in the metric system are the meter (m), for length, the liter (L), for volume, and the gram (g), for mass. To each of these units, a prefix can be attached.

kilo — thousand
deci — tenth
hecto — hundred
centi — hundredth
deka — ten
milli — thousandth

Metric Conversions (Section 9.3)
To convert from one metric unit to another:
1. Determine the location of the original number on the metric scale.
2. Move the decimal point of the original number in the same direction and the same number of places as is necessary to move to the metric unit you wish to convert to.

Denominate Numbers (Section 9.4)
Numbers that have units of measure associated with them are denominate numbers. The number 25 mg is a denominate number since the mg unit is associated with the pure number 25. The number 82 is not a denominate number since it has no unit of measure associated with it.

Simplified Denominate Number (Section 9.4)
A denominate number is simplified when the number of standard units of measure associated with it does not exceed the next higher type of unit. 55 min is simplified, whereas 65 min is not simplified.

Addition and Subtraction of Denominate Numbers (Section 9.4)
Denominate numbers can be added or subtracted by
1. writing the numbers vertically so that the like units appear in the same column.
2. adding or subtracting the number parts, carrying along the unit.
3. simplifying the sum or difference.

\(^7\)This content is available online at <http://cnx.org/content/m35024/1.2/>.
Multiplying a Denominate Number by a Whole Number (Section 9.4)
To multiply a denominate number by a whole number, multiply the number part of each unit by the whole number and affix the unit to the product.

Dividing a Denominate Number by a Whole Number (Section 9.4)
To divide a denominate number by a whole number, divide the number part of each unit by the whole number beginning with the largest unit. Affix the unit to this quotient. Carry the remainder to the next unit.

Polygon (Section 9.5)
A polygon is a closed plane (flat) figure whose sides are line segments (portions of straight lines).

Perimeter (Section 9.5)
The perimeter of a polygon is the distance around the polygon.

Circumference, Diameter, Radius (Section 9.5)
The circumference of a circle is the distance around the circle. The diameter of a circle is any line segment that passes through the center of the circle and has its endpoints on the circle. The radius of a circle is one half the diameter of the circle.

The number \(\pi \) (Section 9.5)
The symbol \(\pi \), read "pi," represents the nonterminating, nonrepeating decimal number 3.14159... For computational purposes, \(\pi \) is often approximated by the number 3.14.

Formula (Section 9.5)
A formula is a rule for performing a task. In mathematics, a formula is a rule that directs us in computations.

Circumference Formulas (Section 9.5)
\[
C = \pi \cdot d \\
C \approx (3.14) d \\
C = 2 \cdot \pi \cdot r \\
C \approx 2 (3.14) r
\]

Area (Section 9.6)
The area of a surface is the amount of square length units contained in the surface.

Volume (Section 9.6)
The volume of an object is a measure of the amount of cubic length units contained in the object.

Area Formulas (Section 9.6)
Triangle: \(A = \frac{1}{2} \cdot b \cdot h \)
Rectangle: \(A = l \cdot w \)
Parallelogram: \(A = b \cdot h \)
Trapezoid: \(A = \frac{1}{2} \cdot (b_1 + b_2) \cdot h \)
Circle: \(A = \pi \cdot r^2 \)

Volume Formulas (Section 9.6)
Rectangle solid: \(V = l \cdot w \cdot h \)
Sphere: \(V = \frac{4}{3} \cdot \pi \cdot r^3 \)
Cylinder: \(V = \pi \cdot r^2 \cdot h \)
Cone: \(V = \frac{1}{3} \cdot \pi \cdot r^2 \cdot h \)
9.8 Exercise Supplement

9.8.1 Exercise Supplement

9.8.1.1 Measurement and the United States System (Section 9.2)

Exercise 9.200 (Solution on p. 572.)
What is measurement?

For problems 2-6, make each conversion. Use the conversion table given in Section 9.1.

Exercise 9.201
9 ft = _______ yd

Exercise 9.202 (Solution on p. 572.)
32 oz = _______ lb

Exercise 9.203
1,500 mg = _______ g

Exercise 9.204 (Solution on p. 572.)
12,000 lb = _______ T

Exercise 9.205
5,280 ft = _______ mi

For problems 7-23, make each conversion.

Exercise 9.206 (Solution on p. 572.)
23 yd to ft

Exercise 9.207
2 1/2 mi to yd

Exercise 9.208 (Solution on p. 572.)
8 in. to ft

Exercise 9.209
51 in. to mi

Exercise 9.210 (Solution on p. 572.)
3 qt to pt

Exercise 9.211
8 lb to oz

Exercise 9.212 (Solution on p. 572.)
5 cups to tbsp

Exercise 9.213
9 da to hr

Exercise 9.214 (Solution on p. 572.)
3 1/2 min to sec

Exercise 9.215
1/4 wk to min

8This content is available online at <http://cnx.org/content/m35025/1.2/>.
9.8.1.2 The Metric System of Measurement (Section 9.3)

Exercise 9.216
250 mL to L
(Solution on p. 572.)

Exercise 9.217
18.57 cm to m

Exercise 9.218
0.01961 kg to mg
(Solution on p. 572.)

Exercise 9.219
52,211 mg to kg
(Solution on p. 572.)

Exercise 9.220
54.006 dag to g
(Solution on p. 572.)

Exercise 9.221
1.181 hg to mg
(Solution on p. 572.)

Exercise 9.222
3.5 kL to mL
(Solution on p. 572.)

9.8.1.3 Simplification of Denominate Numbers (Section 9.4)

For problems 24-31, perform the indicated operations. Simplify, if possible.

Exercise 9.223
Add 8 min 50 sec to 5 min 25 sec.

Exercise 9.224
Add 3 wk 3 da to 2 wk 5 da
(Solution on p. 572.)

Exercise 9.225
Subtract 4 gal 3 qt from 5 gal 2 qt.
(Solution on p. 572.)

Exercise 9.226
Subtract 2 gal 3 qt 1 pt from 8 gal 2 qt.
(Solution on p. 572.)

Exercise 9.227
Subtract 5 wk 4 da 21 hr from 12 wk 3 da 14 hr.
(Solution on p. 572.)

Exercise 9.228
Subtract 2 T 1,850 lb from 10 T 1,700 lb.

Exercise 9.229
Subtract the sum of 2 wk 3 da 15 hr and 5 wk 2 da 9 hr from 10 wk.
(Solution on p. 572.)

Exercise 9.230
Subtract the sum of 20 hr 15 min and 18 hr 18 min from the sum of 8 da 1 hr 16 min 5 sec.
(Solution on p. 572.)

For problems 32-43, simplify, if necessary.

Exercise 9.231
18 in.
(Solution on p. 572.)

Exercise 9.232
4 ft
(Solution on p. 572.)

Exercise 9.233
23 da

Exercise 9.234
3,100 lb
Exercise 9.235
135 min

Exercise 9.236
4 tsp

Exercise 9.237
10 fl oz

Exercise 9.238
7 pt

Exercise 9.239
9 qt

Exercise 9.240
2,300 mm

Exercise 9.241
14,780 mL

Exercise 9.242
1,050 m

(Solution on p. 572.)

9.8.1.4 Perimeter, Circumference, Area and Volume of Geometric Figures and Objects (Section 9.5, Section 9.6)

For problems 44-58, find the perimeter, circumference, area or volume.

Exercise 9.243
Perimeter, area

Exercise 9.244
Approximate circumference

(Solution on p. 572.)

Exercise 9.245
Approximate volume
Exercise 9.246
Approximate volume

Exercise 9.247
Exact area

Exercise 9.248
Exact area

Exercise 9.249
Exact volume

(Solution on p. 572.)
Exercise 9.250
Approximate volume

Exercise 9.251
Area

Exercise 9.252
Volume

Exercise 9.253
Exact area

Exercise 9.254
Approximate area
CHAPTER 9. MEASUREMENT AND GEOMETRY

Exercise 9.255
Exact area

Exercise 9.256
Approximate area

Exercise 9.257
Approximate area

(Solution on p. 573.)

9.9 Proficiency Exam

9.9.1 Proficiency Exam

Exercise 9.258
(Solution on p. 573.)

(Section 9.2) The process of determining, by comparison to some standard, the size of something is called ______________.

9 This content is available online at <http://cnx.org/content/m35026/1.2/>.
For problems 2-9, make each conversion.

Exercise 9.259
(Section 9.2) 14 yards to feet

Exercise 9.260
(Section 9.2) 51 feet to inches

Exercise 9.261
(Section 9.2) \(\frac{1}{3} \) yard to feet

Exercise 9.262
(Section 9.2) 2 \(\frac{1}{4} \) minutes to seconds

Exercise 9.263
(Section 9.3) 8,500 mg to cg

Exercise 9.264
(Section 9.3) 5.8623 L to kL

Exercise 9.265
(Section 9.3) 213.1062 mm to m

Exercise 9.266
(Section 9.3) 100,001 kL to mL

For problems 10-13, simplify each number.

Exercise 9.267
(Section 9.4) 23 da

Exercise 9.268
(Section 9.4) 88 ft

Exercise 9.269
(Section 9.4) 4216 lb

Exercise 9.270
(Section 9.4) 7 qt

For problems 14-18, perform the indicated operations. Simplify answers if possible.

Exercise 9.271
(Section 9.4) Add 6 wk 3 da to 2 wk 2 da.

Exercise 9.272
(Section 9.4) Add 9 gal 3 qt to 4 gal 3 qt.

Exercise 9.273
(Section 9.4) Subtract 3 yd 2 ft 5 in. from 5 yd 8 ft 2 in.

Exercise 9.274
(Section 9.4) Subtract 2 hr 50 min 12 sec from 3 hr 20 min 8 sec.

Exercise 9.275
(Section 9.4) Subtract the sum of 3 wk 6 da and 2 wk 3 da from 10 wk.

For problems 19-30, find either the perimeter, circumference, area, or volume.

Exercise 9.276
(Section 9.5) Perimeter

\[
\begin{array}{c}
\text{3.61 m} \\
\text{8.61 m}
\end{array}
\]
CHAPTER 9. MEASUREMENT AND GEOMETRY

Exercise 9.277
(Section 9.5) Perimeter
(Solution on p. 573.)

Exercise 9.278
(Section 9.5) Approximate circumference
(Solution on p. 573.)

Exercise 9.279
(Section 9.5) Approximate perimeter
(Solution on p. 574.)

Exercise 9.280
(Section 9.6) Area
(Solution on p. 574.)

Exercise 9.281
(Section 9.6) Approximate area
(Solution on p. 574.)
Exercise 9.282
(Section 9.6) Approximate area

Exercise 9.283
(Section 9.6) Area

Exercise 9.284
(Section 9.6) Exact area

Exercise 9.285
(Section 9.6) Approximate volume

Exercise 9.286
(Section 9.6) Exact volume
Exercise 9.287
(Section 9.6) Approximate volume

(Solution on p. 574.)
Solutions to Exercises in Chapter 9

Solution to Exercise 9.1 (p. 514)
6 yd

Solution to Exercise 9.2 (p. 515)
10,560 ft

Solution to Exercise 9.3 (p. 515)
8.67 yd

Solution to Exercise 9.4 (p. 515)
18 pt

Solution to Exercise 9.5 (p. 515)
0.87 hr

Solution to Exercise 9.6 (p. 515)
2.45 wk

Solution to Exercise 9.7 (p. 515)
42 feet

Solution to Exercise 9.9 (p. 515)
506,880 inches

Solution to Exercise 9.11 (p. 515)
1.5 feet

Solution to Exercise 9.13 (p. 515)
0.14 yard

Solution to Exercise 9.15 (p. 515)
0.00 miles (to two decimal places)

Solution to Exercise 9.17 (p. 515)
6 pints

Solution to Exercise 9.19 (p. 515)
192,000 ounces

Solution to Exercise 9.21 (p. 515)
937.5 pounds

Solution to Exercise 9.23 (p. 516)
27 teaspoons

Solution to Exercise 9.25 (p. 516)
80 fluid ounces

Solution to Exercise 9.27 (p. 516)
0.16 quart

Solution to Exercise 9.29 (p. 516)
480 teaspoons

Solution to Exercise 9.31 (p. 516)
1,080 seconds

Solution to Exercise 9.33 (p. 516)
\(\frac{1}{5} = 0.125 \) day

Solution to Exercise 9.35 (p. 516)
\(\frac{1}{14} = 0.0714 \) week

Solution to Exercise 9.37 (p. 516)
1,2,4,5,8

Solution to Exercise 9.39 (p. 516)
\(\frac{1}{50} \)

Solution to Exercise 9.41 (p. 516)
60 \((50 - 4) = 3,000 - 240 = 2,760\)

Solution to Exercise 9.42 (p. 520)
411,000 g
Solution to Exercise 9.43 (p. 520)
562.6 cL

Solution to Exercise 9.44 (p. 520)
0.00008 kL

Solution to Exercise 9.45 (p. 520)
15 cg

Solution to Exercise 9.46 (p. 520)
0.025 m

Solution to Exercise 9.47 (p. 521)
8,700 cm

Solution to Exercise 9.49 (p. 521)
16,005 g

Solution to Exercise 9.51 (p. 521)
11,161 L

Solution to Exercise 9.53 (p. 521)
126 dg

Solution to Exercise 9.55 (p. 521)
5.1 daL

Solution to Exercise 9.57 (p. 521)
0.5 dm

Solution to Exercise 9.59 (p. 521)
81,060 cg

Solution to Exercise 9.61 (p. 521)
0.03 m

Solution to Exercise 9.63 (p. 521)
4,000 mg

Solution to Exercise 9.65 (p. 521)
6,000,000 mg

Solution to Exercise 9.67 (p. 522)
\(\frac{25}{24} = \frac{L}{24} \)

Solution to Exercise 9.69 (p. 522)
12,300 (12,344)

Solution to Exercise 9.71 (p. 522)
0.083 yard

Solution to Exercise 9.72 (p. 523)
1 ft 6 in.

Solution to Exercise 9.73 (p. 523)
10 gal 1 qt

Solution to Exercise 9.74 (p. 524)
6 hr 20 min

Solution to Exercise 9.75 (p. 524)
9 wk 4 da

Solution to Exercise 9.76 (p. 524)
12 wk 2 da

Solution to Exercise 9.77 (p. 525)
6 gal 1 qt

Solution to Exercise 9.78 (p. 525)
14 hr 14 min

Solution to Exercise 9.79 (p. 525)
6 ft 2 in.
Solution to Exercise 9.80 (p. 525)
12 km 340 m

Solution to Exercise 9.81 (p. 525)
3 min 35 sec

Solution to Exercise 9.82 (p. 525)
14 yd 2 ft 3 in

Solution to Exercise 9.83 (p. 525)
13 min 13 sec

Solution to Exercise 9.84 (p. 527)
20 min

Solution to Exercise 9.85 (p. 527)
15 qt = 3 gal 3 qt

Solution to Exercise 9.86 (p. 527)
20 ft 32 in. = 7 yd 1 ft 8 in.

Solution to Exercise 9.87 (p. 527)
20 hr 150 min 400 sec = 22 hr 36 min 40 sec

Solution to Exercise 9.88 (p. 528)
2 hr 4 min

Solution to Exercise 9.89 (p. 528)
4 hr 16 min

Solution to Exercise 9.90 (p. 528)
2 yd 1 ft 11 in

Solution to Exercise 9.91 (p. 528)
15 gal 3 qt 1 pt

Solution to Exercise 9.92 (p. 528)
1 foot 4 inches

Solution to Exercise 9.94 (p. 528)
1 hour 25 minutes

Solution to Exercise 9.96 (p. 528)
2 weeks 3 days

Solution to Exercise 9.98 (p. 528)
15 pounds

Solution to Exercise 9.100 (p. 528)
6 gallons 2 quarts

Solution to Exercise 9.102 (p. 528)
8 pounds 7 ounces

Solution to Exercise 9.104 (p. 528)
2 gallons 1 quart

Solution to Exercise 9.106 (p. 528)
16 liters 300 milliliters (or 1 daL 6 L 3dL)

Solution to Exercise 9.108 (p. 529)
15 days 11 hours

Solution to Exercise 9.110 (p. 529)
59 pounds 9 ounces

Solution to Exercise 9.112 (p. 529)
1 foot 10 inches

Solution to Exercise 9.114 (p. 529)
1 hour 18 minutes

Solution to Exercise 9.116 (p. 529)
5 days 16 hours 5 minutes
Solution to Exercise 9.118 (p. 529)
1 ton 1,100 pounds (or 1T 1,100 lb)

Solution to Exercise 9.120 (p. 529)
2 weeks 23 hours 29 minutes 33 seconds

Solution to Exercise 9.122 (p. 529)
1

Solution to Exercise 9.124 (p. 529)
$\frac{14}{275}$

Solution to Exercise 9.126 (p. 529)
126,000 g

Solution to Exercise 9.127 (p. 532)
20 ft

Solution to Exercise 9.128 (p. 532)
26.8 m

Solution to Exercise 9.129 (p. 532)
49.89 mi

Solution to Exercise 9.130 (p. 535)
9.1π in.

Solution to Exercise 9.131 (p. 535)
5.652 mm

Solution to Exercise 9.132 (p. 535)
126.228 m

Solution to Exercise 9.133 (p. 535)
41.634 mm

Solution to Exercise 9.134 (p. 536)
21.8 cm

Solution to Exercise 9.136 (p. 536)
38.14 inches

Solution to Exercise 9.138 (p. 536)
0.86 m

Solution to Exercise 9.140 (p. 537)
87.92 m

Solution to Exercise 9.142 (p. 537)
16.328 cm

Solution to Exercise 9.144 (p. 537)
0.0771 cm

Solution to Exercise 9.146 (p. 538)
120.78 m

Solution to Exercise 9.148 (p. 538)
21.71 inches

Solution to Exercise 9.150 (p. 539)
43.7 mm

Solution to Exercise 9.152 (p. 539)
45.68 cm

Solution to Exercise 9.154 (p. 540)
8.5 or $\frac{17}{2}$ or $8\frac{1}{2}$

Solution to Exercise 9.156 (p. 540)
0.875

Solution to Exercise 9.158 (p. 540)
1 hour 36 minutes 6 seconds
Solution to Exercise 9.159 (p. 544)
36 sq cm

Solution to Exercise 9.160 (p. 544)
37.503 sq mm

Solution to Exercise 9.161 (p. 544)
13.26 sq in.

Solution to Exercise 9.162 (p. 544)
367.5 sq mi

Solution to Exercise 9.163 (p. 544)
452.16 sq ft

Solution to Exercise 9.164 (p. 545)
44.28 sq cm

Solution to Exercise 9.165 (p. 549)
21 cu in.

Solution to Exercise 9.166 (p. 549)
904.32 cu ft

Solution to Exercise 9.167 (p. 549)
157 cu m

Solution to Exercise 9.168 (p. 549)
0.00942 cu in.

Solution to Exercise 9.169 (p. 549)
16 sq m

Solution to Exercise 9.171 (p. 550)
1.21 sq mm

Solution to Exercise 9.173 (p. 550)
18 sq in.

Solution to Exercise 9.175 (p. 550)
(60.5\pi + 132) sq ft

Solution to Exercise 9.177 (p. 551)
40.8 sq in.

Solution to Exercise 9.179 (p. 551)
31.0132 sq in.

Solution to Exercise 9.181 (p. 551)
158.2874 sq mm

Solution to Exercise 9.183 (p. 552)
64.2668 sq in.

Solution to Exercise 9.185 (p. 552)
43.96 sq ft

Solution to Exercise 9.187 (p. 552)
512 cu cm

Solution to Exercise 9.189 (p. 553)
11.49 cu cm

Solution to Exercise 9.191 (p. 553)
\frac{1024}{3} \pi \text{ cu ft}

Solution to Exercise 9.193 (p. 554)
22.08 cu in.

Solution to Exercise 9.195 (p. 554)
4

Solution to Exercise 9.197 (p. 554)
\frac{31}{12} = 2.58
Solution to Exercise 9.199 (p. 554)
27.9m

Solution to Exercise 9.200 (p. 557)
Measurement is comparison to a standard (unit of measure).

Solution to Exercise 9.202 (p. 557)
2 pounds

Solution to Exercise 9.204 (p. 557)
6 tons

Solution to Exercise 9.206 (p. 557)
69 feet

Solution to Exercise 9.208 (p. 557)
\(\frac{2}{3} \) = 0.66 feet

Solution to Exercise 9.210 (p. 557)
6 pints

Solution to Exercise 9.212 (p. 557)
80 tablespoons

Solution to Exercise 9.214 (p. 557)
210 seconds

Solution to Exercise 9.216 (p. 558)
\(\frac{1}{2} \) = 0.25L

Solution to Exercise 9.218 (p. 558)
19,610 mg

Solution to Exercise 9.220 (p. 558)
540.06 g

Solution to Exercise 9.222 (p. 558)
3,500,000 mL

Solution to Exercise 9.224 (p. 558)
6 weeks 1 day

Solution to Exercise 9.226 (p. 558)
5 gallons 2 quarts 1 pint

Solution to Exercise 9.228 (p. 558)
7 T 1,850 pounds

Solution to Exercise 9.230 (p. 558)
7 days, 11 hours, 56 minutes, 7 seconds

Solution to Exercise 9.232 (p. 558)
1 yard 1 foot

Solution to Exercise 9.234 (p. 558)
1 ton 1,100 pounds

Solution to Exercise 9.236 (p. 559)
1 tablespoon 1 teaspoon

Solution to Exercise 9.238 (p. 559)
3 quarts 1 pint

Solution to Exercise 9.240 (p. 559)
2.3 meters

Solution to Exercise 9.242 (p. 559)
1.05 km

Solution to Exercise 9.244 (p. 559)
5.652 sq cm

Solution to Exercise 9.246 (p. 560)
104.28568 cu ft
Solution to Exercise 9.248 (p. 560)
0.18\pi \text{ sq in.}

Solution to Exercise 9.250 (p. 561)
267,946.67 \text{ cu mm}

Solution to Exercise 9.252 (p. 561)
32 \text{ cu cm}

Solution to Exercise 9.254 (p. 561)
39.48 \text{ sq in.}

Solution to Exercise 9.256 (p. 562)
56.52 \text{ sq ft}

Solution to Exercise 9.258 (p. 562)
measurement

Solution to Exercise 9.259 (p. 563)
42 \text{ feet}

Solution to Exercise 9.260 (p. 563)
612 \text{ inches}

Solution to Exercise 9.261 (p. 563)
1 \text{ foot}

Solution to Exercise 9.262 (p. 563)
135 \text{ seconds}

Solution to Exercise 9.263 (p. 563)
850 \text{ cg}

Solution to Exercise 9.264 (p. 563)
0.0058623 \text{ kL}

Solution to Exercise 9.265 (p. 563)
0.2132062 \text{ m}

Solution to Exercise 9.266 (p. 563)
100,001,000,000 \text{ mL}

Solution to Exercise 9.267 (p. 563)
3 \text{ weeks} 2 \text{ days}

Solution to Exercise 9.268 (p. 563)
29 \text{ yards} 1 \text{ foot}

Solution to Exercise 9.269 (p. 563)
2 \text{ tons} 216 \text{ pounds}

Solution to Exercise 9.270 (p. 563)
1 \text{ gallon} 3 \text{ quarts}

Solution to Exercise 9.271 (p. 563)
8 \text{ weeks} 5 \text{ days}

Solution to Exercise 9.272 (p. 563)
14 \text{ gallons} 2 \text{ quarts}

Solution to Exercise 9.273 (p. 563)
2 \text{ yards} 5 \text{ feet} 9 \text{ inches}

Solution to Exercise 9.274 (p. 563)
29 \text{ minutes} 56 \text{ seconds}

Solution to Exercise 9.275 (p. 563)
3 \text{ weeks} 5 \text{ days}

Solution to Exercise 9.276 (p. 563)
34.44 \text{ m}

Solution to Exercise 9.277 (p. 564)
36 \text{ mm}
Solution to Exercise 9.278 (p. 564)
87.92 feet
Solution to Exercise 9.279 (p. 564)
55.14 miles
Solution to Exercise 9.280 (p. 564)
3.75 sq in.
Solution to Exercise 9.281 (p. 564)
6.002826 sq cm
Solution to Exercise 9.282 (p. 565)
6.28 sq miles
Solution to Exercise 9.283 (p. 565)
13 sq in.
Solution to Exercise 9.284 (p. 565)
84.64\pi sq in.
Solution to Exercise 9.285 (p. 565)
25.12 cu mm
Solution to Exercise 9.286 (p. 565)
4.608\pi cu ft
Solution to Exercise 9.287 (p. 566)
340.48 cu mm
Chapter 10

Signed Numbers

10.1 Objectives\(^1\)

After completing this chapter, you should

Variables, Constants, and Real Numbers (Section 10.2)

- be able to distinguish between variables and constants
- be able to recognize a real number and particular subsets of the real numbers
- understand the ordering of the real numbers

Signed Numbers (Section 10.3)

- be able to distinguish between positive and negative real numbers
- be able to read signed numbers
- understand the origin and use of the double-negative product property

Absolute Value (Section 10.4)

- understand the geometric and algebraic definitions of absolute value

Addition of Signed Numbers (Section 10.5)

- be able to add numbers with like signs and with unlike signs
- be able to use the calculator for addition of signed numbers

Subtraction of Signed Numbers (Section 10.6)

- understand the definition of subtraction
- be able to subtract signed numbers
- be able to use a calculator to subtract signed numbers

Multiplication and Division of Signed Numbers (Section 10.7)

- be able to multiply and divide signed numbers
- be able to multiply and divide signed numbers using a calculator

\(^1\)This content is available online at <http://cnx.org/content/m18898/1.3/>.\)
10.2 Variables, Constants, and Real Numbers

10.2.1 Section Overview

- Variables and Constants
- Real Numbers
- Subsets of Real Numbers
- Ordering Real Numbers

10.2.2 Variables and Constants

A basic distinction between algebra and arithmetic is the use of symbols (usually letters) in algebra to represent numbers. So, algebra is a generalization of arithmetic. Let us look at two examples of situations in which letters are substituted for numbers:

1. Suppose that a student is taking four college classes, and each class can have at most 1 exam per week. In any 1-week period, the student may have 0, 1, 2, 3, or 4 exams. In algebra, we can let the letter x represent the number of exams this student may have in a 1-week period. The letter x may assume any of the various values 0, 1, 2, 3, 4.

2. Suppose that in writing a term paper for a biology class a student needs to specify the average lifetime, in days, of a male housefly. If she does not know this number off the top of her head, she might represent it (at least temporarily) on her paper with the letter t (which reminds her of time). Later, she could look up the average time in a reference book and find it to be 17 days. The letter t can assume only the one value, 17, and no other values. The value t is constant.

Variable, Constant

1. A letter or symbol that represents any member of a collection of two or more numbers is called a variable.

2. A letter or symbol that represents one specific number, known or unknown, is called a constant.

In example 1, the letter x is a variable since it can represent any of the numbers 0, 1, 2, 3, 4. The letter t in example 2 is a constant since it can only have the value 17.

10.2.3 Real Numbers

Real Number Line

The study of mathematics requires the use of several collections of numbers. The real number line allows us to visually display (graph) the numbers in which we are interested.

A line is composed of infinitely many points. To each point we can associate a unique number, and with each number, we can associate a particular point.

Coordinate

The number associated with a point on the number line is called the coordinate of the point.

Graph

The point on a number line that is associated with a particular number is called the graph of that number.

Constructing a Real Number Line

We construct a real number line as follows:

2This content is available online at <http://cnx.org/content/m35027/1.2/>.
1. Draw a horizontal line.

2. **Origin**
 Choose any point on the line and label it 0. This point is called the **origin**.

3. Choose a convenient length. Starting at 0, mark this length off in both directions, being careful to have the lengths look like they are about the same.

We now define a real number.

Real Number
A **real number** is any number that is the coordinate of a point on the real number line.

Positive Numbers, Negative Numbers
Real numbers whose graphs are to the right of 0 are called **positive real numbers**, or more simply, **positive numbers**. Real numbers whose graphs appear to the left of 0 are called **negative real numbers**, or more simply, **negative numbers**.

The number 0 is neither positive nor negative.

10.2.4 Subsets of Real Numbers
The set of real numbers has many subsets. Some of the subsets that are of interest in the study of algebra are listed below along with their notations and graphs.

Natural Numbers, Counting Numbers
The **natural or counting numbers** \((N)\): 1, 2, 3, 4, \ldots \. Read “and so on.”

Whole Numbers
The **whole numbers** \((W)\): 0, 1, 2, 3, 4, \ldots

Notice that every natural number is a whole number.

Integers
The **integers** \((Z)\): \ldots -3, -2, -1, 0, 1, 2, 3, \ldots

Notice that every whole number is an integer.

Rational Numbers (Fractions)
The **rational numbers** \((Q)\): Rational numbers are sometimes called **fractions**. They are numbers that can be written as the **quotient** of two integers. They have decimal representations that either terminate or do not terminate but contain a repeating block of digits. Some examples are

\[
\frac{-3}{4} = -0.75 \quad \frac{11}{27} = 0.407407407\ldots
\]

Terminating \quad \text{Nonterminating, but repeating}
Some rational numbers are graphed below.

\[-3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \]

\[-\frac{3}{2} \quad -\frac{1}{2} \quad \frac{1}{2} \quad 2 \quad \frac{3}{2} \]

Notice that every integer is a rational number.

Notice that there are still a great many points on the number line that have not yet been assigned a type of number. We will not examine these other types of numbers in this text. They are examined in detail in algebra. An example of these numbers is the number \(\pi \), whose decimal representation does not terminate nor contain a repeating block of digits. An approximation for \(\pi \) is 3.14.

10.2.4.1 Sample Set A

Example 10.1
Is every whole number a natural number?
No. The number 0 is a whole number but it is not a natural number.

Example 10.2
Is there an integer that is not a natural number?
Yes. Some examples are 0, -1, -2, -3, and -4.

Example 10.3
Is there an integer that is a whole number?
Yes. In fact, every whole number is an integer.

10.2.4.2 Practice Set A

Exercise 10.1
Is every natural number a whole number? (Solution on p. 618.)

Exercise 10.2
Is every whole number an integer? (Solution on p. 618.)

Exercise 10.3
Is every integer a real number? (Solution on p. 618.)

Exercise 10.4
Is there an integer that is a whole number? (Solution on p. 618.)

Exercise 10.5
Is there an integer that is not a natural number? (Solution on p. 618.)

10.2.5 Ordering Real Numbers

Ordering Real Numbers
A real number \(b \) is said to be greater than a real number \(a \), denoted \(b > a \), if \(b \) is to the right of \(a \) on the number line. Thus, as we would expect, \(5 > 2 \) since 5 is to the right of 2 on the number line. Also, \(-2 > -5 \) since -2 is to the right of -5 on the number line.

\[-2 \quad -\frac{5}{2} \quad -\frac{1}{2} \quad \frac{1}{2} \quad 2 \quad \frac{5}{2} \]

If we let \(a \) and \(b \) represent two numbers, then \(a \) and \(b \) are related in exactly one of three ways: Either
Equality Symbol

\[a = b \] \(a \) and \(b \) are equal \((8 = 8) \)

Inequality Symbols

\[a > b \] \(a \) is greater than \(b \) \((8 > 5) \)

\[a < b \] \(a \) is less than \(b \) \((5 < 8) \)

Some variations of these symbols are:

\[a \neq b \] \(a \) is not equal to \(b \) \((8 \neq 5) \)

\[a \geq b \] \(a \) is greater than or equal to \(b \) \((a \geq 8) \)

\[a \leq b \] \(a \) is less than or equal to \(b \) \((a \leq 8) \)

10.2.5.1 Sample Set B

Example 10.4

What integers can replace \(x \) so that the following statement is true?

\[-3 \leq x < 2 \]

The integers are -3, -2, -1, 0, 1.

Example 10.5

Draw a number line that extends from -3 to 5. Place points at all whole numbers between and including -1 and 3.

-1 is not a whole number

10.2.5.2 Practice Set B

Exercise 10.6 \((Solution \ on \ p. \ 618.) \)

What integers can replace \(x \) so that the following statement is true? \(-5 \leq x < 2\)

Exercise 10.7 \((Solution \ on \ p. \ 618.) \)

Draw a number line that extends from -4 to 3. Place points at all natural numbers between, but not including, -2 to 2.

10.2.6 Exercises

For the following 8 problems, next to each real number, note all collections to which it belongs by writing \(N \) for natural number, \(W \) for whole number, or \(Z \) for integer. Some numbers may belong to more than one collection.

Exercise 10.8 \((Solution \ on \ p. \ 618.) \)

6

Exercise 10.9

12
Exercise 10.10
0
(Solution on p. 618.)

Exercise 10.11
1

Exercise 10.12
-3
(Solution on p. 618.)

Exercise 10.13
-7

Exercise 10.14
-805
(Solution on p. 618.)

Exercise 10.15
-900

Exercise 10.16
(Solution on p. 618.)

Is the number 0 a positive number, a negative number, neither, or both?

Exercise 10.17
An integer is an even integer if it is evenly divisible by 2. Draw a number line that extends from -5 to 5 and place points at all negative even integers and all positive odd integers.

Exercise 10.18
(Solution on p. 618.)

Draw a number line that extends from -5 to 5. Place points at all integers that satisfy $-3 \leq x < 4$.

Exercise 10.19
Is there a largest two digit number? If so, what is it?

Exercise 10.20
(Solution on p. 618.)

Is there a smallest two digit number? If so, what is it?

For the pairs of real numbers in the following 5 problems, write the appropriate symbol ($<$, $>$, $=$) in place of the □.

Exercise 10.21
-7 □ -2

Exercise 10.22
-5 □ 0
(Solution on p. 618.)

Exercise 10.23
-1 □ 4

Exercise 10.24
6 □ -1
(Solution on p. 618.)

Exercise 10.25
10 □ 10

For the following 5 problems, what numbers can replace m so that the following statements are true?

Exercise 10.26
(Solution on p. 618.)

$-1 \leq m \leq -5$, m an integer.

Exercise 10.27
$-7 < m < -1$, m an integer.

Exercise 10.28
(Solution on p. 618.)

$-3 \leq m < 2$, m a natural number.

Exercise 10.29
$-15 < m \leq -1$, m a natural number.

Exercise 10.30
(Solution on p. 618.)

$-5 \leq m < 5$, m a whole number.
For the following 10 problems, on the number line, how many units are there between the given pair of numbers?

Exercise 10.31
0 and 3

Exercise 10.32
-4 and 0
(Solution on p. 618.)

Exercise 10.33
-1 and 6

Exercise 10.34
-6 and 2
(Solution on p. 618.)

Exercise 10.35
-3 and 3

Exercise 10.36
Are all positive numbers greater than zero?
(Solution on p. 618.)

Exercise 10.37
Are all positive numbers greater than all negative numbers?

Exercise 10.38
Is 0 greater than all negative number?
(Solution on p. 618.)

Exercise 10.39
Is there a largest natural number?

Exercise 10.40
Is there a largest negative integer?
(Solution on p. 618.)

10.2.6.1 Exercises for Review

Exercise 10.41
(Section 4.3) Convert $6\frac{5}{8}$ to an improper fraction.

Exercise 10.42
(Section 4.5) Find the value: $\frac{4}{17}$ of $\frac{23}{5}$.
(Solution on p. 619.)

Exercise 10.43
(Section 5.3) Find the sum of $\frac{4}{5} + \frac{3}{8}$.
(Solution on p. 619.)

Exercise 10.44
(Section 9.3) Convert 30.06 cm to m.

Exercise 10.45
(Section 9.6) Find the area of the triangle.

\[
\begin{array}{c}
3 \text{ mm} \\
\hline
16 \text{ mm}
\end{array}
\]
10.3 Signed Numbers

10.3.1 Section Overview
- Positive and Negative Numbers
- Reading Signed Numbers
- Opposites
- The Double-Negative Property

10.3.2 Positive and Negative Numbers

Positive and Negative Numbers
Each real number other than zero has a sign associated with it. A real number is said to be a positive number if it is to the right of 0 on the number line and negative if it is to the left of 0 on the number line.

Note: + and − Notation
A number is denoted as positive if it is directly preceded by a plus sign or no sign at all. A number is denoted as negative if it is directly preceded by a minus sign.

10.3.3 Reading Signed Numbers

The plus and minus signs now have two meanings:

- The plus sign can denote the operation of addition or a positive number.
- The minus sign can denote the operation of subtraction or a negative number.

To avoid any confusion between "sign" and "operation," it is preferable to read the sign of a number as "positive" or "negative." When "+" is used as an operation sign, it is read as "plus." When "−" is used as an operation sign, it is read as "minus."

10.3.3.1 Sample Set A

Read each expression so as to avoid confusion between "operation" and "sign."

Example 10.6
8 should be read as "negative eight" rather than "minus eight."

Example 10.7
4 + (− 2) should be read as "four plus negative two" rather than "four plus minus two."

Example 10.8
− 6 + (− 3) should be read as "negative six plus negative three" rather than "minus six plus minus three."

Example 10.9
− 15 − (− 6) should be read as "negative fifteen minus negative six" rather than "minus fifteen minus minus six."

Example 10.10
− 5 + 7 should be read as "negative five plus seven" rather than "minus five plus seven."

Example 10.11
0 − 2 should be read as "zero minus two."

3This content is available online at <http://cnx.org/content/m35029/1.3/>.
10.3.3.2 Practice Set A

Write each expression in words.

Exercise 10.46
6 + 1
(Solution on p. 619.)

Exercise 10.47
2 + (−8)
(Solution on p. 619.)

Exercise 10.48
−7 + 5
(Solution on p. 619.)

Exercise 10.49
−10 − (+3)
(Solution on p. 619.)

Exercise 10.50
−1 − (−8)
(Solution on p. 619.)

Exercise 10.51
0 + (−11)
(Solution on p. 619.)

10.3.4 Opposites

Opposites
On the number line, each real number, other than zero, has an image on the opposite side of 0. For this reason, we say that each real number has an opposite. Opposites are the same distance from zero but have opposite signs.

The opposite of a real number is denoted by placing a negative sign directly in front of the number. Thus, if \(a \) is any real number, then \(−a \) is its opposite.

NOTE: The letter "\(a \)" is a variable. Thus, "\(a \)" need not be positive, and "\(−a \)" need not be negative.

If \(a \) is any real number, \(−a \) is opposite \(a \) on the number line.

10.3.5 The Double-Negative Property

The number \(a \) is opposite \(−a \) on the number line. Therefore, \(−(−a) \) is opposite \(−a \) on the number line. This means that

\[−(−a) = a \]

From this property of opposites, we can suggest the double-negative property for real numbers.

Double-Negative Property: \(−(−a) = a \)

If \(a \) is a real number, then

\[−(−a) = a \]
10.3.5.1 Sample Set B

Find the opposite of each number.

Example 10.12
If \(a = 2 \), then \(-a = -2 \). Also, \(-(-a) = -(-2) = 2 \).

Example 10.13
If \(a = -4 \), then \(-a = -(-4) = 4 \). Also, \(-(-a) = a = -4 \).

10.3.5.2 Practice Set B

Find the opposite of each number.

Exercise 10.52 (Solution on p. 619.)
8

Exercise 10.53 (Solution on p. 619.)
17

Exercise 10.54 (Solution on p. 619.)
-6

Exercise 10.55 (Solution on p. 619.)
-15

Exercise 10.56 (Solution on p. 619.)
-(-1)

Exercise 10.57 (Solution on p. 619.)
\(-[-(-7)]\)

Exercise 10.58 (Solution on p. 619.)
Suppose \(a \) is a positive number. Is \(-a\) positive or negative?

Exercise 10.59 (Solution on p. 619.)
Suppose \(a \) is a negative number. Is \(-a\) positive or negative?

Exercise 10.60 (Solution on p. 619.)
Suppose we do not know the sign of the number \(k \). Is \(-k\) positive, negative, or do we not know?

10.3.6 Exercises

Exercise 10.61 (Solution on p. 619.)
A number is denoted as positive if it is directly preceded by _

Exercise 10.62
A number is denoted as negative if it is directly preceded by _

How should the number in the following 6 problems be read? (Write in words.)

Exercise 10.63 (Solution on p. 619.)
\(-7\)
Exercise 10.64
−5

Exercise 10.65
15
(Solution on p. 619.)

Exercise 10.66
11

Exercise 10.67
−(−1)
(Solution on p. 619.)

Exercise 10.68
−(−5)

For the following 6 problems, write each expression in words.

Exercise 10.69
(Solution on p. 619.)
5 + 3

Exercise 10.70
3 + 8

Exercise 10.71
15 + (−3)
(Solution on p. 619.)

Exercise 10.72
1 + (−9)

Exercise 10.73
−7 − (−2)
(Solution on p. 619.)

Exercise 10.74
0 − (−12)

For the following 6 problems, rewrite each number in simpler form.

Exercise 10.75
(Solution on p. 619.)
−(−2)

Exercise 10.76
−(−16)

Exercise 10.77
−[−(−8)]
(Solution on p. 620.)

Exercise 10.78
−[−(−20)]

Exercise 10.79
7 − (−3)
(Solution on p. 620.)

Exercise 10.80
6 − (−4)
10.3.6.1 Exercises for Review

Exercise 10.81
(Solution on p. 620.)
(Section 6.7) Find the quotient; \(8 \div 27 \).

Exercise 10.82
(Section 7.3) Solve the proportion: \(\frac{5}{9} = \frac{60}{x} \)

Exercise 10.83
(Solution on p. 620.)
(Section 8.2) Use the method of rounding to estimate the sum: \(5829 + 8767 \)

Exercise 10.84
(Section 9.2) Use a unit fraction to convert 4 yd to feet.

Exercise 10.85
(Solution on p. 620.)
(Section 9.3) Convert 25 cm to hm.

10.4 Absolute Value\(^4\)

10.4.1 Section Overview
- Geometric Definition of Absolute Value
- Algebraic Definition of Absolute Value

10.4.2 Geometric Definition of Absolute Value

Absolute Value-Geometric Approach
Geometric definition of absolute value:
The absolute value of a number \(a \), denoted \(|a| \), is the distance from \(a \) to 0 on the number line.

Absolute value answers the question of "how far," and not "which way." The phrase "how far" implies "length" and length is always a nonnegative quantity. Thus, the absolute value of a number is a nonnegative number.

10.4.2.1 Sample Set A
Determine each value.

Example 10.14
\[| 4 | = 4 \]

Example 10.15
\[|-4| = 4 \]

Example 10.16
\[| 0 | = 0 \]

\(^4\)This content is available online at <http://cnx.org/content/m35030/1.3/>.
Example 10.17
\[-|5| = -5.\] The quantity on the left side of the equal sign is read as "negative the absolute value of 5." The absolute value of 5 is 5. Hence, negative the absolute value of 5 is -5.

Example 10.18
\[-|-3| = -3.\] The quantity on the left side of the equal sign is read as "negative the absolute value of -3." The absolute value of -3 is 3. Hence, negative the absolute value of -3 is -(-3) = -3.

10.4.2.2 Practice Set A

By reasoning geometrically, determine each absolute value.

Exercise 10.86
\[|7|\] (Solution on p. 620.)

Exercise 10.87
\[|-3|\] (Solution on p. 620.)

Exercise 10.88
\[|12|\] (Solution on p. 620.)

Exercise 10.89
\[|0|\] (Solution on p. 620.)

Exercise 10.90
\[-|9|\] (Solution on p. 620.)

Exercise 10.91
\[-|-6|\] (Solution on p. 620.)

10.4.3 Algebraic Definition of Absolute Value

From the problems in Section 10.4.2.1 (Sample Set A), we can suggest the following algebraic definition of absolute value. Note that the definition has two parts.

Absolute Value—Algebraic Approach

The absolute value of a number \(a\) is

\[|a| = \begin{cases} a, & \text{if } a \geq 0 \\ -a, & \text{if } a < 0 \end{cases}\]

The algebraic definition takes into account the fact that the number \(a\) could be either positive or zero \((a \geq 0)\) or negative \((a < 0)\).

1. If the number \(a\) is positive or zero \((a \geq 0)\), the upper part of the definition applies. The upper part of the definition tells us that if the number enclosed in the absolute value bars is a nonnegative number, the absolute value of the number is the number itself.
2. The lower part of the definition tells us that if the number enclosed within the absolute value bars is a negative number, the absolute value of the number is the opposite of the number. The opposite of a negative number is a positive number.

Note: The definition says that the vertical absolute value lines may be eliminated only if we know whether the number inside is positive or negative.
10.4.3.1 Sample Set B

Use the algebraic definition of absolute value to find the following values.

Example 10.19

The number enclosed within the absolute value bars is a nonnegative number, so the upper part of the definition applies. This part says that the absolute value of 8 is 8 itself.

\[|8| = 8 \]

Example 10.20

The number enclosed within absolute value bars is a negative number, so the lower part of the definition applies. This part says that the absolute value of -3 is the opposite of -3, which is \(-(-3)\). By the definition of absolute value and the double-negative property,

\[|-3| = -(-3) = 3 \]

10.4.3.2 Practice Set B

Use the algebraic definition of absolute value to find the following values.

Exercise 10.92
\[|7| \]
(Solution on p. 620.)

Exercise 10.93
\[|9| \]
(Solution on p. 620.)

Exercise 10.94
\[|-12| \]
(Solution on p. 620.)

Exercise 10.95
\[|-5| \]
(Solution on p. 620.)

Exercise 10.96
\[-|8|\]
(Solution on p. 620.)

Exercise 10.97
\[-|1|\]
(Solution on p. 620.)

Exercise 10.98
\[-|-52|\]
(Solution on p. 620.)

Exercise 10.99
\[-|-31|\]
(Solution on p. 620.)

10.4.4 Exercises

Determine each of the values.

Exercise 10.100
\[|5| \]
(Solution on p. 620.)

Exercise 10.101
\[|3| \]
(Solution on p. 620.)

Exercise 10.102
\[|6| \]
(Solution on p. 620.)

Exercise 10.103
\[|-9| \]
Exercise 10.104
\[| -1 | \]
(Solution on p. 620.)

Exercise 10.105
\[| -4 | \]

Exercise 10.106
\[- | 3 | \]
(Solution on p. 620.)

Exercise 10.107
\[- | 7 | \]

Exercise 10.108
\[- | -14 | \]
(Solution on p. 620.)

Exercise 10.109
\[| 0 | \]

Exercise 10.110
\[| -26 | \]
(Solution on p. 620.)

Exercise 10.111
\[- | -26 | \]

Exercise 10.112
\[- (| 4 |) \]
(Solution on p. 621.)

Exercise 10.113
\[- (| 2 |) \]

Exercise 10.114
\[- (| -6 |) \]
(Solution on p. 621.)

Exercise 10.115
\[- (| -42 |) \]

Exercise 10.116
\[| 5 | - | -2 | \]
(Solution on p. 621.)

Exercise 10.117
\[| -2 |^3 \]

Exercise 10.118
\[| - (2 \cdot 3 |) \]
(Solution on p. 621.)

Exercise 10.119
\[| -2 | - | -9 | \]

Exercise 10.120
\[(| -6 | + | 4 |)^2 \]
(Solution on p. 621.)

Exercise 10.121
\[(| -1 | - | 1 |)^3 \]

Exercise 10.122
\[(| 4 | + | -6 |)^3 - (| -2 |)^3 \]
(Solution on p. 621.)

Exercise 10.123
\[-[| -10 | - 6|]^2 \]

Exercise 10.124
\[-\{ -[| -4 | + | -3 |] |^3\}^2 \]
(Solution on p. 621.)

Exercise 10.125
A Mission Control Officer at Cape Canaveral makes the statement “lift-off, T minus 50 seconds.” How long is it before lift-off?
Exercise 10.126
Due to a slowdown in the industry, a Silicon Valley computer company finds itself in debt $2,400,000. Use absolute value notation to describe this company’s debt.

Exercise 10.127
A particular machine is set correctly if upon action its meter reads 0. One particular machine has a meter reading of -1.6 upon action. How far is this machine off its correct setting?

10.4.4.1 Exercises for Review

Exercise 10.128
(Solution on p. 621.)
(Section 5.3) Find the sum: $\frac{9}{70} + \frac{5}{21} + \frac{8}{15}$.

Exercise 10.129
(Solution on p. 621.)
(Section 5.6) Find the value of $\frac{\frac{3}{4} + \frac{5}{2}}{2}$.

Exercise 10.130
(Solution on p. 621.)
(Section 6.3) Convert $3.2\frac{3}{5}$ to a fraction.

Exercise 10.131
(Solution on p. 621.)
(Section 7.3) The ratio of acid to water in a solution is $\frac{3}{8}$. How many mL of acid are there in a solution that contain 112 mL of water?

Exercise 10.132
(Solution on p. 621.)
(Section 10.3) Find the value of $-6 - (-8)$.

10.5 Addition of Signed Numbers\(^5\)

10.5.1 Section Overview

- Addition of Numbers with Like Signs
- Addition with Zero
- Addition of Numbers with Unlike Signs
- Calculators

10.5.2 Addition of Numbers with Like Signs

The addition of the two positive numbers 2 and 3 is performed on the number line as follows.

Begin at 0, the origin.

Since 2 is positive, move 2 units to the right.

Since 3 is positive, move 3 more units to the right.

We are now located at 5.

Thus, $2 + 3 = 5$.

Summarizing, we have

\(^5\)This content is available online at <http://cnx.org/content/m35031/1.2/>.
(2 positive units) + (3 positive units) = (5 positive units)

The addition of the two negative numbers -2 and -3 is performed on the number line as follows.

Begin at 0, the origin.

Since -2 is negative, move 2 units to the left.

Since -3 is negative, move 3 more units to the left.

We are now located at -5.

Thus, \((-2) + (-3) = -5\).

Summarizing, we have

\[(2 \text{ negative units}) + (3 \text{ negative units}) = (5 \text{ negative units})\]

Observing these two examples, we can suggest these relationships:

 \[(\text{positive number}) + (\text{positive number}) = (\text{positive number})\]

 \[(\text{negative number}) + (\text{negative number}) = (\text{negative number})\]

Adding Numbers with the Same Sign

Addition of numbers with like sign:

To add two real numbers that have the same sign, add the absolute values of the numbers and associate with the sum the common sign.

10.5.2.1 Sample Set A

Find the sums.

Example 10.21

\[3 + 7\]

\[
\begin{align*}
|3| &= 3 \\
|7| &= 7
\end{align*}
\]

Add these absolute values.

\[3 + 7 = 10\]

The common sign is “+.”

Thus, \(3 + 7 = +10\), or \(3 + 7 = 10\).

Example 10.22

\[(-4) + (-9)\]

\[
\begin{align*}
|-4| &= 4 \\
|-9| &= 9
\end{align*}
\]

Add these absolute values.

\[4 + 9 = 13\]

The common sign is “−.”
Thus, \((-4) + (-9) = -13\).

10.5.2.2 Practice Set A

Find the sums.

Exercise 10.133
\(8 + 6\) \((\text{Solution on p. 621.})\)

Exercise 10.134
\(41 + 11\) \((\text{Solution on p. 621.})\)

Exercise 10.135
\((-4) + (-8)\) \((\text{Solution on p. 621.})\)

Exercise 10.136
\((-36) + (-9)\) \((\text{Solution on p. 621.})\)

Exercise 10.137
\(-14 + (-20)\) \((\text{Solution on p. 621.})\)

Exercise 10.138
\(-\frac{2}{3} + (-\frac{5}{3})\) \((\text{Solution on p. 621.})\)

Exercise 10.139
\(-2.8 + (-4.6)\) \((\text{Solution on p. 621.})\)

Exercise 10.140
\(0 + (-16)\) \((\text{Solution on p. 621.})\)

10.5.3 Addition With Zero

Addition with Zero
Notice that
\((0) + (\text{a positive number}) = (\text{that same positive number})\).
\((0) + (\text{a negative number}) = (\text{that same negative number})\).

The Additive Identity Is Zero
Since adding zero to a real number leaves that number unchanged, zero is called the additive identity.

10.5.4 Addition of Numbers with Unlike Signs

The addition \(2 + (-6)\), two numbers with unlike signs, can also be illustrated using the number line.

Begin at 0, the origin.

Since 2 is positive, move 2 units to the right.

Since -6 is negative, move, from 2, 6 units to the left.

We are now located at -4.

We can suggest a rule for adding two numbers that have unlike signs by noting that if the signs are disregarded, 4 can be obtained by subtracting 2 from 6. But 2 and 6 are precisely the absolute values of 2 and
-6. Also, notice that the sign of the number with the larger absolute value is negative and that the sign of the resulting sum is negative.

Adding Numbers with Unlike Signs

Addition of numbers with unlike signs: To add two real numbers that have \textit{unlike signs}, subtract the smaller absolute value from the larger absolute value and associate with this difference the sign of the number with the larger absolute value.

10.5.4.1 Sample Set B

Find the following sums.

Example 10.23

$$7 + (-2)$$

$$|7| = 7 \quad | -2| = 2$$

Larger absolute value. Sign is positive.

Smaller absolute value.

Subtract absolute values: $$7 - 2 = 5$$.

Attach the proper sign: "+."

Thus, $$7 + (-2) = +5$$ or $$7 + (-2) = 5$$.

Example 10.24

$$3 + (-11)$$

$$|3| = 3 \quad | -11| = 11$$

Smaller absolute value. Sign is negative.

Larger absolute value.

Subtract absolute values: $$11 - 3 = 8$$.

Attach the proper sign: "−."

Thus, $$3 + (-11) = -8$$.

Example 10.25

The morning temperature on a winter’s day in Lake Tahoe was -12 degrees. The afternoon temperature was 25 degrees warmer. What was the afternoon temperature?

We need to find $$-12 + 25$$.

$$|-12| = 12 \quad |25| = 25$$

Smaller absolute value. Sign is positive.

Larger absolute value.

Subtract absolute values: $$25 - 12 = 16$$.

Attach the proper sign: "+."

Thus, $$-12 + 25 = 13$$.
10.5.4.2 Practice Set B

Find the sums.

Exercise 10.141
4 + (−3) (Solution on p. 621.)

Exercise 10.142
−3 + 5 (Solution on p. 621.)

Exercise 10.143
15 + (−18) (Solution on p. 621.)

Exercise 10.144
0 + (−6) (Solution on p. 621.)

Exercise 10.145
−26 + 12 (Solution on p. 621.)

Exercise 10.146
35 + (−78) (Solution on p. 621.)

Exercise 10.147
15 + (−10) (Solution on p. 622.)

Exercise 10.148
1.5 + (−2) (Solution on p. 622.)

Exercise 10.149
−8 + 0 (Solution on p. 622.)

Exercise 10.150
0 + (0.57) (Solution on p. 622.)

Exercise 10.151
−879 + 454 (Solution on p. 622.)

10.5.5 Calculators

Calculators having the $\boxed{+/−}$ key can be used for finding sums of signed numbers.

10.5.5.1 Sample Set C

Use a calculator to find the sum of -147 and 84.

<table>
<thead>
<tr>
<th>Type</th>
<th>Display Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>147</td>
<td>147</td>
</tr>
<tr>
<td>$\boxed{+/−}$</td>
<td>-147</td>
</tr>
<tr>
<td>Press</td>
<td>This key changes the sign of a number. It is different than −.</td>
</tr>
<tr>
<td>Press</td>
<td>-147</td>
</tr>
<tr>
<td>84</td>
<td>84</td>
</tr>
<tr>
<td>Press</td>
<td>-63</td>
</tr>
</tbody>
</table>

Table 10.1
10.5.5.2 Practice Set C

Use a calculator to find each sum.

Exercise 10.152
673 + (−721)
(Solution on p. 622.)

Exercise 10.153
−8,261 + 2,206
(Solution on p. 622.)

Exercise 10.154
−1,345.6 + (−6,648.1)
(Solution on p. 622.)

10.5.6 Exercises

Find the sums in the following 27 problems. If possible, use a calculator to check each result.

Exercise 10.155
4 + 12
(Solution on p. 622.)

Exercise 10.156
8 + 6
(Solution on p. 622.)

Exercise 10.157
(−3) + (−12)
(Solution on p. 622.)

Exercise 10.158
(−6) + (−20)
(Solution on p. 622.)

Exercise 10.159
10 + (−2)
(Solution on p. 622.)

Exercise 10.160
8 + (−15)
(Solution on p. 622.)

Exercise 10.161
−16 + (−9)
(Solution on p. 622.)

Exercise 10.162
−22 + (−1)
(Solution on p. 622.)

Exercise 10.163
0 + (−12)
(Solution on p. 622.)

Exercise 10.164
0 + (−4)
(Solution on p. 622.)

Exercise 10.165
0 + (24)
(Solution on p. 622.)

Exercise 10.166
−6 + 1 + (−7)
(Solution on p. 622.)

Exercise 10.167
−5 + (−12) + (−4)
(Solution on p. 622.)

Exercise 10.168
−5 + 5
(Solution on p. 622.)

Exercise 10.169
−7 + 7
(Solution on p. 622.)

Exercise 10.170
−14 + 14
Exercise 10.171
$(4 + (-4))$
(Solution on p. 622.)

Exercise 10.172
$(9 + (-9))$

Exercise 10.173
$(84 + (-61))$
(Solution on p. 622.)

Exercise 10.174
$(13 + (-56))$

Exercise 10.175
$(452 + (-124))$
(Solution on p. 622.)

Exercise 10.176
$(636 + (-989))$

Exercise 10.177
$(1,811 + (-935))$
(Solution on p. 622.)

Exercise 10.178
$(-373 + (-14))$

Exercise 10.179
$(-1,211 + (-44))$
(Solution on p. 622.)

Exercise 10.180
$(-47.03 + (-22.71))$
(Solution on p. 622.)

Exercise 10.181
$(-1.998 + (-4.086))$

Exercise 10.182
In order for a small business to break even on a project, it must have sales of $21,000. If the amount of sales was $15,000, by how much money did this company fall short?
(Solution on p. 622.)

Exercise 10.183
Suppose a person has $56 in his checking account. He deposits $100 into his checking account by using the automatic teller machine. He then writes a check for $84.50. If an error causes the deposit not to be listed into this person’s account, what is this person’s checking balance?
(Solution on p. 622.)

Exercise 10.184
A person borrows $7 on Monday and then $12 on Tuesday. How much has this person borrowed?
(Solution on p. 622.)

Exercise 10.185
A person borrows $11 on Monday and then pays back $8 on Tuesday. How much does this person owe?
(Solution on p. 622.)

10.5.6.1 Exercises for Review

Exercise 10.186
(Section 4.6) Find the reciprocal of $8 \frac{2}{5}$.
(Solution on p. 622.)

Exercise 10.187
(Section 5.3) Find the value of $\frac{5}{12} + \frac{7}{18} - \frac{1}{3}$.
(Solution on p. 622.)

Exercise 10.188
(Section 6.4) Round 0.01628 to the nearest tenth.
(Solution on p. 623.)

Exercise 10.189
(Section 7.5) Convert 62% to a fraction.
Exercise 10.190
(Section 10.4) Find the value of $| -12 |$.

10.6 Subtraction of Signed Numbers

10.6.1 Section Overview
- Definition of Subtraction
- The Process of Subtraction
- Calculators

10.6.2 Definition of Subtraction
We know from experience with arithmetic that the subtraction $5 - 2$ produces 3, that is $5 - 2 = 3$. We can suggest a rule for subtracting signed numbers by illustrating this process on the number line.

\[\text{Begin at 0, the origin.} \]

Since 5 is positive, move 5 units to the right.

Then, move 2 units to the left to get to 6. (This reminds us of addition with a negative number.)

From this illustration we can see that $5 - 2$ is the same as $5 + (-2)$. This leads us directly to the definition of subtraction.

Definition of Subtraction
If a and b are real numbers, $a - b$ is the same as $a + (-b)$, where $-b$ is the opposite of b.

10.6.3 The Process of Subtraction
From this definition, we suggest the following rule for subtracting signed numbers.

Subtraction of Signed Numbers
To perform the subtraction $a - b$, add the opposite of b to a, that is, change the sign of b and add.

10.6.3.1 Sample Set A
Perform the indicated subtractions.

Example 10.26
$5 - 3 = 5 + (-3) = 2$

Example 10.27
$4 - 9 = 4 + (-9) = -5$

Example 10.28
$-4 - 6 = -4 + (-6) = -10$

Example 10.29
$-3 - (-12) = -3 + 12 = 9$

This content is available online at <http://cnx.org/content/m35032/1.2/>.
Example 10.30
\[0 - (-15) = 0 + 15 = 15 \]

Example 10.31
The high temperature today in Lake Tahoe was 26°F. The low temperature tonight is expected to be -7°F. How many degrees is the temperature expected to drop?

We need to find the difference between 26 and -7.

\[26 - (-7) = 26 + 7 = 33 \]

Thus, the expected temperature drop is 33°F.

Example 10.32
\[-6 - (-5) - 10 = -6 + 5 + (-10) \]
\[= (-6 + 5) + (-10) \]
\[= -1 + (-10) \]
\[= -11 \]

10.6.3.2 Practice Set A
Perform the indicated subtractions.

Exercise 10.191
\[9 - 6 \]
(Solution on p. 623.)

Exercise 10.192
\[6 - 9 \]
(Solution on p. 623.)

Exercise 10.193
\[0 - 7 \]
(Solution on p. 623.)

Exercise 10.194
\[1 - 14 \]
(Solution on p. 623.)

Exercise 10.195
\[-8 - 12 \]
(Solution on p. 623.)

Exercise 10.196
\[-21 - 6 \]
(Solution on p. 623.)

Exercise 10.197
\[-6 - (-4) \]
(Solution on p. 623.)

Exercise 10.198
\[8 - (-10) \]
(Solution on p. 623.)

Exercise 10.199
\[1 - (-12) \]
(Solution on p. 623.)

Exercise 10.200
\[86 - (-32) \]
(Solution on p. 623.)

Exercise 10.201
\[0 - 16 \]
(Solution on p. 623.)

Exercise 10.202
\[0 - (-16) \]
(Solution on p. 623.)

Exercise 10.203
\[0 - (8) \]
(Solution on p. 623.)
Exercise 10.204
\[5 - (-5) \]
(Solution on p. 623.)

Exercise 10.205
\[24 - [- (-24)] \]
(Solution on p. 623.)

10.6.4 Calculators

Calculators can be used for subtraction of signed numbers. The most efficient calculators are those with a \(+/-\) key.

10.6.4.1 Sample Set B

Use a calculator to find each difference.

Example 10.33

\[3,187 - 8,719 \]

<table>
<thead>
<tr>
<th>Display Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Press</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Press</td>
</tr>
</tbody>
</table>

Table 10.2

Thus, \(3,187 - 8,719 = -5,532 \).

Example 10.34

\[-156 - (-211) \]

Method A:

<table>
<thead>
<tr>
<th>Display Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Press</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Press</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Press</td>
</tr>
</tbody>
</table>

Table 10.3

Thus, \(-156 - (-211) = 55 \).

Method B:
We manually change the subtraction to an addition and change the sign of the number to be subtracted.

\[-156 - (\text{-211}) \text{ becomes } -156 + 211\]

<table>
<thead>
<tr>
<th>Display Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Press</td>
</tr>
<tr>
<td>Press</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Press</td>
</tr>
</tbody>
</table>

Table 10.4

10.6.4.2 Practice Set B

Use a calculator to find each difference.

- **Exercise 10.206**
 \[44 - 315\]
 (Solution on p. 623.)

- **Exercise 10.207**
 \[12.756 - 15.003\]
 (Solution on p. 623.)

- **Exercise 10.208**
 \[\text{-31.89} - \text{-44.17}\]
 (Solution on p. 623.)

- **Exercise 10.209**
 \[\text{-0.797} - \text{(-0.615)}\]
 (Solution on p. 623.)

10.6.5 Exercises

For the following 18 problems, perform each subtraction. Use a calculator to check each result.

- **Exercise 10.210**
 \[8 - 3\]
 (Solution on p. 623.)

- **Exercise 10.211**
 \[12 - 7\]
 (Solution on p. 623.)

- **Exercise 10.212**
 \[5 - 6\]
 (Solution on p. 623.)

- **Exercise 10.213**
 \[14 - 30\]
 (Solution on p. 623.)

- **Exercise 10.214**
 \[\text{-6} - 8\]
 (Solution on p. 623.)

- **Exercise 10.215**
 \[\text{-1} - 12\]
 (Solution on p. 623.)

- **Exercise 10.216**
 \[\text{-5} - (-3)\]
 (Solution on p. 623.)
Exercise 10.217
\[-11 - (-8)\]

Exercise 10.218
\[0 - 6\] (Solution on p. 623.)

Exercise 10.219
\[0 - 15\]

Exercise 10.220
\[0 - (-7)\] (Solution on p. 624.)

Exercise 10.221
\[0 - (-10)\]

Exercise 10.222
\[67 - 38\] (Solution on p. 624.)

Exercise 10.223
\[142 - 85\]

Exercise 10.224
\[816 - 1140\] (Solution on p. 624.)

Exercise 10.225
\[105 - 421\]

Exercise 10.226
\[-550 - (-121)\] (Solution on p. 624.)

Exercise 10.227
\[-15.016 - (4.001)\]

For the following 4 problems, perform the indicated operations.

Exercise 10.228
\[-26 + 7 - 52\] (Solution on p. 624.)

Exercise 10.229
\[-15 - 21 - (-2)\]

Exercise 10.230
\[-104 - (-216) - (-52)\] (Solution on p. 624.)

Exercise 10.231
\[-0.012 - (-0.111) - (0.035)\]

Exercise 10.232
\[-(Solution on p. 624.)\]

When a particular machine is operating properly, its meter will read 34. If a broken bearing in the machine causes the meter reading to drop by 45 units, what is the meter reading?

Exercise 10.233
The low temperature today in Denver was $-4 ^\circ F$ and the high was $-42 ^\circ F$. What is the temperature difference?
10.6.5.1 Exercises for Review

Exercise 10.234
(Solution on p. 624.)
(Section 6.3) Convert $16.02\frac{1}{7}$ to a decimal.

Exercise 10.235
(Section 6.6) Find 4.01 of 6.2.

Exercise 10.236
(Solution on p. 624.)
(Section 7.5) Convert $\frac{5}{10}$ to a percent.

Exercise 10.237
(Section 8.4) Use the distributive property to compute the product: $15 \cdot 82$.

Exercise 10.238
(Solution on p. 624.)
(Section 10.5) Find the sum: $16 + (-21)$.

10.7 Multiplication and Division of Signed Numbers

10.7.1 Section Overview

- Multiplication of Signed Numbers
- Division of Signed Numbers
- Calculators

10.7.2 Multiplication of Signed Numbers

Let us consider first, the product of two positive numbers. Multiply: $3 \cdot 5$.

$3 \cdot 5$ means $5 + 5 + 5 = 15$

This suggests\(^8\) that

$\text{(positive number)} \cdot \text{(positive number)} = \text{(positive number)}$

More briefly,

$(+) (+) = (+)$

Now consider the product of a positive number and a negative number. Multiply: $(3) (-5)$.

$(3) (-5)$ means $(-5) + (-5) + (-5) = -15$

This suggests that

$\text{(positive number)} \cdot \text{(negative number)} = \text{(negative number)}$

More briefly,

$(+) (-) = (-)$

By the commutative property of multiplication, we get

\(^7\)This content is available online at <http://cnx.org/content/m35033/1.2/>.

\(^8\)In later mathematics courses, the word "suggests" turns into the word "proof." One example does not prove a claim. Mathematical proofs are constructed to validate a claim for all possible cases.
(negative number) \cdot (positive number) = (negative number)

More briefly,
\((-) (+) = (-)\)

The sign of the product of two negative numbers can be suggested after observing the following illustration.

Multiply \(-2\) by, respectively, \(4, 3, 2, 1, 0, -1, -2, -3, -4\).

<table>
<thead>
<tr>
<th>When this number decreases by 1,</th>
<th>this product increases by 2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4(-2))</td>
<td>(-8)</td>
</tr>
<tr>
<td>(3(-2))</td>
<td>(-6)</td>
</tr>
<tr>
<td>(2(-2))</td>
<td>(-4)</td>
</tr>
</tbody>
</table>
| \(1(-2)\) | \(-2\) | \(\rightarrow\) \((+)(-) = (-)\)
| \(0(-2)\) | \(0\) | \((0) \cdot (\text{any number}) = 0\)
| \(-1(-2)\) | \(2\) | \(\rightarrow\) \((-)(-) = (+)\)
| \(-2(-2)\) | \(4\) |
| \(-3(-2)\) | \(6\) |
| \(-4(-2)\) | \(8\) |

We have the following rules for multiplying signed numbers.

Rules for Multiplying Signed Numbers

Multiplying signed numbers:

1. To multiply two real numbers that have the same sign, multiply their absolute values. The product is positive.
\((+) (+) = (+)\)
\((-) (-) = (+)\)

2. To multiply two real numbers that have opposite signs, multiply their absolute values. The product is negative.
\((+) (-) = (-)\)
\((-) (+) = (-)\)

10.7.2.1 Sample Set A

Find the following products.

Example 10.35
\(8 \cdot 6\)

\[|8| = 8, \quad |6| = 6\] \{Multiply these absolute values.\}

\[8 \cdot 6 = 48\]

Since the numbers have the same sign, the product is positive.

Thus, \(8 \cdot 6 = +48\), or \(8 \cdot 6 = 48\).

Example 10.36
\((-8)(-6)\)
\[| - 8 | = 8 \]
\[| - 6 | = 6 \] \{ Multiply these absolute values. \]
\[8 \cdot 6 = 48 \]

Since the numbers have the same sign, the product is positive.

Thus, \((-8)(-6) = 48\), or \((-8)(-6) = 48\).

Example 10.37
\[(-4)(7) \]
\[| - 4 | = 4 \]
\[| 7 | = 7 \] \{ Multiply these absolute values. \]
\[4 \cdot 7 = 28 \]

Since the numbers have opposite signs, the product is negative.

Thus, \((-4)(7) = -28\).

Example 10.38
\[6(-3) \]
\[| 6 | = 6 \]
\[| - 3 | = 3 \] \{ Multiply these absolute values. \]
\[6 \cdot 3 = 18 \]

Since the numbers have opposite signs, the product is negative.

Thus, \(6(-3) = -18\).

10.7.2.2 Practice Set A

Find the following products.

Exercise 10.239
\[3(-8) \] \(\text{(Solution on p. 624.)} \)

Exercise 10.240
\[4(16) \] \(\text{(Solution on p. 624.)} \)

Exercise 10.241
\[(-6)(-5) \] \(\text{(Solution on p. 624.)} \)

Exercise 10.242
\[(-7)(-2) \] \(\text{(Solution on p. 624.)} \)

Exercise 10.243
\[(-1)(4) \] \(\text{(Solution on p. 624.)} \)

Exercise 10.244
\[(-7)7 \] \(\text{(Solution on p. 624.)} \)
10.7.3 Division of Signed Numbers

To determine the signs in a division problem, recall that

\[\frac{12}{3} = 4 \text{ since } 12 = 3 \cdot 4 \]

This suggests that

\[\frac{(+)}{(+)} = (+) \]
\[\frac{(+)}{(+)} = (+) \text{ since } (+) = (+)(+) \]

What is \(\frac{12}{3} \)?

\(-12 = (-3)(-4) \) suggests that \(\frac{12}{3} = -4 \). That is,

\[\frac{(+)}{(-)} = (-) \]
\[(+) = (-)(-) \text{ suggests that } \frac{(+)}{(-)} = (-) \]

What is \(\frac{-12}{3} \)?

\(-12 = (3)(-4) \) suggests that \(\frac{-12}{3} = -4 \). That is,

\[\frac{(-)}{(+) = (-)} \]
\[(-) = (+)(-) \text{ suggests that } \frac{(-)}{(+)} = (-) \]

What is \(\frac{-12}{3} \)?

\(-12 = (-3)(4) \) suggests that \(\frac{-12}{3} = 4 \). That is,

\[\frac{(-)}{(+)} = (+) \]
\[(-) = (-)(+) \text{ suggests that } \frac{(-)}{(+)} = (+) \]

We have the following rules for dividing signed numbers.

Rules for Dividing Signed Numbers

Dividing signed numbers:

1. To divide two real numbers that have the same sign, divide their absolute values. The quotient is positive.
 \[\frac{(+)}{(+)} = (+) \quad \frac{(-)}{(-)} = (+) \]
2. To divide two real numbers that have opposite signs, divide their absolute values. The quotient is negative.
 \[\frac{(-)}{(+) = (-)} \quad \frac{(+)}{(-)} = (-) \]

10.7.3.1 Sample Set B

Find the following quotients.

Example 10.39

\[\frac{-10}{2} \]
\[| -10 | = 10 \]
\[|2| = 2 \]
\[\frac{10}{2} = 5 \]

Since the numbers have opposite signs, the quotient is negative.

Thus \(-\frac{10}{2} = -5 \).

Example 10.40
\[\frac{-35}{-7} \]
\[| -35 | = 35 \]
\[| -7 | = 7 \]
\[\frac{35}{7} = 5 \]

Since the numbers have the same signs, the quotient is positive.

Thus, \(\frac{-35}{-7} = 5 \).

Example 10.41
\[\frac{18}{-9} \]
\[|18| = 18 \]
\[| -9 | = 9 \]
\[\frac{18}{9} = 2 \]

Since the numbers have opposite signs, the quotient is negative.

Thus, \(\frac{18}{-9} = 2 \)

10.7.3.2 Practice Set B

Find the following quotients.

Exercise 10.245
\(\frac{-24}{-9} \)
(Solution on p. 624.)

Exercise 10.246
\(\frac{30}{-5} \)
(Solution on p. 624.)

Exercise 10.247
\(\frac{-54}{27} \)
(Solution on p. 624.)

Exercise 10.248
\(\frac{51}{17} \)
(Solution on p. 624.)
10.7.3.3 Sample Set C

Example 10.42
Find the value of \(-\frac{6(4-7)-2(8-9)}{(4+1)+1}\).

Using the order of operations and what we know about signed numbers, we get,

\[
-\frac{6(4-7)-2(8-9)}{(4+1)+1} = -\frac{6(-3)-2(-1)}{5+1} = -\frac{-18+2}{6} = -\frac{20}{6} = -5
\]

10.7.3.4 Practice Set C

Exercise 10.249
Find the value of \(-\frac{5(2-6)-4(-8-1)}{2(3-10)-9(-2)}\).

10.7.4 Calculators

Calculators with the \([+/-]\) key can be used for multiplying and dividing signed numbers.

10.7.4.1 Sample Set D

Use a calculator to find each quotient or product.

Example 10.43
\((-186) \cdot (-43)\)

Since this product involves a (negative) \cdot (negative), we know the result should be a positive number. We'll illustrate this on the calculator.

<table>
<thead>
<tr>
<th>Type</th>
<th>Display Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>186</td>
<td>186</td>
</tr>
<tr>
<td>Press [+/-]</td>
<td>-186</td>
</tr>
<tr>
<td>Press (\times)</td>
<td>-186</td>
</tr>
<tr>
<td>Type</td>
<td>43</td>
</tr>
<tr>
<td>Press [+/-]</td>
<td>-43</td>
</tr>
<tr>
<td>Press (=)</td>
<td>7998</td>
</tr>
</tbody>
</table>

\[
\text{Table 10.5}
\]

Thus, \((-186) \cdot (-43) = 7,998.\)

Example 10.44
\(\frac{158.64}{-64} \) Round to one decimal place.
Table 10.6

<table>
<thead>
<tr>
<th>Display Reads</th>
<th>Type</th>
<th>Press</th>
<th>Type</th>
<th>Press</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>158.64</td>
<td>÷</td>
<td>54.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>158.64</td>
<td></td>
<td>54.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>+/−</td>
<td>-54.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-2.921546961</td>
</tr>
</tbody>
</table>

Rounding to one decimal place we get -2.9.

10.7.4.2 Practice Set D

Use a calculator to find each value.

- **Exercise 10.250**
 \[-51.3 \cdot (-21.6)\]

- **Exercise 10.251**
 \[2.5746 ÷ -2.1\]

- **Exercise 10.252**
 \[(0.006) \cdot (-0.241)\]. Round to three decimal places.

10.7.5 Exercises

Find the value of each of the following. Use a calculator to check each result.

- **Exercise 10.253**
 \[-2 \cdot (-8)\]

- **Exercise 10.254**
 \[-3 \cdot (-9)\]

- **Exercise 10.255**
 \[-4 \cdot (-8)\]

- **Exercise 10.256**
 \[-5 \cdot (-2)\]

- **Exercise 10.257**
 \[3 \cdot (-12)\]

- **Exercise 10.258**
 \[4 \cdot (-18)\]

- **Exercise 10.259**
 \[10 \cdot (-6)\]

- **Exercise 10.260**
 \[−6 \cdot (4)\]

- **Exercise 10.261**
 \[-2 \cdot (6)\]
Exercise 10.262
(−8) (7)

Exercise 10.263
\[
\frac{21}{7}
\]

Exercise 10.264
\[
\frac{42}{6}
\]

Exercise 10.265
\[
\frac{-39}{3}
\]

Exercise 10.266
\[
\frac{-20}{10}
\]

Exercise 10.267
\[
\frac{-45}{5}
\]

Exercise 10.268
\[
\frac{-16}{-8}
\]

Exercise 10.269
\[
\frac{25}{5}
\]

Exercise 10.270
\[
\frac{36}{-4}
\]

Exercise 10.271
\[
8 - (-3)
\]

Exercise 10.272
\[
14 - (-20)
\]

Exercise 10.273
\[
20 - (-8)
\]

Exercise 10.274
\[
-4 - (-1)
\]

Exercise 10.275
\[
0 - 4
\]

Exercise 10.276
\[
0 - (-1)
\]

Exercise 10.277
\[
-6 + 1 - 7
\]

Exercise 10.278
\[
15 - 12 - 20
\]

Exercise 10.279
\[
1 - 6 - 7 + 8
\]

Exercise 10.280
\[
2 + 7 - 10 + 2
\]

Exercise 10.281
\[
3 (4 - 6)
\]

Exercise 10.282
\[
8 (5 - 12)
\]

Exercise 10.283
\[
-3 (1 - 6)
\]

Exercise 10.284
\[
-8 (4 - 12) + 2
\]
Exercise 10.285
\[-4(1 - 8) + 3(10 - 3)\]
(Solution on p. 625.)

Exercise 10.286
\[-9(0 - 2) + 4(8 - 9) + 0(-3)\]

Exercise 10.287
\[6(-2 - 9) - 6(2 + 9) + 4(-1 - 1)\]
(Solution on p. 625.)

Exercise 10.288
\[\frac{2(4+1)-2(5)}{-2}\]

Exercise 10.289
\[\frac{4(8+1)-3(-2)}{1-2}\]
(Solution on p. 625.)

Exercise 10.290
\[\frac{-1(3+2)+5}{-1}\]

Exercise 10.291
\[\frac{-3(4-2)+(-3)(-6)}{4}\]
(Solution on p. 625.)

Exercise 10.292
\[-1(4 + 2)\]

Exercise 10.293
\[-1(6 - 1)\]
(Solution on p. 625.)

Exercise 10.294
\[-(8 + 21)\]

Exercise 10.295
\[-(8 - 21)\]
(Solution on p. 625.)

10.7.5.1 Exercises for Review

Exercise 10.296
(Section 3.3) Use the order of operations to simplify \((5^2 + 3^2 + 2) \div 2^2\).

Exercise 10.297
(Section 4.7) Find \(\frac{3}{5}\) of \(\frac{32}{9}\).
(Solution on p. 625.)

Exercise 10.298
(Section 6.2) Write this number in decimal form using digits: “fifty-two three-thousandths”

Exercise 10.299
(Section 7.4) The ratio of chlorine to water in a solution is 2 to 7. How many mL of water are in a solution that contains 15 mL of chlorine?
(Solution on p. 625.)

Exercise 10.300
(Section 10.6) Perform the subtraction \(-8 - (-20)\)
10.8 Summary of Key Concepts

10.8.1 Summary of Key Concepts

Variables and Constants (Section 10.2)
A variable is a letter or symbol that represents any member of a set of two or more numbers. A constant is a letter or symbol that represents a specific number. For example, the Greek letter π (pi) represents the constant 3.14159 . . .

The Real Number Line (Section 10.2)
The real number line allows us to visually display some of the numbers in which we are interested.

Coordinate and Graph (Section 10.2)
The number associated with a point on the number line is called the coordinate of the point. The point associated with a number is called the graph of the number.

Real Number (Section 10.2)
A real number is any number that is the coordinate of a point on the real number line.

Types of Real Numbers (Section 10.2)
The set of real numbers has many subsets. The ones of most interest to us are:
- The natural numbers: {1, 2, 3, 4, . . .}
- The whole numbers: {0, 1, 2, 3, 4, . . .}
- The integers: {. . . , -3, -2, -1, 0, 1, 2, 3, . . .}
- The rational numbers: {All numbers that can be expressed as the quotient of two integers.}

Positive and Negative Numbers (Section 10.3)
A number is denoted as positive if it is directly preceded by a plus sign (+) or no sign at all. A number is denoted as negative if it is directly preceded by a minus sign (−).

Opposites (Section 10.3)
Opposites are numbers that are the same distance from zero on the number line but have opposite signs. The numbers a and −a are opposites.

Double-Negative Property (Section 10.3)
−(−a) = a

Absolute Value (Geometric) (Section 10.4)
The absolute value of a number a, denoted |a|, is the distance from a to 0 on the number line.

Absolute Value (Algebraic) (Section 10.4)
|a| = {a, if a ≥ 0
−a, if a < 0

Addition of Signed Numbers (Section 10.5)
To add two numbers with
1. like signs, add the absolute values of the numbers and associate with the sum the common sign.
2. unlike signs, subtract the smaller absolute value from the larger absolute value and associate with the difference the sign of the larger absolute value.

9This content is available online at <http://cnx.org/content/m35034/1.2/>.
Addition with Zero (Section 10.5)
0 + (any number) = that particular number.

Additive Identity (Section 10.5)
Since adding 0 to any real number leaves that number unchanged, 0 is called the additive identity.

Definition of Subtraction (Section 10.6)
a − b = a + (−b)

Subtraction of Signed Numbers (Section 10.6)
To perform the subtraction $a − b$, add the opposite of b to a, that is, change the sign of b and follow the addition rules (Section 10.5).

Multiplication and Division of Signed Numbers (Section 10.7)

- $(+) (+) = (+)$
- $(+) (−) = (−)$
- $−(+) = (−)$
- $−(−) = (+)$
- $+(+) = (−)$
- $+(−) = (−)$
- $−(+)$
- $(−)(−) = (+)$
- $(−)(+) = (−)$
- $(+)(+) = (−)$
- $(+)(−) = (+)$

10.9 Exercise Supplement

10.9.1 Exercise Supplement

10.9.1.1 Variables, Constants, and Real Numbers (Section 10.2)

For problems 1-5, next to each real number, note all subsets of the real numbers to which it belongs by writing N for natural numbers, W for whole numbers, or Z for integers. Some numbers may belong to more than one subset.

Exercise 10.301
61

Exercise 10.302
−14

Exercise 10.303
0

Exercise 10.304
1

Exercise 10.305
Write all the integers that are strictly between −4 and 3

Exercise 10.306
Write all the integers that are between and including −6 and −1

For each pair of numbers in problems 7-10, write the appropriate symbol ($<$, $>$, $=$) in place of the □.

Exercise 10.307
−5 □ −1

Exercise 10.308
0 □ 2

Exercise 10.309
−7 □ 0

10This content is available online at <http://cnx.org/content/m35035/1.2/>.
Exercise 10.310
-1 0

For problems 11-15, what numbers can replace x so that each statement is true?

Exercise 10.311 (Solution on p. 626.)
-5 ≤ x ≤ -1, x is an integer

Exercise 10.312
-10 < x ≤ 0, x is a whole number.

Exercise 10.313 (Solution on p. 626.)
0 ≤ x < 5, x is a natural number.

Exercise 10.314
-3 < x < 3, x is a natural number

Exercise 10.315 (Solution on p. 626.)
-8 < x ≤ -2, x is a whole number.

For problems 16-20, how many units are there between the given pair of numbers?

Exercise 10.316
0 and 4

Exercise 10.317 (Solution on p. 626.)
-1 and 3

Exercise 10.318
-7 and -4

Exercise 10.319 (Solution on p. 626.)
-6 and 0

Exercise 10.320
-1 and 1

Exercise 10.321 (Solution on p. 626.)
A number is positive if it is directly preceded by a _________ sign or no sign at all.

Exercise 10.322
A number is negative if it is directly preceded by a _________ sign.

10.9.1.2 Signed Numbers (Section 10.3)

For problems 23-26, how should each number be read?

Exercise 10.323 (Solution on p. 626.)
-8

Exercise 10.324
-(-4)

Exercise 10.325 (Solution on p. 626.)
-(-1)

Exercise 10.326
-2

For problems 27-31, write each expression in words.

Exercise 10.327 (Solution on p. 626.)
1 + (-7)

Exercise 10.328
-2 - (-6)

Exercise 10.329
− 1 − (+4)
(Solution on p. 626.)

Exercise 10.330
− (− (−3))

Exercise 10.331
0 − (−11)
(Solution on p. 626.)

For problems 32–36, rewrite each expression in simpler form.

Exercise 10.332
− (−4)

Exercise 10.333
− (−15)
(Solution on p. 626.)

Exercise 10.334
− [− (−7)]

Exercise 10.335
1 − (−18)
(Solution on p. 626.)

Exercise 10.336
0 − (−1)

10.9.1.3 Absolute Value (Section 10.4)

For problems 37–52, determine each value.

Exercise 10.337
| 9 |

Exercise 10.338
| 16 |

Exercise 10.339
| −5 |

Exercise 10.340
| −8 |

Exercise 10.341
− | −2 |

Exercise 10.342
− | −1 |

Exercise 10.343
− (− | 12 |)

Exercise 10.344
− (− | 90 |)

Exercise 10.345
− (− | −16 |)

Exercise 10.346
− (− | 0 |)

Exercise 10.347
| −4 |²

Exercise 10.348
| −5 |²
Exercise 10.349
| −2 |³
(Solution on p. 626.)

Exercise 10.350
| −(3 ⋅ 4) |
(Solution on p. 626.)

Exercise 10.351
| −5 | + | −2 |
(Solution on p. 626.)

Exercise 10.352
| −7 | − | −10 |

10.9.1.4 Addition, Subtraction, Multiplication and Division of Signed Numbers (Section 10.5, Section 10.6, Section 10.7)

For problems 53-71, perform each operation.

Exercise 10.353
−6 + 4
(Solution on p. 626.)

Exercise 10.354
−10 + 8

Exercise 10.355
−1 − 6
(Solution on p. 627.)

Exercise 10.356
8 − 12

Exercise 10.357
0 − 14
(Solution on p. 627.)

Exercise 10.358
5 ⋅ (−2)

Exercise 10.359
−8 ⋅ (−6)
(Solution on p. 627.)

Exercise 10.360
(−3) ⋅ (−9)

Exercise 10.361
14 ⋅ (−3)
(Solution on p. 627.)

Exercise 10.362
5 ⋅ (−70)

Exercise 10.363
−18 ÷ −6
(Solution on p. 627.)

Exercise 10.364
72 ÷ −12

Exercise 10.365
−16 ÷ −16
(Solution on p. 627.)

Exercise 10.366
0 ÷ −8

Exercise 10.367
−5 ÷ 0
(Solution on p. 627.)

Exercise 10.368
\(\frac{-15}{-3} \)
CHAPTER 10. SIGNED NUMBERS

Exercise 10.369 \(-\frac{28}{7}\) (Solution on p. 627.)
Exercise 10.370 \(-\frac{120}{-12}\)
Exercise 10.371 \(-\frac{|-66|}{-|-3|}\) (Solution on p. 627.)

10.10 Proficiency Exam

10.10.1 Proficiency Exam

Exercise 10.372 (Solution on p. 627.) (Section 10.2) Write all integers that are strictly between \(-8\) and \(-3\).

Exercise 10.373 (Solution on p. 627.) (Section 10.2) Write all integers that are between and including \(-2\) and 1.

For problems 3-5, write the appropriate symbol \(<, >, =\) in place of the □ for each pair of numbers.

Exercise 10.374 (Solution on p. 627.) (Section 10.2) \(-1\ □ -1\)

Exercise 10.375 (Solution on p. 627.) (Section 10.2) \(0 □ 3\)

Exercise 10.376 (Solution on p. 627.) (Section 10.2) \(-1 □ -2\)

For problems 6 and 7, what numbers can replace \(x\) so that the statement is true?

Exercise 10.377 (Solution on p. 627.) (Section 10.2) \(-3 ≤ x < 0, x\ is\ an\ integer.\)

Exercise 10.378 (Solution on p. 627.) (Section 10.2) \(-4 ≤ x ≤ 0, x\ is\ a\ natural\ number.\)

Exercise 10.379 (Solution on p. 627.) (Section 10.2) How many units are there between \(-3\) and \(2\)?

For problems 9-20, find each value.

Exercise 10.380 (Solution on p. 627.) (Section 10.4) \(|-16|\)

Exercise 10.381 (Solution on p. 627.) (Section 10.4) \(-|-2|\)

Exercise 10.382 (Solution on p. 627.) (Section 10.4) \(-\left(-4\right)^2\)

Exercise 10.383 (Solution on p. 627.) (Section 10.4) \(|-5| + |-10|\)

Exercise 10.384 (Solution on p. 627.) (Section 10.5) \(-8 + 6\)

Exercise 10.385 (Solution on p. 627.) (Section 10.5) \(-3 + (-8)\)

11This content is available online at <http://cnx.org/content/m35036/1.2/>.
Exercise 10.386
(Section 10.6) $0 - 16$

(Solution on p. 627.)

Exercise 10.387
(Section 10.7) $(-14) \cdot (-3)$

(Solution on p. 627.)

Exercise 10.388
(Section 10.7) $(-5 - 6)^2$

(Solution on p. 628.)

Exercise 10.389
(Section 10.7) $(-51) \div (-7)$

(Solution on p. 628.)

Exercise 10.390
(Section 10.7) $\frac{4^2}{7}$

(Solution on p. 628.)

Exercise 10.391
(Section 10.7) $\left| \frac{-32}{8} - \frac{-15-5}{5} \right|$
Solutions to Exercises in Chapter 10

Solution to Exercise 10.1 (p. 578)
yes
Solution to Exercise 10.2 (p. 578)
yes
Solution to Exercise 10.3 (p. 578)
yes
Solution to Exercise 10.4 (p. 578)
yes
Solution to Exercise 10.5 (p. 578)
yes
Solution to Exercise 10.6 (p. 579)
-5, -4, -3, -2, -1, 0
Solution to Exercise 10.7 (p. 579)

Solution to Exercise 10.8 (p. 579)
N, W, Z
Solution to Exercise 10.10 (p. 580)
W, Z
Solution to Exercise 10.12 (p. 580)
Z
Solution to Exercise 10.14 (p. 580)
Z
Solution to Exercise 10.16 (p. 580)
Neither
Solution to Exercise 10.18 (p. 580)

Solution to Exercise 10.20 (p. 580)
Yes, 10
Solution to Exercise 10.22 (p. 580)
<
Solution to Exercise 10.24 (p. 580)
>
Solution to Exercise 10.26 (p. 580)
{-1, 0, 1, 2, 3, 4, 5}
Solution to Exercise 10.28 (p. 580)
{1}
Solution to Exercise 10.30 (p. 580)
{0, 1, 2, 3, 4}
Solution to Exercise 10.32 (p. 581)
4
Solution to Exercise 10.34 (p. 581)
8
Solution to Exercise 10.36 (p. 581)
yes
Solution to Exercise 10.38 (p. 581)
yes
Solution to Exercise 10.40 (p. 581)
yes, -1

Solution to Exercise 10.42 (p. 581)
$\frac{1}{2}$ or $1\frac{1}{2}$ or 1.8

Solution to Exercise 10.44 (p. 581)
0.3006 m

Solution to Exercise 10.46 (p. 583)
six plus one

Solution to Exercise 10.47 (p. 583)
two plus negative eight

Solution to Exercise 10.48 (p. 583)
negative seven plus five

Solution to Exercise 10.49 (p. 583)
negative ten minus three

Solution to Exercise 10.50 (p. 583)
negative one minus negative eight

Solution to Exercise 10.51 (p. 583)
zero plus negative eleven

Solution to Exercise 10.52 (p. 584)
-8

Solution to Exercise 10.53 (p. 584)
-17

Solution to Exercise 10.54 (p. 584)
6

Solution to Exercise 10.55 (p. 584)
15

Solution to Exercise 10.56 (p. 584)
-1

Solution to Exercise 10.57 (p. 584)
7

Solution to Exercise 10.58 (p. 584)
$-a$ is negative

Solution to Exercise 10.59 (p. 584)
$-a$ is positive

Solution to Exercise 10.60 (p. 584)
We must say that we do not know.

Solution to Exercise 10.61 (p. 584)
+ (or no sign)

Solution to Exercise 10.63 (p. 584)
negative seven

Solution to Exercise 10.65 (p. 585)
fifteen

Solution to Exercise 10.67 (p. 585)
negative negative one, or opposite negative one

Solution to Exercise 10.69 (p. 585)
five plus three

Solution to Exercise 10.71 (p. 585)
fifteen plus negative three

Solution to Exercise 10.73 (p. 585)
negative seven minus negative two
Solution to Exercise 10.75 (p. 585) 2
Solution to Exercise 10.77 (p. 585) -8
Solution to Exercise 10.79 (p. 585) 7 + 3 = 10
Solution to Exercise 10.81 (p. 586) 0.296
Solution to Exercise 10.83 (p. 586) 0.0025 hm
Solution to Exercise 10.85 (p. 586) 6
Solution to Exercise 10.87 (p. 587) 3
Solution to Exercise 10.88 (p. 587) 12
Solution to Exercise 10.89 (p. 587) 0
Solution to Exercise 10.90 (p. 587) -9
Solution to Exercise 10.91 (p. 587) -6
Solution to Exercise 10.92 (p. 588) 7
Solution to Exercise 10.93 (p. 588) 9
Solution to Exercise 10.94 (p. 588) 12
Solution to Exercise 10.95 (p. 588) 5
Solution to Exercise 10.96 (p. 588) -8
Solution to Exercise 10.97 (p. 588) -1
Solution to Exercise 10.98 (p. 588) -52
Solution to Exercise 10.99 (p. 588) -31
Solution to Exercise 10.100 (p. 588) 5
Solution to Exercise 10.102 (p. 588) 6
Solution to Exercise 10.104 (p. 589) 1
Solution to Exercise 10.106 (p. 589) -3
Solution to Exercise 10.108 (p. 589) -14
Solution to Exercise 10.110 (p. 589)
26
Solution to Exercise 10.112 (p. 589)
4
Solution to Exercise 10.114 (p. 589)
6
Solution to Exercise 10.116 (p. 589)
3
Solution to Exercise 10.118 (p. 589)
6
Solution to Exercise 10.120 (p. 589)
100
Solution to Exercise 10.122 (p. 589)
92
Solution to Exercise 10.124 (p. 589)
-1
Solution to Exercise 10.126 (p. 590)
$-\$ | -2,400,000 |
Solution to Exercise 10.128 (p. 590)
9
Solution to Exercise 10.130 (p. 590)
3.13 or 163/50
Solution to Exercise 10.132 (p. 590)
2
Solution to Exercise 10.133 (p. 592)
14
Solution to Exercise 10.134 (p. 592)
52
Solution to Exercise 10.135 (p. 592)
-12
Solution to Exercise 10.136 (p. 592)
-45
Solution to Exercise 10.137 (p. 592)
-34
Solution to Exercise 10.138 (p. 592)
-7/3
Solution to Exercise 10.139 (p. 592)
-7.4
Solution to Exercise 10.140 (p. 592)
-16
Solution to Exercise 10.141 (p. 594)
1
Solution to Exercise 10.142 (p. 594)
2
Solution to Exercise 10.143 (p. 594)
-3
Solution to Exercise 10.144 (p. 594)
-6
Solution to Exercise 10.145 (p. 594)
-14
Solution to Exercise 10.146 (p. 594)
-43
Solution to Exercise 10.147 (p. 594)
5
Solution to Exercise 10.148 (p. 594)
-0.5
Solution to Exercise 10.149 (p. 594)
-8
Solution to Exercise 10.150 (p. 594)
0.57
Solution to Exercise 10.151 (p. 594)
-425
Solution to Exercise 10.152 (p. 595)
-48
Solution to Exercise 10.153 (p. 595)
-6,085
Solution to Exercise 10.154 (p. 595)
-7,993.7
Solution to Exercise 10.155 (p. 595)
16
Solution to Exercise 10.157 (p. 595)
-15
Solution to Exercise 10.159 (p. 595)
8
Solution to Exercise 10.161 (p. 595)
-25
Solution to Exercise 10.163 (p. 595)
-12
Solution to Exercise 10.165 (p. 595)
24
Solution to Exercise 10.167 (p. 595)
-21
Solution to Exercise 10.169 (p. 595)
0
Solution to Exercise 10.171 (p. 596)
0
Solution to Exercise 10.173 (p. 596)
23
Solution to Exercise 10.175 (p. 596)
328
Solution to Exercise 10.177 (p. 596)
876
Solution to Exercise 10.179 (p. 596)
-1,255
Solution to Exercise 10.181 (p. 596)
-6.084
Solution to Exercise 10.183 (p. 596)
-$28.50
Solution to Exercise 10.185 (p. 596)
$3.00
Solution to Exercise 10.187 (p. 596)
\frac{17}{57}
Solution to Exercise 10.189 (p. 596)
\frac{62}{100} = \frac{31}{50}
Solution to Exercise 10.191 (p. 598)
3
Solution to Exercise 10.192 (p. 598)
-3
Solution to Exercise 10.193 (p. 598)
-7
Solution to Exercise 10.194 (p. 598)
-13
Solution to Exercise 10.195 (p. 598)
-20
Solution to Exercise 10.196 (p. 598)
-27
Solution to Exercise 10.197 (p. 598)
-2
Solution to Exercise 10.198 (p. 598)
18
Solution to Exercise 10.199 (p. 598)
13
Solution to Exercise 10.200 (p. 598)
118
Solution to Exercise 10.201 (p. 598)
-16
Solution to Exercise 10.202 (p. 598)
16
Solution to Exercise 10.203 (p. 598)
-8
Solution to Exercise 10.204 (p. 599)
10
Solution to Exercise 10.205 (p. 599)
0
Solution to Exercise 10.206 (p. 600)
-271
Solution to Exercise 10.207 (p. 600)
-2.247
Solution to Exercise 10.208 (p. 600)
-76.06
Solution to Exercise 10.209 (p. 600)
-0.182
Solution to Exercise 10.210 (p. 600)
5
Solution to Exercise 10.212 (p. 600)
-1
Solution to Exercise 10.214 (p. 600)
-14
Solution to Exercise 10.216 (p. 600)
-2
Solution to Exercise 10.218 (p. 601)
-6
Solution to Exercise 10.220 (p. 601)
7
Solution to Exercise 10.222 (p. 601)
29
Solution to Exercise 10.224 (p. 601)
-324
Solution to Exercise 10.226 (p. 601)
-429
Solution to Exercise 10.228 (p. 601)
-71
Solution to Exercise 10.230 (p. 601)
164
Solution to Exercise 10.232 (p. 601)
-11
Solution to Exercise 10.234 (p. 602)
16.022
Solution to Exercise 10.236 (p. 602)
31.25%
Solution to Exercise 10.238 (p. 602)
-5
Solution to Exercise 10.239 (p. 604)
-24
Solution to Exercise 10.240 (p. 604)
64
Solution to Exercise 10.241 (p. 604)
30
Solution to Exercise 10.242 (p. 604)
14
Solution to Exercise 10.243 (p. 604)
-4
Solution to Exercise 10.244 (p. 604)
-49
Solution to Exercise 10.245 (p. 606)
4
Solution to Exercise 10.246 (p. 606)
-6
Solution to Exercise 10.247 (p. 606)
-2
Solution to Exercise 10.248 (p. 606)
3
Solution to Exercise 10.249 (p. 607)
14
Solution to Exercise 10.250 (p. 608)
1,108.08
Solution to Exercise 10.251 (p. 608)
1.226
Solution to Exercise 10.252 (p. 608)
-0.001
Solution to Exercise 10.253 (p. 608)
16
Solution to Exercise 10.255 (p. 608)
32
Solution to Exercise 10.257 (p. 608)
-36
Solution to Exercise 10.259 (p. 608)
-60
Solution to Exercise 10.261 (p. 608)
-12
Solution to Exercise 10.263 (p. 609)
3
Solution to Exercise 10.265 (p. 609)
-13
Solution to Exercise 10.267 (p. 609)
9
Solution to Exercise 10.269 (p. 609)
-5
Solution to Exercise 10.271 (p. 609)
11
Solution to Exercise 10.273 (p. 609)
28
Solution to Exercise 10.275 (p. 609)
-4
Solution to Exercise 10.277 (p. 609)
-12
Solution to Exercise 10.279 (p. 609)
-4
Solution to Exercise 10.281 (p. 609)
-6
Solution to Exercise 10.283 (p. 609)
15
Solution to Exercise 10.285 (p. 610)
49
Solution to Exercise 10.287 (p. 610)
-140
Solution to Exercise 10.289 (p. 610)
-7
Solution to Exercise 10.291 (p. 610)
-3
Solution to Exercise 10.293 (p. 610)
-5
Solution to Exercise 10.295 (p. 610)
13
Solution to Exercise 10.297 (p. 610)
\(\frac{4}{3} = 1 \frac{1}{3}\)
Solution to Exercise 10.299 (p. 610)
\(52 \frac{1}{2}\)
Solution to Exercise 10.301 (p. 612)
\(N, W, Z\)
Solution to Exercise 10.303 (p. 612)
W, Z
Solution to Exercise 10.305 (p. 612)
{−3, −2, −1, 0, 1, 2}
Solution to Exercise 10.307 (p. 612)
<
Solution to Exercise 10.309 (p. 612)
<
Solution to Exercise 10.311 (p. 613)
{−5, −4, −3, −2, −1}
Solution to Exercise 10.313 (p. 613)
{1, 2, 3, 4}
Solution to Exercise 10.315 (p. 613)
none
Solution to Exercise 10.317 (p. 613)
4
Solution to Exercise 10.319 (p. 613)
6
Solution to Exercise 10.321 (p. 613)
+ (plus)
Solution to Exercise 10.323 (p. 613)
negative eight
Solution to Exercise 10.325 (p. 613)
negative negative one or opposite negative one
Solution to Exercise 10.327 (p. 613)
one plus negative seven
Solution to Exercise 10.329 (p. 614)
negative one minus four
Solution to Exercise 10.331 (p. 614)
zero minus negative eleven
Solution to Exercise 10.333 (p. 614)
15
Solution to Exercise 10.335 (p. 614)
19 or 1 + 18
Solution to Exercise 10.337 (p. 614)
9
Solution to Exercise 10.339 (p. 614)
5
Solution to Exercise 10.341 (p. 614)
−2
Solution to Exercise 10.343 (p. 614)
12
Solution to Exercise 10.345 (p. 614)
16
Solution to Exercise 10.347 (p. 614)
16
Solution to Exercise 10.349 (p. 615)
8
Solution to Exercise 10.351 (p. 615)
7
Solution to Exercise 10.353 (p. 615)
−2
Solution to Exercise 10.355 (p. 615)
−7
Solution to Exercise 10.357 (p. 615)
−14
Solution to Exercise 10.359 (p. 615)
48
Solution to Exercise 10.361 (p. 615)
−42
Solution to Exercise 10.363 (p. 615)
3
Solution to Exercise 10.365 (p. 615)
1
Solution to Exercise 10.367 (p. 615)
not defined
Solution to Exercise 10.369 (p. 616)
−4
Solution to Exercise 10.371 (p. 616)
−22
Solution to Exercise 10.372 (p. 616)
\{-7, -6, -5, -4\}
Solution to Exercise 10.373 (p. 616)
\{-2, -1, 0, 1\}
Solution to Exercise 10.374 (p. 616)
=
Solution to Exercise 10.375 (p. 616)
<
Solution to Exercise 10.376 (p. 616)
>
Solution to Exercise 10.377 (p. 616)
\{-3, -2, -1\}
Solution to Exercise 10.378 (p. 616)
\{1, 2\}
Solution to Exercise 10.379 (p. 616)
5
Solution to Exercise 10.380 (p. 616)
16
Solution to Exercise 10.381 (p. 616)
−2
Solution to Exercise 10.382 (p. 616)
16
Solution to Exercise 10.383 (p. 616)
15
Solution to Exercise 10.384 (p. 616)
−2
Solution to Exercise 10.385 (p. 616)
−11
Solution to Exercise 10.386 (p. 617)
−16
Solution to Exercise 10.387 (p. 617)
42
Solution to Exercise 10.388 (p. 617)
121
Solution to Exercise 10.389 (p. 617)
$\frac{5}{4}$ or $7\frac{2}{7}$
Solution to Exercise 10.390 (p. 617)
6
Solution to Exercise 10.391 (p. 617)
0
Chapter 11

Algebraic Expressions and Equations

11.1 Objectives

After completing this chapter, you should

Algebraic Expressions (Section 11.2)

- be able to recognize an algebraic expression
- be able to distinguish between terms and factors
- understand the meaning and function of coefficients
- be able to perform numerical evaluation

Combining Like Terms Using Addition and Subtraction (Section 11.3)

- be able to combine like terms in an algebraic expression

Solving Equations of the Form $x + a = b$ and $x - a = b$ (Section 11.4)

- understand the meaning and function of an equation
- understand what is meant by the solution to an equation
- be able to solve equations of the form $x + a = b$ and $x - a = b$

Solving Equations of the Form $ax = b$ and $\frac{x}{a} = b$ (Section 11.5)

- be familiar with the multiplication/division property of equality
- be able to solve equations of the form $ax = b$ and $\frac{x}{a} = b$
- be able to use combined techniques to solve equations

Applications I: Translating Words to Mathematical Symbols (Section 11.6)

- be able to translate phrases and statements to mathematical expressions and equations

Applications II: Solving Problems (Section 11.7)

- be more familiar with the five-step method for solving applied problems
- be able to use the five-step method to solve number problems and geometry problems

1This content is available online at <http://cnx.org/content/m18899/1.3/>.
11.2 Algebraic Expressions

11.2.1 Section Overview

- Algebraic Expressions
- Terms and Factors
- Coefficients
- Numerical Evaluation

11.2.2 Algebraic Expressions

Numerical Expression
In arithmetic, a numerical expression results when numbers are connected by arithmetic operation signs (+, −, ·, ÷). For example, 8 + 5, 4 − 9, 3 · 8, and 9 ÷ 7 are numerical expressions.

Algebraic Expression
In algebra, letters are used to represent numbers, and an algebraic expression results when an arithmetic operation sign associates a letter with a number or a letter with a letter. For example, x + 8, 4 − y, 3 · x, x ÷ 7, and x · y are algebraic expressions.

Expressions
Numerical expressions and algebraic expressions are often referred to simply as expressions.

11.2.3 Terms and Factors

In algebra, it is extremely important to be able to distinguish between terms and factors.

Distinction Between Terms and Factors
Terms are parts of sums and are therefore connected by + signs.
Factors are parts of products and are therefore separated by · signs.

NOTE: While making the distinction between sums and products, we must remember that subtraction and division are functions of these operations.

1. In some expressions it will appear that terms are separated by minus signs. We must keep in mind that subtraction is addition of the opposite, that is,
 \[x - y = x + (-y) \]
2. In some expressions it will appear that factors are separated by division signs. We must keep in mind that
 \[\frac{x}{y} = \frac{x}{1} \cdot \frac{1}{y} = x \cdot \frac{1}{y} \]

11.2.3.1 Sample Set A

State the number of terms in each expression and name them.

Example 11.1
x + 4. In this expression, x and 4 are connected by a "+" sign. Therefore, they are terms. This expression consists of two terms.

Example 11.2
y − 8. The expression y − 8 can be expressed as y + (−8). We can now see that this expression consists of the two terms y and −8.

\(^2\)This content is available online at <http://cnx.org/content/m35038/1.2/>.\)
Rather than rewriting the expression when a subtraction occurs, we can identify terms more quickly by associating the + or - sign with the individual quantity.

Example 11.3

\[a + 7 - b - m. \] Associating the sign with the individual quantities, we see that this expression consists of the four terms \(a, 7, -b, -m. \)

Example 11.4

\[5m - 8n. \] This expression consists of the two terms, \(5m \) and \(-8n. \) Notice that the term \(5m \) is composed of the two factors 5 and \(m. \) The term \(-8n \) is composed of the two factors \(-8 \) and \(n. \)

Example 11.5

\[3x. \] This expression consists of one term. Notice that \(3x \) can be expressed as \(3x + 0 \) or \(3x \cdot 1 \) (indicating the connecting signs of arithmetic). Note that no operation sign is necessary for multiplication.

11.2.3.2 Practice Set A

Specify the terms in each expression.

- **Exercise 11.1**

 \[x + 7 \]

- **Exercise 11.2**

 \[3m - 6n \]

- **Exercise 11.3**

 \[5y \]

- **Exercise 11.4**

 \[a + 2b - c \]

- **Exercise 11.5**

 \[-3x - 5 \]

11.2.4 Coefficients

We know that multiplication is a description of repeated addition. For example,

\[5 \cdot 7 \text{ describes } 7 + 7 + 7 + 7 + 7 \]

Suppose some quantity is represented by the letter \(x. \) The multiplication \(5x \) describes \(x + x + x + x + x. \) It is now easy to see that \(5x \) specifies 5 of the quantities represented by \(x. \) In the expression \(5x, \) 5 is called the numerical coefficient, or more simply, the coefficient of \(x. \)

Coefficient

The coefficient of a quantity records how many of that quantity there are.

Since constants alone do not record the number of some quantity, they are not usually considered as numerical coefficients. For example, in the expression \(7x + 2y - 8z + 12, \) the coefficient of \(7x \) is 7. (There are 7 \(x \)'s.)

2y is 2. (There are 2 \(y \)'s.)

\(-8z\) is \(-8.\) (There are \(-8z\) \(z \)'s.)

The constant 12 is not considered a numerical coefficient.
1. When the numerical coefficient of a variable is 1, we write only the variable and not the coefficient. For example, we write \(x \) rather than \(1x \). It is clear just by looking at \(x \) that there is only one.

11.2.5 Numerical Evaluation

We know that a variable represents an unknown quantity. Therefore, any expression that contains a variable represents an unknown quantity. For example, if the value of \(x \) is unknown, then the value of \(3x + 5 \) is unknown. The value of \(3x + 5 \) depends on the value of \(x \).

Numerical Evaluation

Numerical evaluation is the process of determining the numerical value of an algebraic expression by replacing the variables in the expression with specified numbers.

11.2.5.1 Sample Set B

Find the value of each expression.

Example 11.6

\[2x + 7y, \text{ if } x = -4 \text{ and } y = 2 \]

Replace \(x \) with \(-4\) and \(y \) with \(2\).

\[
2x + 7y = 2(-4) + 7(2) = -8 + 14 = 6
\]

Thus, when \(x = -4 \) and \(y = 2 \), \(2x + 7y = 6 \).

Example 11.7

\[\frac{5a}{b} + \frac{8b}{12}, \text{ if } a = 6 \text{ and } b = -3 \]

Replace \(a \) with \(6\) and \(b \) with \(-3\).

\[
\frac{5a}{b} + \frac{8b}{12} = \frac{5(6)}{-3} + \frac{8(-3)}{12} = \frac{-30}{-3} + \frac{-24}{24} = -10 + (-2) = -12
\]

Thus, when \(a = 6 \) and \(b = -3 \), \(\frac{5a}{b} + \frac{8b}{12} = -12 \).

Example 11.8

\[6(2a - 15b), \text{ if } a = -5 \text{ and } b = -1 \]

Replace \(a \) with \(-5\) and \(b \) with \(-1\).

\[
6(2a - 15b) = 6(2(-5) - 15(-1)) = 6(-10 + 15) = 6(5) = 30
\]

Thus, when \(a = -5 \) and \(b = -1 \), \(6(2a - 15b) = 30 \).
Example 11.9

\[3x^2 - 2x + 1, \text{ if } x = 4 \]

Replace \(x \) with 4.

\[3x^2 - 2x + 1 = 3(4)^2 - 2(4) + 1 \]
\[= 3 \cdot 16 - 2(4) + 1 \]
\[= 48 - 8 + 1 \]
\[= 41 \]

Thus, when \(x = 4 \), \(3x^2 - 2x + 1 = 41 \).

Example 11.10

\[-x^2 - 4, \text{ if } x = 3 \]

Replace \(x \) with 3.

\[-x^2 - 4 = -3^2 - 4 \quad \text{Be careful to square only the 3. The exponent 2 is connected only to 3, not -3} \]
\[= -9 - 4 \]
\[= -13 \]

Example 11.11

\[(-x)^2 - 4, \text{ if } x = 3. \]

Replace \(x \) with 3.

\[(-x)^2 - 4 = (3)^2 - 4 \quad \text{The exponent is connected to -3, not 3 as in problem 5 above.} \]
\[= 9 - 4 \]
\[= -5 \]

The exponent is connected to -3, not 3 as in the problem above.

11.2.5.2 Practice Set B

Find the value of each expression.

Exercise 11.6

\[9m - 2n, \text{ if } m = -2 \text{ and } n = 5 \]
(Solution on p. 680.)

Exercise 11.7

\[-3x - 5y + 2z, \text{ if } x = -4, y = 3, \text{ and } z = 0 \]
(Solution on p. 680.)

Exercise 11.8

\[\frac{19a}{3b} + \frac{4b}{2}, \text{ if } a = -6, \text{ and } b = 2 \]
(Solution on p. 680.)

Exercise 11.9

\[8(3m - 5n), \text{ if } m = -4 \text{ and } n = -5 \]
(Solution on p. 680.)

Exercise 11.10

\[3[-40 - 2(4a - 3b)], \text{ if } a = -6 \text{ and } b = 0 \]
(Solution on p. 680.)

Exercise 11.11

\[5y^2 + 6y - 11, \text{ if } y = -1 \]
(Solution on p. 680.)
CHAPTER 11. ALGEBRAIC EXPRESSIONS AND EQUATIONS

Exercise 11.12
\(-x^2 + 2x + 7, \text{ if } x = 4\)
(Solution on p. 680.)

Exercise 11.13
\((-x)^2 + 2x + 7, \text{ if } x = 4\)
(Solution on p. 680.)

11.2.6 Exercises

Exercise 11.14
In an algebraic expression, terms are separated by \(\quad\) signs and factors are separated by \(\quad\) signs.

For the following 8 problems, specify each term.

Exercise 11.15
\(3m + 7n\)

Exercise 11.16
\(5x + 18y\)
(Solution on p. 680.)

Exercise 11.17
\(4a - 6b + c\)

Exercise 11.18
\(8s + 2r - 7t\)
(Solution on p. 680.)

Exercise 11.19
\(m - 3n - 4a + 7b\)

Exercise 11.20
\(7a - 2b - 3c - 4d\)
(Solution on p. 680.)

Exercise 11.21
\(-6a - 5b\)

Exercise 11.22
\(-x - y\)
(Solution on p. 680.)

Exercise 11.23
What is the function of a numerical coefficient?

Exercise 11.24
Write \(1m\) in a simpler way.

Exercise 11.25
Write \(1s\) in a simpler way.

Exercise 11.26
In the expression \(5a\), how many \(a\)'s are indicated?
(Solution on p. 680.)

Exercise 11.27
In the expression \(-7c\), how many \(c\)'s are indicated?

Find the value of each expression.

Exercise 11.28
\(2m - 6n, \text{ if } m = -3 \text{ and } n = 4\)
(Solution on p. 680.)

Exercise 11.29
\(5a + 6b, \text{ if } a = -6 \text{ and } b = 5\)

Exercise 11.30
\(2x - 3y + 4z, \text{ if } x = 1, y = -1, \text{ and } z = -2\)
(Solution on p. 680.)
Exercise 11.31
9a + 6b − 8x + 4y, if a = −2, b = −1, x = −2, and y = 0

Exercise 11.32
8x + 18y, if x = 9 and y = −2

Exercise 11.33
−3m − 2n, if m = −6 and n = 3

Exercise 11.34
4(3r + 2s), if r = 4 and s = 1

Exercise 11.35
3(9a − 6b), if a = −1 and b = −2

Exercise 11.36
−8(5m + 8n), if m = 0 and n = −1

Exercise 11.37
−2(−6x + y − 2z), if x = 1, y = 1, and z = 2

Exercise 11.38
−(10x − 2y + 5z) if x = 2, y = 8, and z = −1

Exercise 11.39
−(a − 3b + 2c − d), if a = −5, b = 2, c = 0, and d = −1

Exercise 11.40
3[16 − 3(a + 3b)], if a = 3 and b = −2

Exercise 11.41
−2[5a + 2b(b − 6)], if a = −2 and b = 3

Exercise 11.42
−{6x + 3y[−2(x + 4y)]}, if x = 0 and y = 1

Exercise 11.43
−2{19 − 6[4 − 2(a − b − 7)]}, if a = 10 and b = 3

Exercise 11.44
x^2 + 3x − 1, if x = 5

Exercise 11.45
m^2 − 2m + 6, if m = 3

Exercise 11.46
6a^2 + 2a − 15, if a = −2

Exercise 11.47
5s^2 + 6s + 10, if x = −1

Exercise 11.48
16x^2 + 8x − 7, if x = 0

Exercise 11.49
−8y^2 + 6y + 11, if y = 0

Exercise 11.50
(y − 6)^2 + 3(y − 5) + 4, if y = 5

Exercise 11.51
(x + 8)^2 + 4(x + 9) + 1, if x = −6
11.2.6.1 Exercises for Review

Exercise 11.52
(Section 5.3) Perform the addition: $\frac{5}{8} + 2\frac{1}{6}$.

Exercise 11.53
(Section 5.5) Arrange the numbers in order from smallest to largest: $\frac{11}{32}$, $\frac{15}{25}$, and $\frac{7}{16}$.

Exercise 11.54
(Section 5.7) Find the value of $(\frac{3}{4})^2 + \frac{8}{27}$.

Exercise 11.55
(Section 7.3) Write the proportion in fractional form: “9 is to 8 as x is to 7.”

Exercise 11.56
(Section 10.7) Find the value of $-3(2 - 6) - 12$.

11.3 Combining Like Terms Using Addition and Subtraction

11.3.1 Section Overview
- Combining Like Terms

11.3.2 Combining Like Terms

From our examination of terms in Section 11.2, we know that like terms are terms in which the variable parts are identical. Like terms is an appropriate name since terms with identical variable parts and different numerical coefficients represent different amounts of the same quantity. When we are dealing with quantities of the same type, we may combine them using addition and subtraction.

Simplifying an Algebraic Expression

An algebraic expression may be simplified by combining like terms.

This concept is illustrated in the following examples.

1. 8 records + 5 records = 13 records.
 Eight and 5 of the same type give 13 of that type. We have combined quantities of the same type.
2. 8 records + 5 records + 3 tapes = 13 records + 3 tapes. Eight and 5 of the same type give 13 of that type. Thus, we have 13 of one type and 3 of another type. We have combined only quantities of the same type.
3. Suppose we let the letter x represent "record." Then, $8x + 5x = 13x$. The terms $8x$ and $5x$ are like terms. So, 8 and 5 of the same type give 13 of that type. We have combined like terms.
4. Suppose we let the letter x represent "record" and y represent "tape." Then, $8x + 5x + 3y = 13x + 5y$.
 We have combined only the like terms.

After observing the problems in these examples, we can suggest a method for simplifying an algebraic expression by combining like terms.

Combining Like Terms

Like terms may be combined by adding or subtracting their coefficients and affixing the result to the common variable.
11.3.2.1 Sample Set A

Simplify each expression by combining like terms.

Example 11.12
\[2m + 6m - 4m.\] All three terms are alike. Combine their coefficients and affix this result to \(m:\)
\[2 + 6 - 4 = 4.\]
Thus, \(2m + 6m - 4m = 4m.\)

Example 11.13
\[5x + 2y - 9y.\] The terms \(2y\) and \(-9y\) are like terms. Combine their coefficients: \(2 - 9 = -7.\)
Thus, \(5x + 2y - 9y = 5x - 7y.\)

Example 11.14
\[-3a + 2b - 5a + a + 6b.\] The like terms are
\[-3a, \quad -5a, \quad a, \quad 2b, \quad 6b\]
\[\begin{array}{c}
-3 + -5 + 1 + = -7 \\
2 + 6 = 8
\end{array}\]
Thus, \(-3a + 2b - 5a + a + 6b = -7a + 8b.\)

Example 11.15
\[r - 2s + 7s + 3r - 4r - 5s.\] The like terms are
\[r, \quad 3r, \quad -4r\]
\[1 + 3 - 4 = 0 \quad \begin{array}{c}
-2s, \quad 7s, \quad -5s
\end{array}\]
\[\begin{array}{c}
r, \quad 0 + 0 = 0 \quad 0s
\end{array}\]
Thus, \(r - 2s + 7s + 3r - 4r - 5s = 0.\)

11.3.2.2 Practice Set A

Simplify each expression by combining like terms.

Exercise 11.57
\[4x + 3x + 6x\] (Solution on p. 681.)

Exercise 11.58
\[5a + 8b + 6a - 2b\] (Solution on p. 681.)

Exercise 11.59
\[10m - 6n - 2n - m + n\] (Solution on p. 681.)

Exercise 11.60
\[16a + 6m + 2r - 3r - 18a + m - 7m\] (Solution on p. 681.)

Exercise 11.61
\[5h - 8k + 2h - 7h + 3k + 5k\] (Solution on p. 681.)
11.3.3 Exercises

Simplify each expression by combining like terms.

Exercise 11.62
4a + 7a
(Solution on p. 681.)

Exercise 11.63
3m + 5m

Exercise 11.64
6h – 2h

Exercise 11.65
11k – 8k

Exercise 11.66
5m + 3n – 2m

Exercise 11.67
7x – 6x + 3y

Exercise 11.68
14s + 3s – 8r + 7r

Exercise 11.69
−5m – 3n + 2m + 6n

Exercise 11.70
7h + 3a – 10k + 6a – 2h – 5k – 3k

Exercise 11.71
4x – 8y – 3z + x – y – z – 3y – 2z

Exercise 11.72
11w + 3x – 6w – 5w + 8x – 11x

Exercise 11.73
15r – 6s + 2r + 8s – 6r – 7s – s – 2r

Exercise 11.74
| −7 | m+ | 6 | m+ | −3 | m

Exercise 11.75
| −2 | x+ | −8 | x+ | 10 | x

Exercise 11.76
(−4 + 1)k + (6 – 3)k + (12 – 4)h + (5 + 2)k

Exercise 11.77
(−5 + 3)a – (2 + 5)b – (3 + 8)b

Exercise 11.78
5 ⋆ +2Δ + 3Δ – 8⋆

Exercise 11.79
9 ✖ +10 ✖ –11 ✖ –12 ✖

Exercise 11.80
16x – 12y + 5x + 7 – 5x – 16 – 3y

Exercise 11.81
−3y + 4z – 11 – 3z – 2y + 5 – 4 (8 – 3)
11.3.3.1 Exercises for Review

Exercise 11.82
(Section 4.3) Convert $\frac{24}{11}$ to a mixed number
(Solution on p. 681.)

Exercise 11.83
(Section 4.4) Determine the missing numerator: $\frac{3}{8} = \frac{?}{64}$.
(Solution on p. 682.)

Exercise 11.84
(Section 5.6) Simplify $\frac{5}{6} - \frac{1}{4} - \frac{1}{12}$.
(Solution on p. 682.)

Exercise 11.85
(Section 7.5) Convert $\frac{5}{16}$ to a percent.
(Solution on p. 682.)

Exercise 11.86
(Section 11.2) In the expression $6k$, how many k’s are there?

11.4 Solving Equations of the Form $x+a=b$ and $x-a=b$\(^4\)

11.4.1 Section Overview

- Equations
- Solutions and Equivalent Equations
- Solving Equations

11.4.2 Equations

Equation

An equation is a statement that two algebraic expressions are equal.

The following are examples of equations:

\[
\begin{align*}
\frac{x + 6}{[9+PE58]} & = \frac{10}{This \ expression =} \\
\frac{x - 4}{This \ expression =} & = \frac{-11}{This \ expression =} \\
\frac{3y - 5}{This \ expression =} & = \frac{-2 + 2y}{This \ expression =}
\end{align*}
\]

Notice that $x + 6$, $x - 4$, and $3y - 5$ are not equations. They are expressions. They are not equations because there is no statement that each of these expressions is equal to another expression.

11.4.3 Solutions and Equivalent Equations

Conditional Equations

The truth of some equations is conditional upon the value chosen for the variable. Such equations are called conditional equations. There are two additional types of equations. They are examined in courses in algebra, so we will not consider them now.

Solutions and Solving an Equation

The set of values that, when substituted for the variables, make the equation true, are called the solutions of the equation.

An equation has been solved when all its solutions have been found.

\(^4\)This content is available online at <http://cnx.org/content/m35044/1.3/>.\)
11.4.3.1 Sample Set A

Example 11.16
Verify that 3 is a solution to $x + 7 = 10$.

When $x = 3$,

$$x + 7 = 10$$
becomes

$$3 + 7 = 10$$

which is a true statement, verifying that

3 is a solution to $x + 7 = 10$

Example 11.17
Verify that -6 is a solution to $5y + 8 = -22$

When $y = -6$,

$$5y + 8 = -22$$
becomes

$$5(-6) + 8 = -22$$

which is a true statement, verifying that

-6 is a solution to $5y + 8 = -22$

Example 11.18
Verify that 5 is not a solution to $a - 1 = 2a + 3$.

When $a = 5$,

$$a - 1 = 2a + 3$$
becomes

$$5 - 1 = 2 \cdot 5 + 3$$

which is a false statement, verifying that

5 is not a solution to $a - 1 = 2a + 3$

Example 11.19
Verify that -2 is a solution to $3m - 2 = -4m - 16$.

When $m = -2$,

$$3m - 2 = -4m - 16$$
becomes

$$3(-2) - 2 = -4(-2) - 16$$

which is a true statement, verifying that

-2 is a solution to $3m - 2 = -4m - 16$
11.4.3.2 Practice Set A

Exercise 11.87
Verify that 5 is a solution to \(m + 6 = 11 \).

Exercise 11.88
Verify that \(-5\) is a solution to \(2m - 4 = -14 \).

Exercise 11.89
Verify that 0 is a solution to \(5x + 1 = 1 \).

Exercise 11.90
Verify that 3 is not a solution to \(-3y + 1 = 4y + 5 \).

Exercise 11.91
Verify that -1 is a solution to \(6m - 5 + 2m = 7m - 6 \).

Equivalent Equations

Some equations have precisely the same collection of solutions. Such equations are called equivalent equations. For example, \(x - 5 = -1 \), \(x + 7 = 11 \), and \(x = 4 \) are all equivalent equations since the only solution to each is \(x = 4 \). (Can you verify this?)

11.4.4 Solving Equations

We know that the equal sign of an equation indicates that the number represented by the expression on the left side is the same as the number represented by the expression on the right side.

<table>
<thead>
<tr>
<th>This number</th>
<th>is the same as</th>
<th>this number</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\downarrow)</td>
<td>(\downarrow)</td>
<td>(\downarrow)</td>
</tr>
<tr>
<td>(x)</td>
<td>=</td>
<td>4</td>
</tr>
<tr>
<td>(x + 7)</td>
<td>=</td>
<td>11</td>
</tr>
<tr>
<td>(x - 5)</td>
<td>=</td>
<td>-1</td>
</tr>
</tbody>
</table>

Table 11.1

Addition/Subtraction Property of Equality

From this, we can suggest the addition/subtraction property of equality.

Given any equation,

1. We can obtain an equivalent equation by adding the same number to both sides of the equation.
2. We can obtain an equivalent equation by subtracting the same number from both sides of the equation.

The Idea Behind Equation Solving

The idea behind equation solving is to isolate the variable on one side of the equation. Signs of operation (+, -, ×, ÷) are used to associate two numbers. For example, in the expression \(5 + 3 \), the numbers 5 and 3 are associated by addition. An association can be undone by performing the opposite operation. The addition/subtraction property of equality can be used to undo an association that is made by addition or subtraction.

Subtraction is used to undo an addition.

Addition is used to undo a subtraction.

The procedure is illustrated in the problems of .
11.4.4.1 Sample Set B

Use the addition/subtraction property of equality to solve each equation.

Example 11.20

\[x + 4 = 6 \]

4 is associated with \(x \) by addition. Undo the association by subtracting 4 from both sides.

\[x + 4 - 4 = 6 - 4 \]
\[x + 0 = 2 \]
\[x = 2 \]

Check: When \(x = 2 \), \(x + 4 \) becomes
\[2 + 4 \neq 6 \]
\[6 \neq 6. \]

The solution to \(x + 4 = 6 \) is \(x = 2 \).

Example 11.21

\[m - 8 = 5 \]

8 is associated with \(m \) by subtraction. Undo the association by adding 8 to both sides.

\[m - 8 + 8 = 5 + 8 \]
\[m + 0 = 13 \]
\[m = 13 \]

Check: When \(m = 13 \),

becomes
\[m - 8 = 5 \]
\[13 - 8 \neq 5 \]
\[5 \neq 5 \]

a true statement.

The solution to \(m - 8 = 5 \) is \(m = 13 \).

Example 11.22

\[-3 - 5 = y - 2 + 8 \]

Before we use the addition/subtraction property, we should simplify as much as possible.

\[-3 - 5 = y - 2 + 8 \]
\[-8 = y + 6 \]

6 is associated with \(y \) by addition. Undo the association by subtracting 6 from both sides.

\[-8 - 6 = y + 6 - 6 \]
\[-14 = y + 0 \]
\[-14 = y \]

This is equivalent to \(y = -14 \).

Check: When \(y = -14 \),

\[-3 - 5 = y - 2 + 8 \]
becomes
\[-3 - 5 = y - 2 + 8\]
\[-8 - 16 + 8 = y - 2\]
\[-8 ≠ -8\],
a true statement.

The solution to \(-3 - 5 = y - 2 + 8\) is \(y = -14\).

Example 11.23

\(-5a + 1 + 6a = -2\). Begin by simplifying the left side of the equation.

\[-5a + 1 + 6a = -2\]
\[-5 + 6 = 1\]

\(a + 1 = 2\) is associated with \(a\) by addition. Undo the association by *subtracting* 1 from *both* sides.

\(a + 1 - 1 = -2 - 1\)
\(a + 0 = -3\)
\(a = -3\)

Check: When \(a = -3\),

\(-5a + 1 + 6a = -2\)

becomes
\[-8(-3) + 1 + 6(-3) = -2\]
\[15 + 1 - 18 = -5\]
\[-3 ≠ -5\],
a true statement.

The solution to \(-5a + 1 + 6a = -2\) is \(a = -3\).

Example 11.24

\(7k - 4 = 6k + 1\). In this equation, the variable appears on both sides. We need to isolate it on one side. Although we can choose either side, it will be more convenient to choose the side with the larger coefficient. Since 8 is greater than 6, we’ll isolate \(k\) on the left side.

\(7k - 4 = 6k + 1\)

Since \(6k\) represents +6, subtract 6\(k\) from each side.

\(7k - 6\)
\(6k + 1 - 6k\)
\(6 - 6 = 0\)

\(k - 4 = 1\) is associated with \(k\) by subtraction. Undo the association by *adding* 4 to *both* sides.

\(k - 4 + 4 = 1 + 4\)
\(k = 5\)

Check: When \(k = 5\),

\(7k - 4 = 6k + 1\)

becomes
\(7 \cdot 5 - 4 ≠ 6 \cdot 5 + 1\)
\(35 - 4 ≠ 30 + 1\)
\(31 ≠ 31\).
a true statement.
The solution to \(7k - 4 = 6k + 1 \) is \(k = 5 \).

Example 11.25

\[-8 + x = 5. \] -8 is associated with \(x \) by addition. Undo the by subtracting -8 from both sides. Subtracting -8 we get \(-(-8) = +8\). We actually add 8 to both sides.

\[-8 + x + 8 = 5 + 8\]

\[x = 13\]

Check: When \(x = 13 \)

\[-8 + x = 5\]

becomes

\[-8 + 13 \neq 5\]

\[5 \neq 5,\]

a true statement.

The solution to \(-8 + x = 5\) is \(x = 13 \).

11.4.4.2 Practice Set B

Exercise 11.92

\[y + 9 = 4\]

(Solution on p. 682.)

Exercise 11.93

\[a - 4 = 11\]

(Solution on p. 682.)

Exercise 11.94

\[-1 + 7 = x + 3\]

(Solution on p. 682.)

Exercise 11.95

\[8m + 4 - 7m = (-2)(-3)\]

(Solution on p. 682.)

Exercise 11.96

\[12k - 4 = 9k - 6 + 2k\]

(Solution on p. 682.)

Exercise 11.97

\[-3 + a = -4\]

(Solution on p. 682.)

11.4.5 Exercises

For the following 10 problems, verify that each given value is a solution to the given equation.

Exercise 11.98

\[x - 11 = 5, \ x = 16\]

(Solution on p. 682.)

Exercise 11.99

\[y - 4 = -6, \ y = -2\]

(Solution on p. 682.)

Exercise 11.100

\[2m - 1 = 1, \ m = 1\]

(Solution on p. 682.)

Exercise 11.101

\[5y + 6 = -14, \ y = -4\]
Exercise 11.102
\[3x + 2 - 7x = -5x - 6, \quad x = -8 \]
(Solution on p. 683.)

Exercise 11.103
\[-6a + 3 + 3a = 4a + 7 - 3a, \quad a = -1 \]

Exercise 11.104
\[-8 + x = -8, \quad x = 0 \]
(Solution on p. 683.)

Exercise 11.105
\[8b + 6 = 6 - 5h, \quad b = 0 \]

Exercise 11.106
\[4x - 5 = 6x - 20, \quad x = \frac{15}{2} \]
(Solution on p. 683.)

Exercise 11.107
\[-3y + 7 = 2y - 15, \quad y = \frac{22}{5} \]

Solve each equation. Be sure to check each result.

Exercise 11.108
\[y - 6 = 5 \]
(Solution on p. 683.)

Exercise 11.109
\[m + 8 = 4 \]

Exercise 11.110
\[k - 1 = 4 \]
(Solution on p. 683.)

Exercise 11.111
\[h - 9 = 1 \]

Exercise 11.112
\[a + 5 = -4 \]
(Solution on p. 683.)

Exercise 11.113
\[b - 7 = -1 \]

Exercise 11.114
\[x + 4 - 9 = 6 \]
(Solution on p. 683.)

Exercise 11.115
\[y - 8 + 10 = 2 \]

Exercise 11.116
\[z + 6 = 6 \]
(Solution on p. 683.)

Exercise 11.117
\[w - 4 = -4 \]
(Solution on p. 683.)

Exercise 11.118
\[x + 7 - 9 = 6 \]

Exercise 11.119
\[y - 2 + 5 = 4 \]
(Solution on p. 683.)

Exercise 11.120
\[m + 3 - 8 = -6 + 2 \]

Exercise 11.121
\[z + 10 - 8 = -8 + 10 \]
(Solution on p. 683.)

Exercise 11.122
\[2 + 9 = k - 8 \]

Exercise 11.123
\[-5 + 3 = h - 4 \]
Exercise 11.124
3m − 4 = 2m + 6

Exercise 11.125
5a + 6 = 4a − 8

Exercise 11.126
8b + 6 + 2b = 3b − 7 + 6b − 8

Exercise 11.127
12h − 1 − 3 − 5h = 2h + 5h + 3 (−4)

Exercise 11.128
−4a + 5 − 2a = −3a − 11 − 2a

Exercise 11.129
−9n − 2 − 6 + 5n = 3n − (2) (−5) − 6n

Calculator Exercises

Exercise 11.130
y − 2.161 = 5.063

Exercise 11.131
a − 44.0014 = −21.1625

Exercise 11.132
−0.362 − 0.416 = 5.63m − 4.63m

Exercise 11.133
8.078 − 9.112 = 2.106y − 1.106y

Exercise 11.134
4.23k + 3.18 = 3.23k − 5.83

Exercise 11.135
6.1185x − 4.0031 = 5.1185x − 0.0038

Exercise 11.136
21.63y + 12.40 − 5.09y = 6.11y − 15.66 + 9.43y

Exercise 11.137
0.029a − 0.013 − 0.034 − 0.057 = −0.038 + 0.56 + 1.01a

11.4.5.1 Exercises for Review

Exercise 11.138
(Solution on p. 683.)
(Section 7.2) Is 7 calculators to 12 students an example of a ratio or a rate?

Exercise 11.139
(Solution on p. 683.)
(Section 7.5) Convert 3/8% to a decimal.

Exercise 11.140
(Solution on p. 683.)
(Section 7.6) 0.4% of what number is 0.014?

Exercise 11.141
(Solution on p. 684.)
(Section 8.3) Use the clustering method to estimate the sum: 89 + 93 + 206 + 198 + 91

Exercise 11.142
(Solution on p. 684.)
(Section 11.3) Combine like terms: 4x + 8y + 12y + 9x − 2y.
11.5 Solving Equations of the Form \(ax=b \) and \(x/a=b \)

11.5.1 Section Overview

- Multiplication / Division Property of Equality
- Combining Techniques in Equations Solving

11.5.2 Multiplication / Division Property of Equality

Recall that the equal sign of an equation indicates that the number represented by the expression on the left side is the same as the number represented by the expression on the right side. From this, we can suggest the multiplication/division property of equality.

Multiplication / Division Property of Equality

Given any equation,

1. We can obtain an equivalent equation by *multiplying both sides* of the equation by the *same nonzero* number, that is, if \(c \neq 0 \), then \(a=b \) is equivalent to \(a \cdot c = b \cdot c \).
2. We can obtain an equivalent equation by *dividing both sides* of the equation by the *same nonzero number*, that is, if \(c \neq 0 \), then \(a=b \) is equivalent to \(\frac{a}{c} = \frac{b}{c} \).

The multiplication/division property of equality can be used to undo an association with a number that multiplies or divides the variable.

11.5.2.1 Sample Set A

Use the multiplication / division property of equality to solve each equation.

Example 11.26

\[6y = 54 \]

6 is associated with \(y \) by multiplication. Undo the association by *dividing both sides* by 6

\[
\frac{6y}{6} = \frac{54}{6} \\
\Rightarrow y = 9
\]

Check: When \(y = 9 \)

\[6y = 54 \]

becomes

\[6 \cdot 9 \neq 54 \]

\[54 \neq 54 \]

a true statement.

The solution to \(6y = 54 \) is \(y = 9 \).

\(^5\)This content is available online at <http://cnx.org/content/m35045/1.3/>.
Example 11.27
\[\frac{x}{-2} = 27. \]
-2 is associated with \(x \) by division. Undo the association by multiplying both sides by -2.

\[
\left(-2 \right) \frac{x}{-2} = (-2) \cdot 27
\]

\[
\left(-\frac{2}{-2} \right) \frac{x}{-2} = (-2) \cdot 27
\]

\[x = -54 \]

Check: When \(x = -54 \),

\[\frac{x}{-2} = 27 \]

becomes

\[\frac{-54}{-2} \neq 27 \]

\[27 \neq 27 \]
a true statement.

The solution to \(\frac{x}{-2} = 27 \) is \(x = -54 \)

Example 11.28
\[\frac{3a}{7} = 6. \]
We will examine two methods for solving equations such as this one.

Method 1: Use of dividing out common factors.

\[\frac{3a}{7} = 6 \]

7 is associated with \(a \) by division. Undo the association by multiplying both sides by 7.

\[7 \cdot \frac{3a}{7} = 7 \cdot 6 \]

Divide out the 7’s.

\[\frac{3a}{7} \cdot \frac{3a}{7} = 42 \]

\[3a = 42 \]
3 is associated with \(a \) by multiplication. Undo the association by dividing both sides by 3.

\[\frac{3a}{3} = \frac{42}{3} \]

\[\frac{13a}{3} = 14 \]

\[a = 14 \]

Check: When \(a = 14 \),

\[\frac{3a}{7} = 6 \]
becomes
\[
\frac{3 \cdot 14}{7} = \frac{2 \cdot 6}{7}
\]
\[
\frac{42}{7} = 6
\]
\[
6 \neq 6
\]
a true statement.

The solution to \(\frac{3a}{7} = 6\) is \(a = 14\).

Method 2: Use of reciprocals

Recall that if the product of two numbers is 1, the numbers are **reciprocals**. Thus \(\frac{3}{7}\) and \(\frac{7}{3}\) are reciprocals.

\[
\frac{3a}{7} = 6
\]

Multiply both sides of the equation by \(\frac{7}{3}\), the reciprocal of \(\frac{3}{7}\).

\[
\frac{7}{3} \cdot \frac{3a}{7} = \frac{7}{3} \cdot 6
\]

\[
\frac{7}{3} \cdot \frac{1}{\frac{3a}{7}} = \frac{7}{3} \cdot \frac{2}{1}
\]

\[
1 \cdot a = 14
\]

\[
a = 14
\]

Notice that we get the same solution using either method.

Example 11.29

\(-8x = 24\)

-8 is associated with \(x\) by multiplication. Undo the association by **dividing both sides by** -8.

\[
\frac{-8x}{-8} = \frac{24}{-8}
\]

\[
\frac{-8x}{-8} = \frac{24}{-8}
\]

\[
x = -3
\]

Check: When \(x = -3\),

\(-8x = 24\)

becomes

\[
-8(-3) \neq 24
\]

\[
24 \neq 24
\]
a true statement.

Example 11.30

\(-x = 7\)

Since \(- - x\) is actually \(-1 \cdot x\) and \((-1)(-1) = 1\), we can isolate \(x\) by multiplying both sides of the
equation by -1.

$$(-1)(-x) = -1 \cdot 7$$

$$x = -7$$

Check: When $x = 7$,

$$-x = -7$$

becomes

$$-(-7) = 7$$

$$7 \neq 7$$

The solution to $-x = 7$ is $x = -7$.

11.5.2.2 Practice Set A

Use the multiplication/division property of equality to solve each equation. Be sure to check each solution.

Exercise 11.143

$$7x = 21$$
(Solution on p. 684.)

Exercise 11.144

$$-5x = 65$$
(Solution on p. 684.)

Exercise 11.145

$$\frac{x}{7} = -8$$
(Solution on p. 684.)

Exercise 11.146

$$\frac{3x}{8} = 6$$
(Solution on p. 684.)

Exercise 11.147

$$-y = 3$$
(Solution on p. 684.)

Exercise 11.148

$$-k = -2$$
(Solution on p. 684.)

11.5.3 Combining Techniques in Equation Solving

Having examined solving equations using the addition/subtraction and the multiplication/division principles of equality, we can combine these techniques to solve more complicated equations.

When beginning to solve an equation such as $6x - 4 = -16$, it is helpful to know which property of equality to use first, addition/subtraction or multiplication/division. Recalling that in equation solving we are trying to isolate the variable (disassociate numbers from it), it is helpful to note the following.

To associate numbers and letters, we use the order of operations.

1. Multiply/divide
2. Add/subtract

To undo an association between numbers and letters, we use the order of operations in reverse.

1. Add/subtract
2. Multiply/divide
11.5.3.1 Sample Set B

Solve each equation. (In these example problems, we will not show the checks.)

Example 11.31

\[6x - 4 = -16 \]

-4 is associated with \(x \) by subtraction. Undo the association by *adding* 4 to *both* sides.

\[6x - 4 + 4 = -16 + 4 \]

\[6x = -12 \]

6 is associated with \(x \) by multiplication. Undo the association by *dividing* both sides by 6

\[\frac{6x}{6} = \frac{-12}{6} \]

\[x = -2 \]

Example 11.32

\[-8k + 3 = -45 \]

3 is associated with \(k \) by addition. Undo the association by *subtracting* 3 from *both* sides.

\[-8k + 3 - 3 = -45 - 3 \]

\[-8k = -48 \]

-8 is associated with \(k \) by multiplication. Undo the association by *dividing* both sides by -8.

\[\frac{-8k}{-8} = \frac{-48}{-8} \]

\[k = 6 \]

Example 11.33

\[5m - 6 - 4m = 4m - 8 + 3m \]

Begin by solving this equation by combining like terms.

\[m - 6 = 7m - 8 + 3m \]

Choose a side on which to isolate \(m \). Since 7 is greater than 1, we’ll isolate \(m \) on the right side.

Subtract \(m \) from *both* sides.

\[-m - 6 - m = 7m - 8 - m \]

\[-6 = 6m - 8 \]

8 is associated with \(m \) by subtraction. Undo the association by *adding* 8 to *both* sides.

\[-6 + 8 = 6m - 8 + 8 \]

\[2 = 6m \]

6 is associated with \(m \) by multiplication. Undo the association by *dividing* both sides by 6.

\[\frac{2}{6} = \frac{6m}{6} \]

Reduce.

\[\frac{1}{3} = m \]

Notice that if we had chosen to isolate \(m \) on the left side of the equation rather than the right side, we would have proceeded as follows:

\[m - 6 = 7m - 8 \]

Subtract 7m from *both* sides.

\[m - 6 - 7m = 7m - 8 - 7m \]

\[-6m - 6 = -8\]

Add 6 to both sides,

\[-6m - 6 + 6 = -8 + 6\]

\[-6m = -2\]

Divide both sides by -6.

\[
\frac{-6m}{-6} = \frac{-2}{-6}
\]

\[m = \frac{1}{3}\]

This is the same result as with the previous approach.

Example 11.34

\[
\frac{8x}{7} = -2
\]

7 is associated with \(x\) by division. Undo the association by multiplying both sides by 7.

\[
\frac{8x}{7} \cdot \frac{7}{1} = 7 \cdot (-2)
\]

\[7 \cdot \frac{8x}{7} = -14\]

\[8x = -14\]

8 is associated with \(x\) by multiplication. Undo the association by dividing both sides by 8.

\[
\frac{8x}{8} = \frac{-14}{8}
\]

\[x = -\frac{7}{4}\]

11.5.3.2 Practice Set B

Solve each equation. Be sure to check each solution.

Exercise 11.149

\[5m + 7 = -13\] \(\text{(Solution on p. 684.)}\)

Exercise 11.150

\[-3a - 6 = 9\] \(\text{(Solution on p. 684.)}\)

Exercise 11.151

\[2a + 10 - 3a = 9\] \(\text{(Solution on p. 684.)}\)

Exercise 11.152

\[11x - 4 - 13x = 4x + 14\] \(\text{(Solution on p. 684.)}\)

Exercise 11.153

\[-3m + 8 = -5m + 1\] \(\text{(Solution on p. 684.)}\)

Exercise 11.154

\[5y + 8y - 11 = -11\] \(\text{(Solution on p. 684.)}\)
11.5.4 Exercises

Solve each equation. Be sure to check each result.

Exercise 11.155
\[7x = 42 \]
(Solution on p. 684.)

Exercise 11.156
\[8x = 81 \]

Exercise 11.157
\[10x = 120 \]
(Solution on p. 684.)

Exercise 11.158
\[11x = 121 \]

Exercise 11.159
\[-6a = 48 \]
(Solution on p. 684.)

Exercise 11.160
\[-9y = 54 \]
(Solution on p. 684.)

Exercise 11.161
\[-3y = -42 \]
(Solution on p. 684.)

Exercise 11.162
\[-5a = -105 \]

Exercise 11.163
\[2m = -62 \]
(Solution on p. 684.)

Exercise 11.164
\[3m = -54 \]

Exercise 11.165
\[\frac{x}{4} = 7 \]
(Solution on p. 684.)

Exercise 11.166
\[\frac{y}{3} = 11 \]
(Solution on p. 684.)

Exercise 11.167
\[\frac{-x}{6} = -14 \]

Exercise 11.168
\[\frac{-m}{5} = 1 \]

Exercise 11.169
\[3m - 1 = -13 \]
(Solution on p. 684.)

Exercise 11.170
\[4x + 7 = -17 \]

Exercise 11.171
\[2 + 9x = -7 \]
(Solution on p. 684.)

Exercise 11.172
\[5 - 11x = 27 \]

Exercise 11.173
\[32 = 4y + 6 \]
(Solution on p. 684.)

Exercise 11.174
\[-5 + 4 = -8m + 1 \]

Exercise 11.175
\[3k + 6 = 5k + 10 \]
(Solution on p. 684.)
Exercise 11.176
4a + 16 = 6a + 8a + 6

Exercise 11.177
6x + 5 + 2x − 1 = 9x − 3x + 15

Exercise 11.178
−9y − 8 + 3y + 7 = −7y + 8y − 5y + 9

Exercise 11.179
−3a = a + 5

Exercise 11.180
5b = −2b + 8b + 1

Exercise 11.181
−3m + 2 − 8m − 4 = −14m + m − 4

Exercise 11.182
5a + 3 = 3

Exercise 11.183
7x + 3x = 0

Exercise 11.184
7g + 4 − 11g = −4g + 1 + g

Exercise 11.185
\frac{5a}{7} = 10

Exercise 11.186
\frac{2m}{n} = 4

Exercise 11.187
\frac{3x}{4} = \frac{9}{2}

Exercise 11.188
\frac{8k}{x} = 32

Exercise 11.189
\frac{3a}{x} − \frac{3}{x} = 0

Exercise 11.190
\frac{5m}{\pi} − \frac{25}{\pi} = 0

11.5.4.1 Exercises for Review

Exercise 11.191
(Solution on p. 685.)
(Section 8.4) Use the distributive property to compute 40 · 28.

Exercise 11.192
(Solution on p. 685.)
(Section 9.5) Approximating \pi by 3.14, find the approximate circumference of the circle.

Exercise 11.193
(Solution on p. 685.)
(Section 9.6) Find the area of the parallelogram.
Exercise 11.194
(Section 10.7) Find the value of $\frac{-3(4-15)-2}{-5}$.

Exercise 11.195
(Section 11.4) Solve the equation $x - 14 + 8 = -2$. (Solution on p. 685.)

11.6 Applications I: Translating Words to Mathematical Symbols

11.6.1 Section Overview
- Translating Words to Symbols

11.6.2 Translating Words to Symbols

Practical problems seldom, if ever, come in equation form. The job of the problem solver is to translate the problem from phrases and statements into mathematical expressions and equations, and then to solve the equations.

As problem solvers, our job is made simpler if we are able to translate verbal phrases to mathematical expressions and if we follow the five-step method of solving applied problems. To help us translate from words to symbols, we can use the following Mathematics Dictionary.

<table>
<thead>
<tr>
<th>Word or Phrase</th>
<th>Mathematical Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum, sum of, added to, increased by, more than, and, plus</td>
<td>+</td>
</tr>
<tr>
<td>Difference, minus, subtracted from, decreased by, less, less than</td>
<td>-</td>
</tr>
<tr>
<td>Product, the product of, of, multiplied by, times, per</td>
<td>\cdot</td>
</tr>
<tr>
<td>Quotient, divided by, ratio, per</td>
<td>\div</td>
</tr>
<tr>
<td>Equals, is equal to, is, the result is, becomes</td>
<td>$=$</td>
</tr>
<tr>
<td>A number, an unknown quantity, an unknown, a quantity</td>
<td>x (or any symbol)</td>
</tr>
</tbody>
</table>

Table 11.2

6This content is available online at <http://cnx.org/content/m35046/1.2/>.
11.6.2.1 Sample Set A

Translate each phrase or sentence into a mathematical expression or equation.

Example 11.35

Nine more than some number.

\[9 + x \]

Translation: \(9 + x\).

Example 11.36

Eighteen minus a number.

\[18 - x \]

Translation: \(18 - x\).

Example 11.37

A quantity less five.

\[y - 5 \]

Translation: \(y - 5\).

Example 11.38

Four times a number is sixteen.

\[4 \cdot x = 16 \]

Translation: \(4x = 16\).

Example 11.39

One fifth of a number is thirty.

\[\frac{1}{5} n = 30 \]

Translation: \(\frac{1}{5} n = 30\), or \(\frac{n}{5} = 30\).

Example 11.40

Five times a number is two more than twice the number.

\[5 \cdot x = 2 + 2 \cdot x \]

Translation: \(5x = 2 + 2x\).

11.6.2.2 Practice Set A

Translate each phrase or sentence into a mathematical expression or equation.

Exercise 11.196

Twelve more than a number. (Solution on p. 685.)

Exercise 11.197

Eight minus a number. (Solution on p. 685.)

Exercise 11.198

An unknown quantity less fourteen. (Solution on p. 685.)

Exercise 11.199

Six times a number is fifty-four. (Solution on p. 685.)

Exercise 11.200

Two ninths of a number is eleven. (Solution on p. 685.)
Exercise 11.201
Three more than seven times a number is nine more than five times the number.

Exercise 11.202
Twice a number less eight is equal to one more than three times the number.

11.6.2.3 Sample Set B

Example 11.41
Sometimes the structure of the sentence indicates the use of grouping symbols. We’ll be alert for commas. They set off terms.

\[
\frac{\text{A number}}{4} - 6 = 12
\]

Translation: \(\frac{x}{4} - 6 = 12 \).

Example 11.42
Some phrases and sentences do not translate directly. We must be careful to read them properly. The word from often appears in such phrases and sentences. The word from means “a point of departure for motion.” The following translation will illustrate this use.

Twentieth is subtracted from some number.

Translation: \(x - 20 \).

The word from indicated the motion (subtraction) is to begin at the point of “some number.”

Example 11.43
Ten less than some number. Notice that less than can be replaced by from.

Ten from some number.

Translation: \(x - 10 \).

11.6.2.4 Practice Set B

Translate each phrase or sentence into a mathematical expression or equation.

Exercise 11.203
A number divided by eight, plus seven, is fifty.
(Solution on p. 685.)

Exercise 11.204
A number divided by three, minus the same number multiplied by six, is one more than the number.
(Solution on p. 685.)

Exercise 11.205
Nine from some number is four.
(Solution on p. 685.)

Exercise 11.206
Five less than some quantity is eight.
(Solution on p. 685.)
11.6.3 Exercises

Translate each phrase or sentence to a mathematical expression or equation.

- **Exercise 11.207**
 A quantity less twelve. (Solution on p. 685.)

- **Exercise 11.208**
 Six more than an unknown number.

- **Exercise 11.209**
 A number minus four. (Solution on p. 685.)

- **Exercise 11.210**
 A number plus seven.

- **Exercise 11.211**
 A number increased by one. (Solution on p. 685.)

- **Exercise 11.212**
 A number decreased by ten.

- **Exercise 11.213**
 Negative seven added to some number. (Solution on p. 685.)

- **Exercise 11.214**
 Negative nine added to a number.

- **Exercise 11.215**
 A number plus the opposite of six. (Solution on p. 685.)

- **Exercise 11.216**
 A number minus the opposite of five.

- **Exercise 11.217**
 A number minus the opposite of negative one. (Solution on p. 686.)

- **Exercise 11.218**
 A number minus the opposite of negative twelve.

- **Exercise 11.219**
 Eleven added to three times a number. (Solution on p. 686.)

- **Exercise 11.220**
 Six plus five times an unknown number.

- **Exercise 11.221**
 Twice a number minus seven equals four. (Solution on p. 686.)

- **Exercise 11.222**
 Ten times a quantity increased by two is nine. (Solution on p. 686.)

- **Exercise 11.223**
 When fourteen is added to two times a number the result is six.

- **Exercise 11.224**
 Four times a number minus twenty-nine is eleven. (Solution on p. 686.)

- **Exercise 11.225**
 Three fifths of a number plus eight is fifty.

- **Exercise 11.226**
 Two ninths of a number plus one fifth is forty-one. (Solution on p. 686.)

- **Exercise 11.227**
 When four thirds of a number is increased by twelve, the result is five.
Exercise 11.228
When seven times a number is decreased by two times the number, the result is negative one.

Exercise 11.229 (Solution on p. 686.)
When eight times a number is increased by five, the result is equal to the original number plus twenty-six.

Exercise 11.230
Five more than some number is three more than four times the number.

Exercise 11.231 (Solution on p. 686.)
When a number divided by six is increased by nine, the result is one.

Exercise 11.232
A number is equal to itself minus three times itself.

Exercise 11.233 (Solution on p. 686.)
A number divided by seven, plus two, is seventeen.

Exercise 11.234
A number divided by nine, minus five times the number, is equal to one more than the number.

Exercise 11.235 (Solution on p. 686.)
When two is subtracted from some number, the result is ten.

Exercise 11.236
When four is subtracted from some number, the result is thirty-one.

Exercise 11.237 (Solution on p. 686.)
Three less than some number is equal to twice the number minus six.

Exercise 11.238
Thirteen less than some number is equal to three times the number added to eight.

Exercise 11.239 (Solution on p. 686.)
When twelve is subtracted from five times some number, the result is two less than the original number.

Exercise 11.240
When one is subtracted from three times a number, the result is eight less than six times the original number.

Exercise 11.241 (Solution on p. 686.)
When a number is subtracted from six, the result is four more than the original number.

Exercise 11.242
When a number is subtracted from twenty-four, the result is six less than twice the number.

Exercise 11.243 (Solution on p. 686.)
A number is subtracted from nine. This result is then increased by one. The result is eight more than three times the number.

Exercise 11.244
Five times a number is increased by two. This result is then decreased by three times the number. The result is three more than three times the number.

Exercise 11.245 (Solution on p. 686.)
Twice a number is decreased by seven. This result is decreased by four times the number. The result is negative the original number, minus six.

Exercise 11.246
Fifteen times a number is decreased by fifteen. This result is then increased by two times the number. The result is negative five times the original number minus the opposite of ten.
11.6.3.1 Exercises for Review

Exercise 11.247
(Solution on p. 686.)
(Section 4.7) \(\frac{8}{5}\) of what number is \(\frac{2}{3}\)?

Exercise 11.248
(Section 5.3) Find the value of \(\frac{21}{40} + \frac{17}{50}\).

Exercise 11.249
(Section 5.4) Find the value of \(3\frac{1}{12} + 4\frac{1}{3} + 1\frac{1}{4}\).

Exercise 11.250
(Section 6.3) Convert \(6.11\frac{1}{5}\) to a fraction.

Exercise 11.251
(Solution on p. 686.)
(Section 11.5) Solve the equation \(\frac{3x}{4} + 1 = -5\).

11.7 Applications II: Solving Problems

11.7.1 Section Overview
- The Five-Step Method
- Number Problems
- Geometry Problems

11.7.2 The Five Step Method

We are now in a position to solve some applied problems using algebraic methods. The problems we shall solve are intended as logic developers. Although they may not seem to reflect real situations, they do serve as a basis for solving more complex, real situation, applied problems. To solve problems algebraically, we will use the five-step method.

Strategy for Reading Word Problems

When solving mathematical word problems, you may wish to apply the following "reading strategy." Read the problem quickly to get a feel for the situation. Do not pay close attention to details. At the first reading, too much attention to details may be overwhelming and lead to confusion and discouragement. After the first, brief reading, read the problem carefully in phrases. Reading phrases introduces information more slowly and allows us to absorb and put together important information. We can look for the unknown quantity by reading one phrase at a time.

Five-Step Method for Solving Word Problems

1. Let \(x\) (or some other letter) represent the unknown quantity.
2. Translate the words to mathematical symbols and form an equation. Draw a picture if possible.
3. Solve the equation.
4. Check the solution by substituting the result into the original statement, not equation, of the problem.
5. Write a conclusion.

If it has been your experience that word problems are difficult, then follow the five-step method carefully. Most people have trouble with word problems for two reasons:

1. They are not able to translate the words to mathematical symbols. (See Section 11.5.)

7 This content is available online at <http://cnx.org/content/m35047/1.2/>.
2. They neglect step 1. After working through the problem phrase by phrase, to become familiar with the situation.

INTRODUCE A VARIABLE

11.7.3 Number Problems

11.7.3.1 Sample Set A

Example 11.44

What number decreased by six is five?

Step 1: Let \(n \) represent the unknown number.

Step 2: Translate the words to mathematical symbols and construct an equation. Read phrases.

- What number: \(n \)
- decreased by: \(-\)
- six: \(6\) \(\implies n - 6 = 5\)
- is: \(=\)
- five: \(5\)

Step 3: Solve this equation.

\[
 n - 6 = 5 \quad \text{Add 6 to both sides.}
\]

\[
 n - 6 + 6 = 5 + 6
\]

\[
 n = 11
\]

Step 4: Check the result.

When 11 is decreased by 6, the result is \(11 - 6\), which is equal to 5. The solution checks.

Step 5: The number is 11.

Example 11.45

When three times a number is increased by four, the result is eight more than five times the number.

Step 1: Let \(x \) = the unknown number.

Step 2: Translate the phrases to mathematical symbols and construct an equation.

When three times a number: \(3x\)

- is increased by: \(+\)
- four: \(4\)
- the result is: \(=\) \(\implies 3x + 4 = 5x + 8\)
- eight: \(8\)
- more than: \(+\)
- five times the number: \(5x\)

\[
3x + 4 = 5x + 8. \quad \text{Subtract 3x from both sides.}
\]

\[
3x + 4 - 3x = 5x + 8 - 3x
\]

\[
4 = 2x + 8 \quad \text{Subtract 8 from both sides.}
\]

Step 3: \(4 - 8 = 2x + 8 - 8\)

\[-4 = 2x \quad \text{Divide both sides by 2.}\]

\[-2 = x\]
Step 4: Check this result.

Three times -2 is -6. Increasing -6 by 4 results in $-6 + 4 = -2$. Now, five times -2 is -10. Increasing -10 by 8 results in $-10 + 8 = -2$. The results agree, and the solution checks.

Step 5: The number is -2

Example 11.46
Consecutive integers have the property that if

\[n = \text{the smallest integer, then} \]

\[n + 1 = \text{the next integer, and} \]

\[n + 2 = \text{the next integer, and so on.} \]

Consecutive odd or even integers have the property that if

\[n = \text{the smallest integer, then} \]

\[n + 2 = \text{the next odd or even integer (since odd or even numbers differ by 2), and} \]

\[n + 4 = \text{the next odd or even integer, and so on.} \]

The sum of three consecutive odd integers is equal to one less than twice the first odd integer. Find the three integers.

Let \(n = \text{the first odd integer.} \) Then,

Step 1.

\[n + 2 = \text{the second odd integer, and} \]

\[n + 4 = \text{the third odd integer.} \]

Step 2. Translate the words to mathematical symbols and construct an equation. Read phrases.

The sum of: add some numbers

three consecutive odd integers: \(n, n + 2, n + 4 \)

is equal to: \(n + (n + 2) + (n + 4) = 2n - 1 \)

one less than: subtract 1 from twice the first odd integer: \(2n \)

\[n + n + 2 + n + 4 = 2n - 1 \]

\[3n + 6 = 2n - 1 \] Subtract \(2n \) from both sides.

\[3n + 6 - 2n = 2n - 1 - 2n \]

\[n + 6 = -1 \] Subtract \(6 \) from both sides.

Step 3.

\[n + 6 - 6 = -1 - 6 \]

\[n = -7 \] The first integer is -7.

\[n + 2 = -7 + 2 = -5 \] The second integer is -5.

\[n + 4 = -7 + 4 = -3 \] The third integer is -3.

Step 4. Check this result.

The sum of the three integers is \(-7 + (-5) + (-3) = -12 + (-3) \)

\[= -15 \]

One less than twice the first integer is \(2(-7) - 1 = -14 - 1 = -15 \). Since these two results are equal, the solution checks.
Step 5. The three odd integers are -7, -5, -3.

11.7.3.2 Practice Set A

Exercise 11.252 \hspace{1cm} (Solution on p. 686.)
When three times a number is decreased by 5, the result is -23. Find the number.

Step 1: Let \(x = \)
Step 2:
Step 3:
Step 4: Check:
Step 5: The number is _______.

Exercise 11.253 \hspace{1cm} (Solution on p. 686.)
When five times a number is increased by 7, the result is five less than seven times the number. Find the number.

Step 1: Let \(n = \)
Step 2:
Step 3:
Step 4: Check:
Step 5: The number is _______.

Exercise 11.254 \hspace{1cm} (Solution on p. 686.)
Two consecutive numbers add to 35. Find the numbers.

Step 1:
Step 2:
Step 3:
Step 4: Check:
Step 5: The numbers are _______ and _______.

Exercise 11.255 \hspace{1cm} (Solution on p. 686.)
The sum of three consecutive even integers is six more than four times the middle integer. Find the integers.

Step 1: Let \(x = \) smallest integer.

\(= \) next integer.

\(= \) largest integer.

Step 2:
Step 3:
Step 4: Check:
Step 5: The integers are _______, _______, and _______.
11.7.4 Geometry Problems

11.7.4.1 Sample Set B

Example 11.47
The perimeter (length around) of a rectangle is 20 meters. If the length is 4 meters longer than the width, find the length and width of the rectangle.
Step 1: Let x = the width of the rectangle. Then, $x + 4$ = the length of the rectangle.
Step 2: We can draw a picture.

The length around the rectangle is

$\underbrace{x} + \underbrace{(x + 4)} + \underbrace{x} + \underbrace{(x + 4)} = 20$

$x + x + 4 + x + 4 = 20$

$4x + 8 = 20$ Subtract 8 from both sides.

Step 3: $4x = 12$ Divide both sides by 4.

$x = 3$ Then,

$x + 4 = 3 + 4 = 7$

Step 4: Check:

Step 5: The length of the rectangle is 7 meters.
The width of the rectangle is 3 meters.

11.7.4.2 Practice Set B

Exercise 11.256 (Solution on p. 686.)
The perimeter of a triangle is 16 inches. The second leg is 2 inches longer than the first leg, and the third leg is 5 inches longer than the first leg. Find the length of each leg.
Step 1: Let x = length of the first leg.
 x = length of the second leg.
 x = length of the third leg.
Step 2: We can draw a picture.
Step 3:
Step 4: Check:
Step 5: The lengths of the legs are ________, ________, and ________.
11.7.5 Exercises

For the following 17 problems, find each solution using the five-step method.

Exercise 11.257
What number decreased by nine is fifteen?

Step 1. Let \(n \) = the number.
Step 2.
Step 3.
Step 4. Check:
Step 5. The number is ________.

Exercise 11.258
What number increased by twelve is twenty?

Step 1. Let \(n \) = the number.
Step 2.
Step 3.
Step 4. Check:
Step 5. The number is ________.

Exercise 11.259
If five more than three times a number is thirty-two, what is the number?

Step 1. Let \(x \) = the number.
Step 2.
Step 3.
Step 4. Check:
Step 5. The number is ________.

Exercise 11.260
If four times a number is increased by fifteen, the result is five. What is the number?

Step 1. Let \(x \) =
Step 2.
Step 3.
Step 4. Check:
Step 5. The number is ________.

Exercise 11.261
When three times a quantity is decreased by five times the quantity, the result is negative twenty. What is the quantity?

Step 1. Let \(x \) =
Step 2.
Step 3.
Step 4. Check:
Step 5. The quantity is ________.

Exercise 11.262
If four times a quantity is decreased by nine times the quantity, the result is ten. What is the quantity?
Step 1. Let \(y = \)

Step 2.

Step 3.

Step 4. Check:

Step 5. The quantity is \(\).

Exercise 11.263
(Solution on p. 687.)
When five is added to three times some number, the result is equal to five times the number decreased by seven. What is the number?

Step 1. Let \(n = \)

Step 2.

Step 3.

Step 4. Check:

Step 5. The number is \(\).

Exercise 11.264
When six times a quantity is decreased by two, the result is six more than seven times the quantity. What is the quantity?

Step 1. Let \(x = \)

Step 2.

Step 3.

Step 4. Check:

Step 5. The quantity is \(\).

Exercise 11.265
(Solution on p. 687.)
When four is decreased by three times some number, the result is equal to one less than twice the number. What is the number?

Step 1.

Step 2.

Step 3.

Step 4. Check:

Step 5.

Exercise 11.266
When twice a number is subtracted from one, the result is equal to twenty-one more than the number. What is the number?

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Exercise 11.267
(Solution on p. 687.)
The perimeter of a rectangle is 36 inches. If the length of the rectangle is 6 inches more than the width, find the length and width of the rectangle.

Step 1. Let \(w = \) the width.

\(= \) the length.
Step 2. We can draw a picture.

Exercise 11.268
The perimeter of a rectangle is 48 feet. Find the length and the width of the rectangle if the length is 8 feet more than the width.

Step 1. Let $w =$ the width.
$= $ the length.
Step 2. We can draw a picture.

Step 3.
Step 4. Check:
Step 5. The length of the rectangle is _______ inches, and the width is _______ inches.

Exercise 11.269
(Solution on p. 687.)
The sum of three consecutive integers is 48. What are they?

Step 1. Let $n =$ the smallest integer.
 = the next integer.
 = the next integer.
Step 2.
Step 3.
Step 4. Check:
Step 5. The three integers are _______, _______, and _______.

Exercise 11.270
The sum of three consecutive integers is -27. What are they?

Step 1. Let $n =$ the smallest integer.
 = the next integer.
 = the next integer.
Step 2.
Step 3.
Step 4. Check:
Step 5. The three integers are _______, _______, and _______.

Exercise 11.271
(Solution on p. 687.)
The sum of five consecutive integers is zero. What are they?

Step 1. Let $n =$
Step 2.
Step 3.
Step 4.
Step 5. The five integers are ______, ______, ______, ______, and ______.

Exercise 11.272
The sum of five consecutive integers is -5. What are they?

Step 1. Let \(n = \)
Step 2.
Step 3.
Step 4.
Step 5. The five integers are ______, ______, ______, ______, and ______.

Continue using the five-step procedure to find the solutions.

Exercise 11.273
(Solution on p. 687.)
The perimeter of a rectangle is 18 meters. Find the length and width of the rectangle if the length is 1 meter more than three times the width.

Exercise 11.274
The perimeter of a rectangle is 80 centimeters. Find the length and width of the rectangle if the length is 2 meters less than five times the width.

Exercise 11.275
(Solution on p. 687.)
Find the length and width of a rectangle with perimeter 74 inches, if the width of the rectangle is 8 inches less than twice the length.

Exercise 11.276
Find the length and width of a rectangle with perimeter 18 feet, if the width of the rectangle is 7 feet less than three times the length.

Exercise 11.277
(Solution on p. 687.)
A person makes a mistake when copying information regarding a particular rectangle. The copied information is as follows: The length of a rectangle is 5 inches less than two times the width. The perimeter of the rectangle is 2 inches. What is the mistake?

Exercise 11.278
A person makes a mistake when copying information regarding a particular triangle. The copied information is as follows: Two sides of a triangle are the same length. The third side is 10 feet less than three times the length of one of the other sides. The perimeter of the triangle is 5 feet. What is the mistake?

Exercise 11.279
(Solution on p. 687.)
The perimeter of a triangle is 75 meters. If each of two legs is exactly twice the length of the shortest leg, how long is the shortest leg?

Exercise 11.280
If five is subtracted from four times some number the result is negative twenty-nine. What is the number?

Exercise 11.281
(Solution on p. 687.)
If two is subtracted from ten times some number, the result is negative two. What is the number?

Exercise 11.282
If three less than six times a number is equal to five times the number minus three, what is the number?

Exercise 11.283
(Solution on p. 687.)
If one is added to negative four times a number the result is equal to eight less than five times the number. What is the number?
Exercise 11.284
Find three consecutive integers that add to -57.

Exercise 11.285
(Solution on p. 687.)
Find four consecutive integers that add to negative two.

Exercise 11.286
Find three consecutive even integers that add to -24.

Exercise 11.287
(Solution on p. 687.)
Find three consecutive odd integers that add to -99.

Exercise 11.288
Suppose someone wants to find three consecutive odd integers that add to 120. Why will that person not be able to do it?

Exercise 11.289
(Solution on p. 687.)
Suppose someone wants to find two consecutive even integers that add to 139. Why will that person not be able to do it?

Exercise 11.290
Three numbers add to 35. The second number is five less than twice the smallest. The third number is exactly twice the smallest. Find the numbers.

Exercise 11.291
(Solution on p. 687.)
Three numbers add to 37. The second number is one less than eight times the smallest. The third number is two less than eleven times the smallest. Find the numbers.

11.7.5.1 Exercises for Review

Exercise 11.292
(Section 6.7) Find the decimal representation of $0.34\bar{9}92 \div 4.32$.

Exercise 11.293
(Solution on p. 687.)
(Section 7.4) A 5-foot woman casts a 9-foot shadow at a particular time of the day. How tall is a person that casts a 10.8-foot shadow at the same time of the day?

Exercise 11.294
(Section 8.5) Use the method of rounding to estimate the sum: $4 \frac{5}{17} + 15 \frac{1}{27}$.

Exercise 11.295
(Solution on p. 687.)
(Section 9.3) Convert 463 mg to cg.

Exercise 11.296
(Section 11.6) Twice a number is added to 5. The result is 2 less than three times the number. What is the number?

11.8 Summary of Key Concepts

11.8.1 Summary of Key Concepts

Numerical Expression (Section 11.2)
A numerical expression results when numbers are associated by arithmetic operation signs. The expressions $3 + 5$, $9 - 2$, $5 \cdot 6$ and $8 \div 5$ are numerical expressions.

\footnote{This content is available online at <http://cnx.org/content/m35049/1.2/>}
Algebraic Expressions (Section 11.2)
When an arithmetic operation sign connects a letter with a number or a letter with a letter, an algebraic expression results. The expressions $4x + 1$, $x - 5$, $7x \cdot 6y$, and $4x \div 3$ are algebraic expressions.

Terms and Factors (Section 11.2)
Terms are parts of sums and are therefore separated by addition (or subtraction) signs. In the expression, $5x - 2y$, $5x$ and $-2y$ are the terms. Factors are parts of products and are therefore separated by multiplication signs. In the expression $5a$, 5 and a are the factors.

Coefficients (Section 11.2)
The coefficient of a quantity records how many of that quantity there are. In the expression $7x$, the coefficient 7 indicates that there are seven x’s.

Numerical Evaluation (Section 11.2)
Numerical evaluation is the process of determining the value of an algebraic expression by replacing the variables in the expression with specified values.

Combining Like Terms (Section 11.3)
An algebraic expression may be simplified by combining like terms. To combine like terms, we simply add or subtract their coefficients then affix the variable. For example $4x + 9x = (4 + 9)x = 13x$.

Equation (Section 11.4)
An equation is a statement that two expressions are equal. The statements $5x + 1 = 3$ and $\frac{4x}{2} + 4 = \frac{3}{2}$ are equations. The expressions represent the same quantities.

Conditional Equation (Section 11.4)
A conditional equation is an equation whose truth depends on the value selected for the variable. The equation $3x = 9$ is a conditional equation since it is only true on the condition that 3 is selected for x.

Solutions and Solving an Equation (Section 11.4)
The values that when substituted for the variables make the equation true are called the solutions of the equation.
An equation has been solved when all its solutions have been found.

Equivalent Equations (Section 11.4)
Equations that have precisely the same solutions are called equivalent equations. The equations $6y = 18$ and $y = 3$ are equivalent equations.

Addition/Subtraction Property of Equality (Section 11.4)
Given any equation, we can obtain an equivalent equation by
1. adding the same number to both sides, or
2. subtracting the same number from both sides.

Solving $x + a = b$ and $x - a = b$ (Section 11.4)
To solve $x + a = b$, subtract a from both sides.
\[
x + a = b \\
x + a - a = b - a \quad x = b - a
\]
To solve $x - a = b$, add a to both sides.
\[
x - a = b \\
x - a + a = b + a \\
x = b + a
\]

Multiplication/Division Property of Equality (Section 11.5)

Given any equation, we can obtain an equivalent equation by

1. multiplying both sides by the same nonzero number, that is, if \(c \neq 0 \), \(a = b \) and \(a \cdot c = b \cdot c \) are equivalent.
2. dividing both sides by the same nonzero number, that is, if \(c \neq 0 \), \(a = b \) and \(\frac{a}{c} = \frac{b}{c} \) are equivalent.

Solving \(ax = b \) and \(\frac{x}{a} = b \) (Section 11.5)

To **solve** \(ax = b \), \(a \neq 0 \), divide both sides by \(a \).

\[
ax = b \\
\frac{ax}{a} = \frac{b}{a} \\
x = \frac{b}{a}
\]

To **solve** \(\frac{x}{a} = b \), \(a \neq 0 \), multiply both sides by \(a \).

\[
x = \frac{b}{a} \\
a \cdot \frac{x}{a} = a \cdot \frac{b}{a} \\
x = a \cdot \frac{b}{a}
\]

Translating Words to Mathematics (Section 11.6)

In solving applied problems, it is important to be able to translate phrases and sentences to mathematical expressions and equations.

The Five-Step Method for Solving Applied Problems (Section 11.7)

To solve problems algebraically, it is a good idea to use the following **five-step procedure**.

After working your way through the problem carefully, phrase by phrase:

1. Let \(x \) (or some other letter) represent the unknown quantity.
2. Translate the phrases and sentences to mathematical symbols and form an equation. Draw a picture if possible.
3. Solve this equation.
4. Check the solution by substituting the result into the original statement of the problem.
5. Write a conclusion.

11.9 Exercise Supplement

11.9.1 Exercise Supplement

11.9.1.1 Algebraic Expressions (Section 11.2)

For problems 1-10, specify each term.

9This content is available online at <http://cnx.org/content/m35050/1.2/>.
Exercise 11.297
6a - 2b + 5c

Exercise 11.298
9x - 6y + 1

Exercise 11.299
7m - 3n

Exercise 11.300
-5h + 2k - 8 + 4m

Exercise 11.301
x + 2n - z

Exercise 11.302
y - 5

Exercise 11.303
-y - 3z

Exercise 11.304
-a - b - c - 1

Exercise 11.305
-4

Exercise 11.306
-6

Exercise 11.307
Write 1k in a simpler way.

Exercise 11.308
Write 1x in a simpler way.

Exercise 11.309
In the expression 7r, how many r’s are indicated?

Exercise 11.310
In the expression 12m, how many m’s are indicated?

Exercise 11.311
In the expression -5n, how many n’s are indicated?

Exercise 11.312
In the expression -10y, how many y’s are indicated?

For problems 17-46, find the value of each expression.

Exercise 11.313
5a - 2s, if a = -5 and s = 1

Exercise 11.314
7n - 3r, if n = -6 and r = 2

Exercise 11.315
9x + 2y - 3s, if x = -2, y = 5, and s = -3

Exercise 11.316
10a - 2b + 5c, if a = 0, b = -6, and c = 8

Exercise 11.317
-5s - 2t + 1, if s = 2 and t = -2

Exercise 11.318
-3m - 4n + 5, if m = -1 and n = -1
Exercise 11.319
$m - 4$, if $m = 4$
(Solution on p. 688.)

Exercise 11.320
$n = 2$, if $n = 2$

Exercise 11.321
$-x + 2y$, if $x = -7$ and $y = -1$
(Solution on p. 688.)

Exercise 11.322
$-a + 3b - 6$, if $a = -3$ and $b = 0$

Exercise 11.323
$5x - 4y - 7y + y - 7x$, if $x = 1$ and $y = -2$
(Solution on p. 688.)

Exercise 11.324
$2a - 6b - 3a - a + 2b$, if $a = 4$ and $b = -2$

Exercise 11.325
$a^2 - 6a + 4$, if $a = -2$
(Solution on p. 688.)

Exercise 11.326
$m^2 - 8m - 6$, if $m = -5$

Exercise 11.327
$4y^2 + 3y + 1$, if $y = -2$
(Solution on p. 688.)

Exercise 11.328
$5a^2 - 6a + 11$, if $a = 0$

Exercise 11.329
$-k^2 - k - 1$, if $k = -1$
(Solution on p. 688.)

Exercise 11.330
$-h^2 - 2h - 3$, if $h = -4$

Exercise 11.331
$\frac{a}{n} + 5m$, if $m = -18$
(Solution on p. 688.)

Exercise 11.332
$\frac{a}{8} - 2a + 1$, if $a = 24$

Exercise 11.333
$\frac{5x}{7} + 3x - 7$, if $x = 14$
(Solution on p. 688.)

Exercise 11.334
$\frac{3k}{4} - 5k + 18$, if $k = 16$

Exercise 11.335
$\frac{-6a}{5} + 3a + 10$, if $a = 25$
(Solution on p. 688.)

Exercise 11.336
$\frac{-7h}{9} - 7h - 7$, if $h = -18$
(Solution on p. 688.)

Exercise 11.337
$5(3a + 4b)$, if $a = -2$ and $b = 2$

Exercise 11.338
$7(2y - x)$, if $x = -1$ and $y = 2$

Exercise 11.339
$-(a - b)$, if $a = 0$ and $b = -6$
(Solution on p. 688.)

Exercise 11.340
$-(x - x - y)$, if $x = 4$ and $y = -4$

Exercise 11.341
$(y + 2)^2 - 6(y + 2) - 6$, if $y = 2$
(Solution on p. 688.)
Exercise 11.342
\[(a - 7)^2 - 2(a - 7) - 2, \text{ if } a = 7\]

11.9.1.2 Combining Like Terms Using Addition and Subtraction (Section 11.3)

For problems 47-56, simplify each expression by combining like terms.

Exercise 11.343
\[4a + 5 - 2a + 1\]
(Solution on p. 688.)

Exercise 11.344
\[7x + 3x - 14x\]

Exercise 11.345
\[-7b + 4m - 3 + 3n\]
(Solution on p. 688.)

Exercise 11.346
\[-9k - 8h - k + 6h\]

Exercise 11.347
\[-x + 5y - 8x - 6x + 7y\]
(Solution on p. 688.)

Exercise 11.348
\[6n - 2n + 6 - 2 - n\]

Exercise 11.349
\[0m + 3k - 5s + 2m - s\]
(Solution on p. 688.)

Exercise 11.350
\[| -8 | a + 2 | b | -4 | a\]

Exercise 11.351
\[| 6 | h | -7 | k+ | -12 | h+ | 4 | -5 | h\]
(Solution on p. 688.)

Exercise 11.352
\[| 0 | a - 0a + 0\]

11.9.1.3 Equations of the Form \(ax = b\) and \(\frac{x}{a} = b\), Translating Words to Mathematical Symbols, and Solving Problems (Section 11.5, Section 11.6, Section 11.7)

For problems 57-140, solve each equation.

Exercise 11.353
\[x + 1 = 5\]
(Solution on p. 688.)

Exercise 11.354
\[y - 3 = -7\]

Exercise 11.355
\[x + 12 = 10\]
(Solution on p. 688.)

Exercise 11.356
\[x - 4 = -6\]

Exercise 11.357
\[5x = 25\]
(Solution on p. 688.)

Exercise 11.358
\[3x = 17\]

Exercise 11.359
\[\frac{x}{2} = 6\]
(Solution on p. 688.)
Exercise 11.360
\[\frac{x}{8} = 3 \]
Exercise 11.361
\[\frac{x}{15} = -1 \] (Solution on p. 689.)
Exercise 11.362
\[\frac{x}{4} = -3 \]
Exercise 11.363
\[-3x = 9 \] (Solution on p. 689.)
Exercise 11.364
\[-2x = 5 \]
Exercise 11.365
\[-5x = -5 \] (Solution on p. 689.)
Exercise 11.366
\[-3x = -1 \]
Exercise 11.367
\[\frac{x}{-3} = 9 \] (Solution on p. 689.)
Exercise 11.368
\[\frac{x}{-2} = 2 \]
Exercise 11.369
\[-7 = 3y \] (Solution on p. 689.)
Exercise 11.370
\[-7 = \frac{x}{3} \]
Exercise 11.371
\[\frac{m}{4} = -\frac{2}{3} \] (Solution on p. 689.)
Exercise 11.372
\[4y = \frac{1}{2} \]
Exercise 11.373
\[\frac{1}{3} = -5x \] (Solution on p. 689.)
Exercise 11.374
\[\frac{1}{x} = \frac{3}{4} \]
Exercise 11.375
\[\frac{1}{6} = \frac{s}{-6} \] (Solution on p. 689.)
Exercise 11.376
\[\frac{6}{s} = 4s \] (Solution on p. 689.)
Exercise 11.377
\[x + 2 = -1 \]
Exercise 11.378
\[x - 5 = -6 \]
Exercise 11.379
\[\frac{-3}{2}x = 6 \] (Solution on p. 689.)
Exercise 11.380
\[3x + 2 = 7 \]
Exercise 11.381
\[-4x - 5 = -3 \] (Solution on p. 689.)
Exercise 11.382
\[\frac{x}{5} + 1 = 4 \]
Exercise 11.383
\(\frac{a}{5} - 3 = -2 \)
(Solution on p. 689.)

Exercise 11.384
\(\frac{4x}{3} = 7 \)

Exercise 11.385
\(\frac{2x}{5} + 2 = 8 \)
(Solution on p. 689.)

Exercise 11.386
\(\frac{3y}{2} - 4 = 6 \)

Exercise 11.387
\(m + 3 = 8 \)
(Solution on p. 689.)

Exercise 11.388
\(\frac{1x}{2} = 2 \)

Exercise 11.389
\(\frac{2a}{3} = 5 \)
(Solution on p. 689.)

Exercise 11.390
\(\frac{-3z}{7} - 4 = 4 \)

Exercise 11.391
\(\frac{5x}{2} - 6 = -10 \)
(Solution on p. 689.)

Exercise 11.392
\(-4k - 6 = 7 \)

Exercise 11.393
\(\frac{-3y}{2} + 1 = 4 \)
(Solution on p. 689.)

Exercise 11.394
\(\frac{-6x}{4} = 2 \)

Exercise 11.395
\(x + 9 = 14 \)
(Solution on p. 689.)

Exercise 11.396
\(y + 5 = 21 \)

Exercise 11.397
\(y + 5 = -7 \)
(Solution on p. 689.)

Exercise 11.398
\(4x = 24 \)

Exercise 11.399
\(4w = 37 \)
(Solution on p. 689.)

Exercise 11.400
\(6y - 11 = 13 \)

Exercise 11.401
\(-3x + 8 = -7 \)
(Solution on p. 689.)

Exercise 11.402
\(3z + 9 = -51 \)

Exercise 11.403
\(\frac{x}{3} = 8 \)

Exercise 11.404
\(\frac{6y}{7} = 5 \)

Exercise 11.405
\(\frac{w}{2} - 15 = 4 \)
(Solution on p. 689.)
Exercise 11.406
\[\frac{x}{2} - 23 = -10 \]

Exercise 11.407
\[\frac{2x}{3} - 5 = 8 \]

Exercise 11.408
\[\frac{3x}{4} = -\frac{7}{8} \]

Exercise 11.409
\[-2 - \frac{2x}{7} = 3 \]

Exercise 11.410
\[3 - x = 4 \]

Exercise 11.411
\[-5 - y = -2 \]

Exercise 11.412
\[3 - z = -2 \]

Exercise 11.413
\[3x + 2x = 6 \]

Exercise 11.414
\[4x + 1 + 6x = 10 \]

Exercise 11.415
\[6y - 6 = -4 + 3y \]

Exercise 11.416
\[3 = 4a - 2a + a \]

Exercise 11.417
\[3m + 4 = 2m + 1 \]

Exercise 11.418
\[5w - 6 = 4 + 2w \]

Exercise 11.419
\[8 - 3a = 32 - 2a \]

Exercise 11.420
\[5x - 2x + 6x = 13 \]

Exercise 11.421
\[x + 2 = 3 - x \]

Exercise 11.422
\[5y + 2y - 1 = 6y \]

Exercise 11.423
\[x = 32 \]

Exercise 11.424
\[k = -4 \]

Exercise 11.425
\[\frac{3x}{2} + 4 = \frac{5x}{2} = 6 \]

Exercise 11.426
\[\frac{x}{3} + \frac{2x}{4} - 2 = 16 \]

Exercise 11.427
\[x - 2 = 6 - x \]

Exercise 11.428
\[-\frac{5x}{7} = \frac{2x}{7} \]

(Solution on p. 689.)

(Solution on p. 689.)

(Solution on p. 690.)

(Solution on p. 690.)
Exercise 11.429
\[\frac{2x}{3} + 1 = 5 \] (Solution on p. 690.)

Exercise 11.430
\[-\frac{3x}{5} + 3 = \frac{2x}{5} + 2 \]

Exercise 11.431
\[\frac{3x}{4} + 5 = -\frac{3x}{4} - 11 \] (Solution on p. 690.)

Exercise 11.432
\[\frac{3x}{7} = -\frac{1}{3} + 12 \]

Exercise 11.433
\[\frac{3y}{13} - 4 = \frac{7y}{26} + 1 \] (Solution on p. 690.)

Exercise 11.434
\[-\frac{3m}{5} = \frac{6m}{10} - 2 \]

Exercise 11.435
\[-\frac{3m}{2} + 1 = 5m \] (Solution on p. 690.)

Exercise 11.436
\[-3z = \frac{2z}{5} \]

11.10 Proficiency Exam

11.10.1 Proficiency Exam

For problems 1 and 2 specify each term.

Exercise 11.437
(Section 11.2) \[5x + 6y + 3z \] (Solution on p. 690.)

Exercise 11.438
(Section 11.2) \[8m - 2n - 4 \] (Solution on p. 690.)

Exercise 11.439
(Section 11.2) In the expression \(-9a\), how many \(a\)'s are indicated?

For problems 4-9, find the value of each expression.

Exercise 11.440
(Section 11.2) If \(a = -2\), and \(b = -1\).

Exercise 11.441
(Section 11.2) \(-5m + 2n - 6\), if \(m = -1\) and \(n = 4\).

Exercise 11.442
(Section 11.2) \(-x^2 + 3x - 5\), if \(x = -2\)

Exercise 11.443
(Section 11.2) \(y^2 + 9y + 1\), if \(y = 0\).

Exercise 11.444
(Section 11.2) \(-a^2 + 3a + 4\), if \(a = 4\).

Exercise 11.445
(Section 11.2) \(-(5 - x)^2 + 7(m - x) + x - 2m\), if \(x = 5\) and \(m = 5\).

For problems 10-12, simplify each expression by combining like terms.

Exercise 11.446
(Section 11.3) \(6y + 5 - 2y + 1\) (Solution on p. 690.)

\[^{10}\text{This content is available online at <http://cnx.org/content/m35052/1.2/> .}\]
Exercise 11.447
(Solution on p. 690.)
(Section 11.3) $14a - 3b + 5b - 6a - b$

Exercise 11.448
(Solution on p. 690.)
(Section 11.3) $9x + 5y - 7 + 4x - 6y + 3(-2)$

For problems 13-22, solve each equation.

Exercise 11.449
(Solution on p. 691.)
(Section 11.4) $x + 7 = 15$

Exercise 11.450
(Solution on p. 691.)
(Section 11.4) $y - 6 = 2$

Exercise 11.451
(Solution on p. 691.)
(Section 11.4) $m + 8 = -1$

Exercise 11.452
(Solution on p. 691.)
(Section 11.4) $-5 + a = -4$

Exercise 11.453
(Solution on p. 691.)
(Section 11.5) $4x = 104$

Exercise 11.454
(Solution on p. 691.)
(Section 11.5) $6y + 3 = -21$

Exercise 11.455
(Solution on p. 691.)
(Section 11.5) $\frac{5m}{6} = \frac{10}{3}$

Exercise 11.456
(Solution on p. 691.)
(Section 11.5) $\frac{7w}{7} + \frac{1}{4} = \frac{-13}{4}$

Exercise 11.457
(Solution on p. 691.)
(Section 11.5) $6x + 5 = 4x - 11$

Exercise 11.458
(Solution on p. 691.)
(Section 11.5) $4y - 8 - 6y = 3y + 1$

Exercise 11.459
(Solution on p. 691.)
(Section 11.6 and Section 11.7) Three consecutive even integers add to -36. What are they?

Exercise 11.460
(Solution on p. 691.)
(Section 11.6 and Section 11.7) The perimeter of a rectangle is 38 feet. Find the length and width of the rectangle if the length is 5 feet less than three times the width.

Exercise 11.461
(Solution on p. 691.)
(Section 11.6 and Section 11.7) Four numbers add to -2. The second number is three more than twice the negative of the first number. The third number is six less than the first number. The fourth number is eleven less than twice the first number. Find the numbers.
Solutions to Exercises in Chapter 11

Solution to Exercise 11.1 (p. 631)
$x, 7$

Solution to Exercise 11.2 (p. 631)
$3m - 6n$

Solution to Exercise 11.3 (p. 631)
$5y$

Solution to Exercise 11.4 (p. 631)
$a, 2b, -c$

Solution to Exercise 11.5 (p. 631)
$-3x, -5$

Solution to Exercise 11.6 (p. 633)
-28

Solution to Exercise 11.7 (p. 633)
-3

Solution to Exercise 11.8 (p. 633)
-6

Solution to Exercise 11.9 (p. 633)
104

Solution to Exercise 11.10 (p. 633)
24

Solution to Exercise 11.11 (p. 633)
-12

Solution to Exercise 11.12 (p. 634)
-1

Solution to Exercise 11.13 (p. 634)
31

Solution to Exercise 11.14 (p. 634)
Addition; multiplication

Solution to Exercise 11.16 (p. 634)
$5x, 18y$

Solution to Exercise 11.18 (p. 634)
$8s, 2r, -7t$

Solution to Exercise 11.20 (p. 634)
$7a, -2b, -3c, -4d$

Solution to Exercise 11.22 (p. 634)
$-x, -y$

Solution to Exercise 11.24 (p. 634)
m

Solution to Exercise 11.26 (p. 634)
5

Solution to Exercise 11.28 (p. 634)
-30

Solution to Exercise 11.30 (p. 634)
-3

Solution to Exercise 11.32 (p. 635)
-14

Solution to Exercise 11.34 (p. 635)
56

Solution to Exercise 11.36 (p. 635)
64
Solution to Exercise 11.38 (p. 635)
1
Solution to Exercise 11.40 (p. 635)
75
Solution to Exercise 11.42 (p. 635)
24
Solution to Exercise 11.44 (p. 635)
30
Solution to Exercise 11.46 (p. 635)
5
Solution to Exercise 11.48 (p. 635)
-7
Solution to Exercise 11.50 (p. 635)
5
Solution to Exercise 11.52 (p. 636)
\(\frac{181}{24} = \frac{7\frac{13}{24}}{24}\)
Solution to Exercise 11.54 (p. 636)
20
Solution to Exercise 11.56 (p. 636)
0
Solution to Exercise 11.57 (p. 637)
13x
Solution to Exercise 11.58 (p. 637)
11a + 6b
Solution to Exercise 11.59 (p. 637)
9m − 7n
Solution to Exercise 11.60 (p. 637)
-2a − r
Solution to Exercise 11.61 (p. 637)
0
Solution to Exercise 11.62 (p. 638)
11a
Solution to Exercise 11.64 (p. 638)
4h
Solution to Exercise 11.66 (p. 638)
3m + 3n
Solution to Exercise 11.68 (p. 638)
17s − r
Solution to Exercise 11.70 (p. 638)
5h + 9a − 18k
Solution to Exercise 11.72 (p. 638)
0
Solution to Exercise 11.74 (p. 638)
16m
Solution to Exercise 11.76 (p. 638)
8h + 7k
Solution to Exercise 11.78 (p. 638)
5Δ − 3*
Solution to Exercise 11.80 (p. 638)
16x − 15y − 9
Solution to Exercise 11.82 (p. 639)

\[\frac{2}{1} \]

Solution to Exercise 11.84 (p. 639)

7

Solution to Exercise 11.86 (p. 639)

6

Solution to Exercise 11.87 (p. 641)

\[5 + 6 = \neq 11 \]

Substitute 5 into \(m + 6 = 11 \). Thus, 5 is a solution.

Solution to Exercise 11.88 (p. 641)

\[2(-5) - 4 = -14 \]

\[-10 - 4 = -14 \]

\[-14 = -14 \]

Thus, -5 is a solution.

Solution to Exercise 11.89 (p. 641)

\[5(0) + 1 = 1 \]

\[0 + 1 = 1 \]

Thus, 0 is a solution.

Solution to Exercise 11.90 (p. 641)

\[-3(3) + 1 \neq 4(3) + 5 \]

\[-9 + 1 \neq 12 + 5 \]

\[-8 \neq 17 \]

Thus, 3 is not a solution.

Solution to Exercise 11.91 (p. 641)

\[6(-1) - 5 + 2(-1) \neq 7(-1) - 6 \]

\[-6 - 5 - 2 \neq -7 - 6 \]

\[-13 \neq -13 \]

Thus, -1 is a solution.

Solution to Exercise 11.92 (p. 644)

\[y = -5 \]

Solution to Exercise 11.93 (p. 644)

\[a = 15 \]

Solution to Exercise 11.94 (p. 644)

\[x = 3 \]

Solution to Exercise 11.95 (p. 644)

\[m = 2 \]

Solution to Exercise 11.96 (p. 644)

\[k = -2 \]

Solution to Exercise 11.97 (p. 644)

\[a = -1 \]

Solution to Exercise 11.98 (p. 644)

Substitute \(x = 4 \) into the equation \(4x - 11 = 5 \).

\[16 - 11 = 5 \]

\[5 = 5 \]

\[x = 4 \] is a solution.

Solution to Exercise 11.100 (p. 644)

Substitute \(m = 1 \) into the equation \(2m - 1 = 1 \).
Solution to Exercise 11.102 (p. 645)
Substitute $x = -8$ into the equation $3x + 2 - 7 = -5x - 6$.

$x = -8$ is a solution.

Solution to Exercise 11.104 (p. 645)
Substitute $x = 0$ into the equation $-8 + x = -8$.

$-8 + 0 \neq -8$

$-8 \neq -8$

$x = 0$ is a solution.

Solution to Exercise 11.106 (p. 645)
Substitute $x = \frac{15}{2}$ into the equation $4x - 5 = 6x - 20$.

$30 - 5 \neq 45 - 20$

$25 \neq 25$

$x = \frac{15}{2}$ is a solution.

Solution to Exercise 11.108 (p. 645)
y = 11

Solution to Exercise 11.110 (p. 645)
k = 5

Solution to Exercise 11.112 (p. 645)
a = -9

Solution to Exercise 11.114 (p. 645)
x = 11

Solution to Exercise 11.116 (p. 645)
z = 0

Solution to Exercise 11.118 (p. 645)
x = 8

Solution to Exercise 11.120 (p. 645)
m = 1

Solution to Exercise 11.122 (p. 645)
k = 19

Solution to Exercise 11.124 (p. 646)
m = 10

Solution to Exercise 11.126 (p. 646)
b = -21

Solution to Exercise 11.128 (p. 646)
a = 16

Solution to Exercise 11.130 (p. 646)
y = 7.224

Solution to Exercise 11.132 (p. 646)
m = -0.778

Solution to Exercise 11.134 (p. 646)
k = -9.01

Solution to Exercise 11.136 (p. 646)
y = -28.06

Solution to Exercise 11.138 (p. 646)
rate
Solution to Exercise 11.140 (p. 646)
3.5
Solution to Exercise 11.142 (p. 646)
13x + 18y
Solution to Exercise 11.143 (p. 650)
x = 3
Solution to Exercise 11.144 (p. 650)
x = −13
Solution to Exercise 11.145 (p. 650)
x = −32
Solution to Exercise 11.146 (p. 650)
x = 16
Solution to Exercise 11.147 (p. 650)
y = −3
Solution to Exercise 11.148 (p. 650)
k = 2
Solution to Exercise 11.149 (p. 652)
m = −4
Solution to Exercise 11.150 (p. 652)
a = −5
Solution to Exercise 11.151 (p. 652)
a = 1
Solution to Exercise 11.152 (p. 652)
x = −3
Solution to Exercise 11.153 (p. 652)
m = −\frac{7}{2}
Solution to Exercise 11.154 (p. 652)
y = 0
Solution to Exercise 11.155 (p. 653)
x = 6
Solution to Exercise 11.157 (p. 653)
x = 12
Solution to Exercise 11.159 (p. 653)
a = −8
Solution to Exercise 11.161 (p. 653)
y = 14
Solution to Exercise 11.163 (p. 653)
m = −31
Solution to Exercise 11.165 (p. 653)
x = 28
Solution to Exercise 11.167 (p. 653)
z = 84
Solution to Exercise 11.169 (p. 653)
m = −4
Solution to Exercise 11.171 (p. 653)
x = −1
Solution to Exercise 11.173 (p. 653)
y = \frac{15}{2}
Solution to Exercise 11.175 (p. 653)
k = −2
Solution to Exercise 11.177 (p. 654)
\[x = \frac{11}{2} \text{ or } 5\frac{1}{2} \]
Solution to Exercise 11.179 (p. 654)
\[a = -\frac{5}{x} \]
Solution to Exercise 11.181 (p. 654)
\[m = -1 \]
Solution to Exercise 11.183 (p. 654)
\[x = 0 \]
Solution to Exercise 11.185 (p. 654)
\[a = 14 \]
Solution to Exercise 11.187 (p. 654)
\[x = 6 \]
Solution to Exercise 11.189 (p. 654)
\[a = 4 \]
Solution to Exercise 11.191 (p. 654)
\[40 (30 - 2) = 1200 - 80 = 1120 \]
Solution to Exercise 11.193 (p. 654)
\[220 \text{ sq cm} \]
Solution to Exercise 11.195 (p. 655)
\[x = 4 \]
Solution to Exercise 11.196 (p. 656)
\[12 + x \]
Solution to Exercise 11.197 (p. 656)
\[8 - x \]
Solution to Exercise 11.198 (p. 656)
\[x - 14 \]
Solution to Exercise 11.199 (p. 656)
\[6x = 54 \]
Solution to Exercise 11.200 (p. 656)
\[\frac{2}{5} x = 11 \]
Solution to Exercise 11.201 (p. 657)
\[3 + 7x = 9 + 5x \]
Solution to Exercise 11.202 (p. 657)
\[2x - 8 = 3x + 1 \text{ or } 2x - 8 = 1 + 3x \]
Solution to Exercise 11.203 (p. 657)
\[\frac{2}{7} = 50 \]
Solution to Exercise 11.204 (p. 657)
\[\frac{2}{3} - 6x = x + 1 \]
Solution to Exercise 11.205 (p. 657)
\[x - 9 = 4 \]
Solution to Exercise 11.206 (p. 657)
\[x - 5 = 8 \]
Solution to Exercise 11.207 (p. 658)
\[x - 12 \]
Solution to Exercise 11.209 (p. 658)
\[x - 4 \]
Solution to Exercise 11.211 (p. 658)
\[x + 1 \]
Solution to Exercise 11.213 (p. 658)
\[-7 + x \]
Solution to Exercise 11.215 (p. 658)
\[x + (-6) \]
Solution to Exercise 11.217 (p. 658)
\[x - [-(-1)] \]
Solution to Exercise 11.219 (p. 658)
\[3x + 11 \]
Solution to Exercise 11.221 (p. 658)
\[2x - 7 = 4 \]
Solution to Exercise 11.223 (p. 658)
\[14 + 2x = 6 \]
Solution to Exercise 11.225 (p. 658)
\[\frac{2}{5}x + 8 = 50 \]
Solution to Exercise 11.227 (p. 658)
\[\frac{2}{3}x + 12 = 5 \]
Solution to Exercise 11.229 (p. 659)
\[8x + 5 = x + 26 \]
Solution to Exercise 11.231 (p. 659)
\[\frac{x}{5} + 9 = 1 \]
Solution to Exercise 11.233 (p. 659)
\[\frac{x}{2} + 2 = 17 \]
Solution to Exercise 11.235 (p. 659)
\[x - 2 = 10 \]
Solution to Exercise 11.237 (p. 659)
\[x - 3 = 2x - 6 \]
Solution to Exercise 11.239 (p. 659)
\[5x - 12 = x - 2 \]
Solution to Exercise 11.241 (p. 659)
\[6 - x = x + 4 \]
Solution to Exercise 11.243 (p. 659)
\[9 - x + 1 = 3x + 8 \]
Solution to Exercise 11.245 (p. 659)
\[2x - 7 - 4x = -x - 6 \]
Solution to Exercise 11.247 (p. 660)
\[\frac{3}{3}x = \frac{8}{3} \]
Solution to Exercise 11.249 (p. 660)
\[8\frac{2}{3} \]
Solution to Exercise 11.251 (p. 660)
\[x = -8 \]
Solution to Exercise 11.252 (p. 663)
\[-6 \]
Solution to Exercise 11.253 (p. 663)
\[6 \]
Solution to Exercise 11.254 (p. 663)
\[17 \text{ and } 18 \]
Solution to Exercise 11.255 (p. 663)
\[-8, -6, 	ext{ and } -4 \]
Solution to Exercise 11.256 (p. 664)
\[3 \text{ inches, } 5 \text{ inches, and } 8 \text{ inches} \]
Solution to Exercise 11.257 (p. 665)
\[24 \]
Solution to Exercise 11.259 (p. 665)
9
Solution to Exercise 11.261 (p. 665)
10
Solution to Exercise 11.263 (p. 666)
6
Solution to Exercise 11.265 (p. 666)
1
Solution to Exercise 11.267 (p. 666)
Length = 12 inches, Width = 6 inches
Solution to Exercise 11.269 (p. 667)
15, 16, 17
Solution to Exercise 11.271 (p. 667)
-2, -1, 0, 1, 2
Solution to Exercise 11.273 (p. 668)
Length is 7, width is 2
Solution to Exercise 11.275 (p. 668)
Length is 15, width is 22
Solution to Exercise 11.277 (p. 668)
The perimeter is 20 inches. Other answers are possible. For example, perimeters such as 26, 32 are possible.
Solution to Exercise 11.279 (p. 668)
15 meters
Solution to Exercise 11.281 (p. 668)
\(n = 0 \)
Solution to Exercise 11.283 (p. 668)
\(n = 1 \)
Solution to Exercise 11.285 (p. 669)
-2, -1, 0, 1
Solution to Exercise 11.287 (p. 669)
-35, -33, -31
Solution to Exercise 11.289 (p. 669)
... because the sum of any even number (in this case, 2) of even integers (consecutive or not) is even and, therefore, cannot be odd (in this case, 139)
Solution to Exercise 11.291 (p. 669)
2, 15, 20
Solution to Exercise 11.293 (p. 669)
6 feet tall
Solution to Exercise 11.295 (p. 669)
46.3 cg
Solution to Exercise 11.297 (p. 672)
6a, -2b, 5c
Solution to Exercise 11.299 (p. 672)
7m, -3n
Solution to Exercise 11.301 (p. 672)
x, 2n, -z
Solution to Exercise 11.303 (p. 672)
-y, -3z
Solution to Exercise 11.305 (p. 672)
-4
Solution to Exercise 11.307 (p. 672)
k
Solution to Exercise 11.309 (p. 672)
7
Solution to Exercise 11.311 (p. 672)
-5
Solution to Exercise 11.313 (p. 672)
-27
Solution to Exercise 11.315 (p. 672)
1
Solution to Exercise 11.317 (p. 672)
-5
Solution to Exercise 11.319 (p. 673)
0
Solution to Exercise 11.321 (p. 673)
5
Solution to Exercise 11.323 (p. 673)
18
Solution to Exercise 11.325 (p. 673)
20
Solution to Exercise 11.327 (p. 673)
11
Solution to Exercise 11.329 (p. 673)
-1
Solution to Exercise 11.331 (p. 673)
-93
Solution to Exercise 11.333 (p. 673)
45
Solution to Exercise 11.335 (p. 673)
55
Solution to Exercise 11.337 (p. 673)
10
Solution to Exercise 11.339 (p. 673)
-6
Solution to Exercise 11.341 (p. 673)
-14
Solution to Exercise 11.343 (p. 674)
2a + 6
Solution to Exercise 11.345 (p. 674)
-4n + 4m - 3
Solution to Exercise 11.347 (p. 674)
-15x + 12y
Solution to Exercise 11.349 (p. 674)
3k + 2m - 6s
Solution to Exercise 11.351 (p. 674)
38h - 7k
Solution to Exercise 11.353 (p. 674)
x = 4
Solution to Exercise 11.355 (p. 674)
x = -2
Solution to Exercise 11.357 (p. 674)
x = 5
Solution to Exercise 11.359 (p. 674)
\(x = 12 \)
Solution to Exercise 11.361 (p. 675)
\(x = -15 \)
Solution to Exercise 11.363 (p. 675)
\(x = -3 \)
Solution to Exercise 11.365 (p. 675)
\(x = 1 \)
Solution to Exercise 11.367 (p. 675)
\(x = -27 \)
Solution to Exercise 11.369 (p. 675)
\(y = -\frac{7}{3} \)
Solution to Exercise 11.371 (p. 675)
\(m = -\frac{2}{5} \)
Solution to Exercise 11.373 (p. 675)
\(x = \frac{1}{15} \)
Solution to Exercise 11.375 (p. 675)
\(s = 1 \)
Solution to Exercise 11.377 (p. 675)
\(x = -3 \)
Solution to Exercise 11.379 (p. 675)
\(x = -4 \)
Solution to Exercise 11.381 (p. 675)
\(x = -\frac{1}{2} \)
Solution to Exercise 11.383 (p. 676)
\(a = -5 \)
Solution to Exercise 11.385 (p. 676)
\(x = 15 \)
Solution to Exercise 11.387 (p. 676)
\(x = 5 \)
Solution to Exercise 11.389 (p. 676)
\(a = \frac{15}{7} \)
Solution to Exercise 11.391 (p. 676)
\(x = \frac{8}{5} \)
Solution to Exercise 11.393 (p. 676)
\(x = 2 \)
Solution to Exercise 11.395 (p. 676)
\(x = 5 \)
Solution to Exercise 11.397 (p. 676)
\(y = -12 \)
Solution to Exercise 11.399 (p. 676)
\(w = \frac{37}{4} \)
Solution to Exercise 11.401 (p. 676)
\(x = 5 \)
Solution to Exercise 11.403 (p. 676)
\(x = -24 \)
Solution to Exercise 11.405 (p. 676)
\(w = 38 \)
Solution to Exercise 11.407 (p. 677)
\(x = \frac{39}{4} \)
Solution to Exercise 11.409 (p. 677)
\[x = -\frac{35}{2} \]
Solution to Exercise 11.411 (p. 677)
\[y = -3 \]
Solution to Exercise 11.413 (p. 677)
\[x = \frac{6}{5} \]
Solution to Exercise 11.415 (p. 677)
\[y = \frac{3}{2} \]
Solution to Exercise 11.417 (p. 677)
\[m = -3 \]
Solution to Exercise 11.419 (p. 677)
\[a = -24 \]
Solution to Exercise 11.421 (p. 677)
\[x = \frac{1}{3} \]
Solution to Exercise 11.423 (p. 677)
\[x = 32 \]
Solution to Exercise 11.425 (p. 677)
\[x = -2 \]
Solution to Exercise 11.427 (p. 677)
\[x = 4 \]
Solution to Exercise 11.429 (p. 678)
\[x = 6 \]
Solution to Exercise 11.431 (p. 678)
\[x = -\frac{32}{3} \]
Solution to Exercise 11.433 (p. 678)
\[y = \frac{130}{3} \]
Solution to Exercise 11.435 (p. 678)
\[m = \frac{2}{17} \]
Solution to Exercise 11.437 (p. 678)
\[5x, 6y, 3z \]
Solution to Exercise 11.438 (p. 678)
\[8m, -2n, -4 \]
Solution to Exercise 11.439 (p. 678)
\[-9 \]
Solution to Exercise 11.440 (p. 678)
\[-9 \]
Solution to Exercise 11.441 (p. 678)
\[7 \]
Solution to Exercise 11.442 (p. 678)
\[-15 \]
Solution to Exercise 11.443 (p. 678)
\[1 \]
Solution to Exercise 11.444 (p. 678)
\[0 \]
Solution to Exercise 11.445 (p. 678)
\[-5 \]
Solution to Exercise 11.446 (p. 678)
\[4y + 6 \]
Solution to Exercise 11.447 (p. 679)
\[8a + b \]
Solution to Exercise 11.448 (p. 679)
$13x - y - 13$

Solution to Exercise 11.449 (p. 679)
$x = 8$

Solution to Exercise 11.450 (p. 679)
$y = 8$

Solution to Exercise 11.451 (p. 679)
$m = -9$

Solution to Exercise 11.452 (p. 679)
$a = 1$

Solution to Exercise 11.453 (p. 679)
$x = 26$

Solution to Exercise 11.454 (p. 679)
$y = -4$

Solution to Exercise 11.455 (p. 679)
$m = 4$

Solution to Exercise 11.456 (p. 679)
$y = -4$

Solution to Exercise 11.457 (p. 679)
$x = -8$

Solution to Exercise 11.458 (p. 679)
$y = \frac{-9}{5}$

Solution to Exercise 11.459 (p. 679)
-14, -12, -10

Solution to Exercise 11.460 (p. 679)
$l = 13, w = 6$

Solution to Exercise 11.461 (p. 679)
6, .9, 0, 1
Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords do not necessarily appear in the text of the page. They are merely associated with that section. Ex. apples, §1.1 (1)

Terms are referenced by the page they appear on. Ex. apples, 1

"invert the divisor and, 255

- Denominate numbers, 418

A

absolute value, §10.4(586), 586

Acknowledgments, §(7)

add whole numbers, 30

addends, 30, 69

Adding, §1.1(9), §1.7(62), §1.9(69), §1.10(74)

addition, §1.5(29), 30, §1.7(62), §1.8(67), 69, §1.9(69), §1.10(74), §5.1(293), §5.2(294), §5.3(298), §5.4(304), §5.5(308), §5.6(312), §5.7(316), §5.8(320), §5.9(321), §5.10(325), §6.1(337), §6.2(338), §6.3(344), §6.4(348), §6.5(352), §6.6(369), §6.8(381), §6.9(386), §6.10(392), §6.11(395), §6.12(396), §6.13(396), §6.14(400), §6.15(400), §6.16(400), §10.5(390), §11.3(636)

addition/subtraction property of equality, 641

algebra, §11.1(629), §11.2(630), §11.3(636), §11.4(639), §11.5(647), §11.6(655), §11.7(660), §11.8(669), §11.9(671), §11.10(678)

algebraic expression, 630

Answers to Practice Sets, 2

approximation, §1.4(21)

area, §9.6(540), 540

associative property, §2.6(130)

associative property of addition, §1.7(62)

B

Bar, 160

base, 153, §7.7(446), 446

base ten, 11, 68

Base Ten Positional Number System, §1.2(10)

borrow more than once, 49

borrowing, §1.6(44), 48

Braces, 160

Brackets, 160

Burzynski, §(1), §1.1(9), 91, §2.1(91), §3.1(151), §3.2(152), §3.3(160), §3.4(170), §3.5(178), §3.6(182), §3.7(188), §3.8(191), §3.9(196), §4.1(211), §4.2(212), §4.3(221), §4.4(231), §4.5(242), §4.6(253), §4.7(259), §4.8(265), §4.9(268), §4.10(274), §5.1(293), §5.2(294), §5.3(298), §5.4(304), §5.5(308), §5.6(312), §5.7(316), §5.8(320), §5.9(321), §5.10(325), §6.1(337), §6.2(338), §6.3(339), §6.4(344), §6.5(348), §6.6(352), §6.7(358), §6.8(369), §6.9(381), §6.10(392), §6.11(395), §6.12(397), §6.13(398), §6.14(400), §6.15(400), §6.16(400), §10.5(390), §11.3(636)

calculator, §1.6(44), §2.3(105)

calculators, §1.5(29)

cancelling common factors, 233

carrying, 32, 93

circumference, §9.5(530), 532

cluster, 482

clustering, §8.3(482)

coefficient, 631, 631

combining terms, §11.3(636)

commas, 11, 68

common factor, 178

computation, §2.6(130)

commutative property, §2.6(130)

comparison of two numbers by subtraction, 418

complex decimals, 345

complex fraction, 312
INDEX

complex fractions, § 5.6(312)
composite number, 172
conditional equations, 639
constant, 576
conversion, § 6.3(344)
coordinate, 576
counting numbers, 577
cross products, 231
cube root, 154, 154
cubed, 153

decimal fraction, 339
decimal fractions, 339
decimal point, 339
denominator, 213, 513
diameter, § 9.5(530), 532
difference, 45
digits, 11, 68

distributive property, § 8.4(485), 486
divide, § 2.3(105), § 2.4(113), § 2.5(126)
dividend, 105, 135
divisible by 10, 128
divisible by 2, 126
divisible by 3, 126
divisible by 4, 126
divisible by 5, 127
divisible by 6, 127
divisible by 8, 127
divisible by 9, 128
division, § 2.3(105), 105, § 2.4(113), § 2.5(126), § 2.7(135), 135, § 2.8(136), § 2.9(139), § 4.1(211), § 4.2(212), § 4.3(221), § 4.4(231), § 4.5(242), § 4.6(253), § 4.7(259), § 4.8(265), § 4.9(268), § 4.10(274), § 5.1(293), § 5.2(294), § 5.3(298), § 5.4(304), § 5.5(308), § 5.6(312), § 5.7(316), § 5.8(320), § 5.9(321), § 5.10(325), § 6.1(337), § 6.2(338), § 6.3(344), § 6.4(348), § 6.5(352), § 6.6(358), § 6.7(369), § 6.8(381), § 6.9(386), § 6.10(392), § 6.11(395), § 6.12(396), § 6.13(400), § 7.1(417), § 7.2(417), § 7.3(423), § 7.4(429), § 7.5(435), § 7.6(442), § 7.7(446), § 7.8(456), § 7.9(458), § 7.10(462), § 8.1(475), § 8.2(475), § 8.3(482), § 8.4(485), § 8.5(491), § 8.6(493), § 8.7(494), § 8.8(500), § 9.1(511), § 9.2(512), § 9.3(517), § 9.4(522), § 9.5(530), § 9.6(540), § 9.7(555), § 9.8(557), § 9.9(562), § 10.1(575), § 10.2(576), § 10.3(582), § 10.4(586), § 10.5(590), § 10.6(597), § 10.7(602), § 10.8(611), § 10.9(612), § 10.10(616), § 11.1(629), § 11.2(630), § 11.3(636), § 11.4(639), § 11.5(647), § 11.6(655), § 11.7(660), § 11.8(669), § 11.9(671), § 11.10(678)
equal symbol, 30
equation solving, 641
equations, § 11.1(629), § 11.2(630), § 11.3(636), § 11.4(639), § 11.5(647), § 11.6(655), § 11.7(660), § 11.8(669), § 11.9(671), § 11.10(678)
equivalent fractions, § 4.4(231), 231
estimation, § 8.1(475), § 8.2(475), 476, § 8.3(482), § 8.4(485), § 8.5(491), § 8.6(493), § 8.7(494), § 8.8(500)

exact divisions, 381
exam, § 1.10(74)
Exercise Supplement, 2
exercises, § 1.9(69), § 1.10(74)
Exercises for Review, 2
exponent, 152, 152, 153

exponents, § 3.1(151), § 3.2(152), § 3.3(160), § 3.4(170), § 3.5(178), § 3.6(182), § 3.7(188), § 3.8(191), § 3.9(196),

Exponential notation, 152
expressions, § 11.1(629), § 11.2(630), § 11.3(636), § 11.4(639), § 11.5(647), § 11.6(655), § 11.7(660), § 11.8(669), § 11.9(671), § 11.10(678)

factor, 170, § 4.7(259), § 7.3(423)
factorization, § 3.1(151), § 3.2(152), § 3.3(160),
INDEX

§ 11.2(630), § 11.3(636), § 11.4(639),
§ 11.5(647), § 11.6(655), § 11.7(660),
§ 11.8(669), § 11.9(671), § 11.10(678)
measurement, § 9.1(511), § 9.2(512), 512,
§ 9.3(517), § 9.4(522), § 9.5(530), § 9.6(540),
§ 9.7(555), § 9.8(557), § 9.9(562)
multiplicand, 135
multiplication, § 2.2(92), 92, § 2.6(130),
§ 2.7(135), 135, § 2.8(136), § 2.9(139),
§ 4.1(211), § 4.2(212), § 4.3(221), § 4.4(231),
§ 4.5(242), § 4.6(253), § 4.7(259), § 4.8(265),
§ 4.9(268), § 4.10(274), § 6.1(337), § 6.2(338),
§ 6.3(344), § 6.4(348), § 6.5(352), § 6.6(355),
§ 6.7(369), § 6.8(381), § 6.9(386), § 6.10(392),
§ 6.11(395), § 6.12(396), § 6.13(400),
§ 10.7(602)
multiplication statement, 260
multiplicative identity, § 2.6(130), 132, 136
multiplier, 92, 135
multiply,". 255
multiplicand, 92
N
natural, 577
negative, § 10.3(582), 582, 582
negative numbers, 577
non-terminating division, 381
nonterminating divisions, § 6.1(337),
§ 6.2(338), § 6.3(344), § 6.4(348), § 6.5(352),
§ 6.6(358), § 6.7(369), § 6.8(381), § 6.9(386), § 6.10(392),
§ 6.11(395), § 6.12(396), § 6.13(400),
number, 10, 10, 67
number line, 13, 68
Numbers, § 1.2(10), § 1.4(21)
numeral, 10, 10, 67
Numerals, § 1.2(10)
numerator, 213, 513
numerical coefficient, 631
numerical evaluation, § 11.2(630), 632
numerical expression, 630
O
Objectives, 2
Opposites, 583
order of numbers, § 5.5(308)
order of operations, § 5.7(316)
ordered number system, 308
origin, 13, 577
P
Parentheses, 160
Parentheses in addition, 69
percent, § 7.5(435), 436, § 7.7(446), 446
percentage, § 7.7(446), 446
percents, 436
perimeter, § 9.5(530), 530
period, 68
periods, 11
pi, § 9.5(530)
plus symbol, 30
polygon, 530
positional, 11
positive, 582
positive fraction, 213
positive improper fractions, 222
positive mixed number, 222
positive number, 582
positive numbers, § 10.3(582)
positive proper fractions, 221
power, 153
Practice Sets, 1
preface, § (1)
prime factorization, 173
prime number, 172
product, 93, 135, 170
product statements, § 4.7(259)
products, § 4.7(259)
Proficiency Exam, 2
proper fraction, § 4.3(221)
properties, § 1.8(67), § 2.6(130)
proportion, 423, § 7.4(429)
proportions, § 7.3(423)
pure numbers, § 7.2(417), 418
Q
quotient, 105, 135
R
radical, 154
radical sign, 154, 154
radicand, 154
radius, § 9.5(530), 533
raising a fraction to higher terms, 236
rate, 419, 423
rates, § 7.1(417), § 7.2(417), § 7.3(423),
§ 7.4(429), § 7.5(435), § 7.6(442), § 7.7(446),
§ 7.8(456), § 7.9(458), § 7.10(462)
ratio, 419, 423, 436
rational numbers, 577
ratios, § 7.1(417), § 7.2(417), § 7.3(423),
§ 7.4(429), § 7.5(435), § 7.6(442), § 7.7(446),
§ 7.8(456), § 7.9(458), § 7.10(462)
INDEX

reading, § 1.3(15)
reading strategy, 660
real number, 577
real number line, 576
real numbers, § 10.3(582)
reciprocal, § 4.6(253)
reciprocals, 253
reduced, 233
reduced to lowest terms, 233
reducing a fraction, 233
relatively prime, 233, 233
remainder, § 2.4(113)
repeating decimal, 382
roots, § 3.1(151), § 3.2(152), § 3.3(160), § 3.4(170), § 3.5(178), § 3.6(182), § 3.7(188), § 3.8(191), § 3.9(196)
round a whole number, 22
rounding, § 1.4(21), 21, 68, § 8.2(475), § 8.5(491)

S
Sample Sets, 1
second partial product, 95
Section Exercises, 2
Section Overview, 1
sign, 582
signed numbers, § 10.1(575), § 10.2(576), § 10.3(582), § 10.4(586), § 10.5(590), § 10.6(592), § 10.7(602), § 10.8(611), § 10.9(612), § 10.10(616)
simple fraction, 312
simple fractions, § 5.6(312)
simplified, 522, 636
solutions, 639
solved, 639
square root, 154, 154
squared, 153
standard unit of measure, 512
Subtracting, § 1.1(9)
subtraction, § 1.6(44), 45, § 1.8(67), 69, § 1.9(69), § 1.10(74), § 5.1(293), § 5.2(294), § 5.3(298), § 5.4(304), § 5.5(308), § 5.6(312), § 5.7(316), § 5.8(320), § 5.9(321), § 5.10(325), § 6.1(337), § 6.2(338), § 6.3(344), § 6.4(348), § 6.5(352), § 6.6(358), § 6.7(369), § 6.8(381), § 6.9(386), § 6.10(392), § 6.11(395), § 6.12(396), § 6.13(400), § 10.6(597), § 11.3(636)
subtrahend, 45, 48
sum, 30, 69
summary, § 2.7(135)
Summary of Key Concepts, 2
symbols, § 11.6(655)

T
terminating division, 381
terms, 30, § 11.2(630), 630
test, § 2.9(139)
total product, 95

U
unit fraction, 513
United States System, § 9.2(512)
unlike denominator numbers, 418
unlike denominators, § 5.3(298)
use parentheses, 63

V
value of a digit, 12
variable, 576
volume, § 9.6(540), 545

W
weight, 519
whole number, 68
Whole Numbers, § 1.1(9), § 1.2(10), 12, § 1.3(15), § 1.4(21), § 1.5(29), § 1.6(44), § 1.7(62), § 1.8(67), § 1.9(69), § 1.10(74), § 2.2(92), § 2.3(105), § 2.4(113), § 2.5(126), § 2.6(130), § 2.7(135), § 2.8(136), § 2.9(139), § 3.1(151), § 3.2(152), § 3.3(160), § 3.4(170), § 3.5(178), § 3.6(182), § 3.7(188), § 3.8(191), § 3.9(196), 577
word problems, § 11.6(655)
writing, § 1.3(15)
ATTRIBUTIONS

Attributions

Collection: Fundamentals of Mathematics
Edited by: Denny Burzynski, Wade Ellis
URL: http://cnx.org/content/col10615/1.4/
License: http://creativecommons.org/licenses/by/2.0/

Module: "Fundamentals of Mathematics: Preface"
Used here as: "Preface"
By: Denny Burzynski, Wade Ellis
URL: http://cnx.org/content/m18884/1.4/
Pages: 1-5
Copyright: Denny Burzynski, Wade Ellis
License: http://creativecommons.org/licenses/by/2.0/

Module: "Fundamentals of Mathematics: Acknowledgements"
Used here as: "Acknowledgements"
By: Denny Burzynski, Wade Ellis
URL: http://cnx.org/content/m34775/1.2/
Pages: 7-8
Copyright: Denny Burzynski, Wade Ellis
License: http://creativecommons.org/licenses/by/3.0/

Module: "Addition and Subtraction of Whole Numbers: Objectives"
Used here as: "Objectives"
By: Denny Burzynski, Wade Ellis
URL: http://cnx.org/content/m18885/1.4/
Page: 9
Copyright: Denny Burzynski, Wade Ellis
License: http://creativecommons.org/licenses/by/2.0/

Module: "Addition and Subtraction of Whole Numbers: Whole Numbers"
Used here as: "Whole Numbers"
By: Denny Burzynski, Wade Ellis
URL: http://cnx.org/content/m34795/1.5/
Pages: 10-15
Copyright: Denny Burzynski, Wade Ellis
License: http://creativecommons.org/licenses/by/3.0/

Module: "Addition and Subtraction of Whole Numbers: Reading and Writing Whole Numbers"
Used here as: "Reading and Writing Whole Numbers"
By: Denny Burzynski, Wade Ellis
URL: http://cnx.org/content/m34778/1.5/
Pages: 15-21
Copyright: Denny Burzynski, Wade Ellis
License: http://creativecommons.org/licenses/by/3.0/

Module: "Addition and Subtraction of Whole Numbers: Rounding Whole Numbers"
Used here as: "Rounding Whole Numbers"
By: Wade Ellis, Denny Burzynski
URL: http://cnx.org/content/m34780/1.3/
Pages: 21-29
Copyright: Wade Ellis, Denny Burzynski
License: http://creativecommons.org/licenses/by/3.0/
Module: "Addition and Subtraction of Fractions, Comparing Fractions, and Complex Fractions: Addition and Subtraction of Fractions with Unlike Denominators"
Used here as: "Addition and Subtraction of Fractions with Unlike Denominators"
By: Wade Ellis, Denny Burzynski
URL: http://cnx.org/content/m34935/1.2/
Pages: 298-304
Copyright: Wade Ellis, Denny Burzynski
License: http://creativecommons.org/licenses/by/3.0/

Module: "Addition and Subtraction of Fractions, Comparing Fractions, and Complex Fractions: Addition and Subtraction of Mixed Numbers"
Used here as: "Addition and Subtraction of Mixed Numbers"
By: Wade Ellis, Denny Burzynski
URL: http://cnx.org/content/m34936/1.2/
Pages: 304-308
Copyright: Wade Ellis, Denny Burzynski
License: http://creativecommons.org/licenses/by/3.0/

Module: "Addition and Subtraction of Fractions, Comparing Fractions, and Complex Fractions: Comparing Fractions"
Used here as: "Comparing Fractions"
By: Wade Ellis, Denny Burzynski
URL: http://cnx.org/content/m34937/1.3/
Pages: 308-312
Copyright: Wade Ellis, Denny Burzynski
License: http://creativecommons.org/licenses/by/3.0/

Module: "Addition and Subtraction of Fractions, Comparing Fractions, and Complex Fractions: Complex Fractions"
Used here as: "Complex Fractions"
By: Wade Ellis, Denny Burzynski
URL: http://cnx.org/content/m34941/1.2/
Pages: 312-315
Copyright: Wade Ellis, Denny Burzynski
License: http://creativecommons.org/licenses/by/3.0/

Module: "Addition and Subtraction of Fractions, Comparing Fractions, and Complex Fractions: Combinations of Operations with Fractions"
Used here as: "Combinations of Operations with Fractions"
By: Wade Ellis, Denny Burzynski
URL: http://cnx.org/content/m34942/1.3/
Pages: 316-320
Copyright: Wade Ellis, Denny Burzynski
License: http://creativecommons.org/licenses/by/3.0/

Module: "Addition and Subtraction of Fractions, Comparing Fractions, and Complex Fractions: Summary of Key Concepts"
Used here as: "Summary of Key Concepts"
By: Wade Ellis, Denny Burzynski
URL: http://cnx.org/content/m34943/1.2/
Pages: 320-321
Copyright: Wade Ellis, Denny Burzynski
License: http://creativecommons.org/licenses/by/3.0/
Module: "Techniques of Estimation: Summary of Key Concepts"
Used here as: "Summary of Key Concepts"
By: Wade Ellis, Denny Burzynski
URL: http://cnx.org/content/m35015/1.2/
Pages: 493-494
Copyright: Wade Ellis, Denny Burzynski
License: http://creativecommons.org/licenses/by/3.0/

Module: "Techniques of Estimation: Exercise Supplement"
Used here as: "Exercise Supplement"
By: Wade Ellis, Denny Burzynski
URL: http://cnx.org/content/m35016/1.2/
Pages: 494-500
Copyright: Wade Ellis, Denny Burzynski
License: http://creativecommons.org/licenses/by/3.0/

Module: "Techniques of Estimation: Proficiency Exam"
Used here as: "Proficiency Exam"
By: Wade Ellis, Denny Burzynski
URL: http://cnx.org/content/m35017/1.2/
Pages: 500-501
Copyright: Wade Ellis, Denny Burzynski
License: http://creativecommons.org/licenses/by/3.0/

Module: "Measurement and Geometry: Objectives"
Used here as: "Objectives"
By: Denny Burzynski, Wade Ellis
URL: http://cnx.org/content/m18897/1.3/
Page: 511
Copyright: Denny Burzynski, Wade Ellis
License: http://creativecommons.org/licenses/by/2.0/

Module: "Measurement and Geometry: Measurement and the United States System"
Used here as: "Measurement and the United States System"
By: Wade Ellis, Denny Burzynski
URL: http://cnx.org/content/m35018/1.2/
Pages: 512-516
Copyright: Wade Ellis, Denny Burzynski
License: http://creativecommons.org/licenses/by/3.0/

Used here as: "The Metric System of Measurement"
By: Wade Ellis, Denny Burzynski
URL: http://cnx.org/content/m35019/1.2/
Pages: 517-522
Copyright: Wade Ellis, Denny Burzynski
License: http://creativecommons.org/licenses/by/3.0/
Module: "Algebraic Expressions and Equations: Combining Like Terms Using Addition and Subtraction"
Used here as: "Combining Like Terms Using Addition and Subtraction"
By: Wade Ellis, Denny Burzynski
URL: http://cnx.org/content/m35039/1.2/
Pages: 636-639
Copyright: Wade Ellis, Denny Burzynski
License: http://creativecommons.org/licenses/by/3.0/

Module: "Algebraic Expressions and Equations: Solving Equations of the Form x+a=b and x-a=b"
Used here as: "Solving Equations of the Form x+a=b and x-a=b"
By: Wade Ellis, Denny Burzynski
URL: http://cnx.org/content/m35044/1.3/
Pages: 639-646
Copyright: Wade Ellis, Denny Burzynski
License: http://creativecommons.org/licenses/by/3.0/

Module: "Algebraic Expressions and Equations: Solving Equations of the Form ax=b and x/a=b"
Used here as: "Solving Equations of the Form ax=b and x/a=b"
By: Wade Ellis, Denny Burzynski
URL: http://cnx.org/content/m35045/1.3/
Pages: 647-655
Copyright: Wade Ellis, Denny Burzynski
License: http://creativecommons.org/licenses/by/3.0/

Module: "Algebraic Expressions and Equations: Applications I: Translating Words to Mathematical Symbols"
Used here as: "Applications I: Translating Words to Mathematical Symbols"
By: Wade Ellis, Denny Burzynski
URL: http://cnx.org/content/m35046/1.2/
Pages: 655-660
Copyright: Wade Ellis, Denny Burzynski
License: http://creativecommons.org/licenses/by/3.0/

Module: "Algebraic Expressions and Equations: Applications II: Solving Problems"
Used here as: "Applications II: Solving Problems"
By: Wade Ellis, Denny Burzynski
URL: http://cnx.org/content/m35047/1.2/
Pages: 660-669
Copyright: Wade Ellis, Denny Burzynski
License: http://creativecommons.org/licenses/by/3.0/

Module: "Algebraic Expressions and Equations: Summary of Key Concepts"
Used here as: "Summary of Key Concepts"
By: Wade Ellis, Denny Burzynski
URL: http://cnx.org/content/m35049/1.2/
Pages: 669-671
Copyright: Wade Ellis, Denny Burzynski
License: http://creativecommons.org/licenses/by/3.0/
Module: "Algebraic Expressions and Equations: Exercise Supplement"
Used here as: "Exercise Supplement"
By: Wade Ellis, Denny Burzynski
URL: http://cnx.org/content/m35050/1.2/
Pages: 671-678
Copyright: Wade Ellis, Denny Burzynski
License: http://creativecommons.org/licenses/by/3.0/

Module: "Algebraic Expressions and Equations: Proficiency Exam"
Used here as: "Proficiency Exam"
By: Wade Ellis, Denny Burzynski
URL: http://cnx.org/content/m35052/1.2/
Pages: 678-679
Copyright: Wade Ellis, Denny Burzynski
License: http://creativecommons.org/licenses/by/3.0/
Fundamentals of Mathematics
Fundamentals of Mathematics is a work text that covers the traditional topics studied in a modern prealgebra course, as well as topics of estimation, elementary analytic geometry, and introductory algebra. It is intended for students who have had a previous course in prealgebra, wish to meet the prerequisite of a higher level course such as elementary algebra, and need to review fundamental mathematical concepts and techniques.

About Connexions
Since 1999, Connexions has been pioneering a global system where anyone can create course materials and make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and learning environment open to anyone interested in education, including students, teachers, professors and lifelong learners. We connect ideas and facilitate educational communities.

Connexions’s modular, interactive courses are in use worldwide by universities, community colleges, K-12 schools, distance learners, and lifelong learners. Connexions materials are in many languages, including English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. Connexions is part of an exciting new information distribution system that allows for **Print on Demand Books**. Connexions has partnered with innovative on-demand publisher QOOP to accelerate the delivery of printed course materials and textbooks into classrooms worldwide at lower prices than traditional academic publishers.